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Abstract
The amount of social events has increased significantly and location-based services have become
an integral part of our life. This makes the recommendation of activity sequences an important
emerging application. Recently, the notion of a distributed event (e.g. festival or cruise) that
gathers multiple competitive activities has appeared in the literature. An attendee of such
events is overwhelmed with numerous possible activities and faces the problem of activity
selection with the goal to maximise satisfaction of experience. This selection is subject to
various uncertainties. In this paper, we formulate the problem of recommendation of activity
sequences as a combination of personalised event recommendation and scheduling problem. We
present a new integrated framework to solve it and two computation strategies to analyse the
categorical, temporal and textual users’ interests. We mine the users’ historical traces to extract
their behavioural patterns and use them in the construction of the itinerary. The evaluation of
our approach on a dataset built over a cruise program shows an average improvement of 9.7%
over the state-of-the-art.

Keywords: Spatio-temporal activities, recommendation of activity sequences, uncertainty

1 Introduction

This work focuses on the emerging and challenging problem of the recommendation of activity
sequence during distributed events (e.g. cruises or festivals) that consist of multiple short-term
and highly competitive activities. These events attract millions of attendees and the interest in
taking part in them is substantially growing. Let us consider the case of a cruise. According to
the Cruise Industry Overview1, about 23 millions passengers were expected to cruise globally
in 2015, and the Cruise Line International Association expected 24 millions of cruisers in 20162.

∗Funding for this project was provided by a grant from la Région Rhône Alpes
1http://www.f-cca.com/downloads/2015-Cruise-Industry-Overview-and-Statistics.pdf
2http://www.cruising.org/docs/default-source/research/2016 clia sotci.pdf?sfvrsn=0
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Uncertainty
sources

Typical
uncertainties

Description

Data Implicit feed-
back

The data collected and analysed are not obtained by means of
users’ direct interaction with the system, there is no precise
knowledge about users’ preferences or users’ ratings of a set
of alternatives

Orientation
to the future

The recommendation items (i.e. activities) occur in the future
implying the lack of information about other users’ experience

Constrained
interest

The recommendation items are short-lived and are available in
a specific time and a specific place, which makes a user prefer
one activity to another for a given time slot

Attendance
bias

A user may join an activity that is not of his/her interest, and
not all activities that are missed by a user do not represent
personal interest for him/her

Assumption Maximisation
of satisfaction

User’s satisfaction is often considered being accumulative, i.e.
the more activities you join, the more satisfaction you get

Parameters Parameters
estimation

The objective functions that are used to estimate the model
parameters and evaluate the quality of the solution

Model Profiling The type of representation of both the features of alternatives
and the users’ preferences, and the way to maintain them up to
date impacts the understanding of ongoing processes of users’
decision making

Preference
score

The features selection and extraction

Itinerary con-
struction

The objective function of the scheduling of activity sequences

Table 1: Sources of uncertainty in recommendation of activity sequences

Cruise lines offer various activities in order to provide their customers with the best service.
Consequently, while on board, travellers face the problem of activity selection. Let us consider
the following example: Scoby is enjoying his holidays on board of a 7-night Caribbean cruise
ship. Every day, he has to make up his mind which activities to choose among a hundred offered
with the average duration of 45 min. And at every given time, there are about 5 activities going
on3. Then, what is the best way to plan the day in order to get as much fun as Scoby can?

The decision making process that is associated with the selection of activities to perform,
especially in the context of a big event as a cruise journey is not simple. There is a variety of
sources and types of uncertainties associated with the recommendation of activity sequences. A
number of them could be assigned to Parameter uncertainties group, according to classification
of uncertainties given in [8]. These uncertainties arise from the incomplete and inaccurate data
that do not fully represent the phenomenon. Table 1 describes some of them.

The problem of activity sequences recommendation rises in various fields, namely, in schedul-
ing during conferences, festivals (e.g. ComicCon), and big distributed events [6], holidays/tour
planning [2], and mobile crowdsourcing [1]. In this paper, a cruise is considered as an application
scenario. We consider indoor and limited outdoor environments, which implies that the travel
time is of less importance than in the case of tour and Points of Interest (POI) recommendation.

3The statistics about the average duration of activities and the number of simultaneous activities are taken
from the dataset described in Section 4.1
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The main challenges of the recommendation of activity sequences rely in the fact that
activities are unique, happening in future and short-term. Thus, every time a user wants to
choose an activity to perform, he/she has to detect an activity he/she may prefer among all
the alternatives happening during the same timeslot, taking into account that he/she may not
be able to join another activity of interest due to the availability/time constraints. Therefore,
the objective is not only to define users’ interest in upcoming events, but to provide per day
personal program (itinerary) of activities. It implies the necessity to recommend activities with
no explicit feedback and any external information (e.g. reviews) dealing with highly uncertain
users’ preferences, and to ensure that a user will be able to attend all the selected activities on
time. We assume that we have access to users’ past visited locations and the timestamps.

In this paper, we aim at answering the following research question: How can we predict
and maximise users satisfaction with a sequence of activities, given their past experience? We
decompose this problem into three specific research questions:

RQ1: How can we tackle the uncertain users’ preferences and evaluate the users’ interest
for an activity happening in future, given little information about it?

RQ2: How can we retrieve users behavioural patterns from historical data?

RQ3: How can we organise activities into a sequence that maximises the user’s satisfaction
while taking into account spatio-temporal constraints and the sequential nature of activities?

The present study is related to the following research fields: POI recommendation, Event
recommendation, Trip recommendation and Itinerary construction. POI recommendation aims
at providing users with lists of top-k points of interest according to the users’ visiting prefer-
ences, considering the geographical component having the biggest impact [3]. Some works also
exploit categorical or social [12] influences. The main limitation of the POI recommendation
techniques is that they do not consider POI availability constraints, travel time between POIs,
visit duration, user’s time budget, and visiting order. [4] tackles the problem of top-n recom-
mendation of events in Event-Based Social Networks. In addition to textual and collaborative
signals, several contextual interests have been exploited (i.e. social signal, users’ geographical
and temporal preferences) that are combined for learning to rank events. Similar to the POI
recommendation techniques this method does not consider limited availability of events, and
event attendance order. Trip recommendation aims at providing a user with a sequence of
POIs to visit, by taking into account spatial and temporal constraints. Most of recent studies
[11] decompose the problem in two parts: (1) estimation of individual scores for each POI, (2)
itinerary construction [2]. Contrary to the problem treated in this paper, trip recommendation
problem does not consider the uniqueness of activities. The itinerary construction problem is
often modelled as an instance of Orienteering Problem (OP) or its variations [10]. OP aims at
determining a Hamiltonian path limited by the time budget that maximises the collected score
by visiting vertices. OP ignores the way the scores of vertices have been calculated.

In this paper, we propose an integral approach to address the problem of recommendation of
activity sequence. The key contributions of our work are: a formal definition of the problem of
activity sequence recommendation; an integral method to compute activity scores; an algorithm
to retrieve users behavioural patterns based on the past performed activities; an integration of
users typical transition patterns on the itinerary construction. Moreover, the user study has
been conducted in order to collect the relevant data.

The remainder of the paper is organized as follows. Section 2 defines the problem and
introduces the notations. In Section 3, we present our approach that consists of three parts:
activities score computation, sequential pattern mining, and itinerary construction. Section
4 describes the dataset used for the evaluation and reports the obtained results. Section 5
concludes the paper and presents our future work.
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Activity: The Comedy & Hypnosis of Ricky Kalmon
Location: Walt Disney Theatre, l = (0, 880, 0); Time window: Day 3, 23:00-23:45,
t = (1435014000, 1435016700); Duration: δ = 2700; Categories: Adults, Variety Show
Description: Featuring the Comedy & Hypnosis of Ricky Kalmon, as he entertains you
in this adult exclusive show.

Table 2: An example of an activity

2 Problem Definition

In this section, we define the notations used throughout the paper and formulate the problem.
An activity a = 〈l, t, δ, c, d〉 is an event that a user u can attend or take at some geographi-

cally located point in a particular time window, and is characterised by its location (latitude,
longitude, altitude), l = (x, y, z), the time window (start time ts and end time te) of its availabil-
ity t = (ts, te), its duration δ, a vector of categories associated with the activity c = (c1, ..., ck),
and a description d. An example of an activity is given in Tab. 2. A = {a1, a2, ..., aN} is the
set of all available activities.

An activity sequence (or itinerary) ξu =
(
au(s), ..., a

u
(s+k)

)
, where 1 ≤ s ≤ s + k ≤ N , is an

ordered series of activities for user u, accounting for spatio-temporal constraints4 such as the
Activity availability constraint and the Time budget constraint. Activity availability constraint
specifies that an activity ai can be performed only during its availability time, limited by its start
time ts and end time te, i.e. ts ≤ start(ai) ≤ te. Here, start(ai) denotes the time when a user
starts performing the activity ai, as he/she may join the activity ai when it becomes available
and once he/she has finished to perform the previous activity and moved to the location of the
current one, i.e. start(a(i)) = max{start(a(i−1)) + δ(a(i−1)) + time(a(i−1), a(i)), ts(a(i))}, where
time(a(i−1), a(i)) is the travelling time to go from the location of activity a(i−1) to the one of
a(i). Time budget constraint limits the total time needed to follow all the activities within an
itinerary, including activities duration and travelling time with the given time budget Tmax. It
may be defined by a user or the fixed value may be used (e.g. day time).

A satisfaction function r (ai, u) , r : A −→ <+ characterises the match of the activity ai
with the interest of a user u for this activity. The satisfaction with an itinerary ξu for a user u
is defined as the sum of scores of activities within the itinerary, r (ξu, u) =

∑
ai∈ξu r (ai, u).

The problem of activity sequences recommendation consists in finding an itinerary ξu that
maximises the user’s satisfaction r (ξu, u), given a user u and the set of activities A = {ai}i=1,N .

We make the following assumptions throughout this paper: (1) Non-stop fun: in the context
of users’ attendance of a distributed event, their goal is to get the maximum satisfaction from
overall experience. (2) Traceability of users: the log of users’ past experience that consists
of geospatial coordinate sets and timestamps is available. (3) Moving around in space: the
travelling time of the users between locations is a function of distance. We assume that all the
users move with the same constant pace.

3 Solution Methods

We propose an integrated framework for activity sequences recommendation that exploits the
users’ interests, sequential influence, spatial and temporal constraints. It consists of three main

4Here we use brackets in subscripts to indicate that the elements within a sequence are ordered, so that they
can be differentiated from the elements of the whole set.
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parts: 1. Computation of personalised scores for each activity. 2. User’s behavioural pattern
mining. 3. Itinerary construction using data provided by the previous steps.

3.1 Computation of Personalised Scores

We now investigate our RQ1. The activities we consider are unique and can be performed only
during their time window. There is no rating of upcoming activities that could be used in order
to predict the scores. There are users’ traces available (see Traceability of users assumption)
that in combination with activities program may be used to retrieve the activities joined by a
user. Due to the lack of explicit feedback about the degree of user’s interest in an attended
activity, user’s attendance is regarded as positive feedback. In this work, we propose to explore
content, categorical and temporal influences in order to estimate users scores of activities.

Content Influence: We consider textual influence by applying a bag-of-words model to the
descriptions of activities. We use TF-IDF representation of activities ~e in order to build positive
and negative user profiles. The positive user profile Upos consists of summarised TF-IDF vectors
of activities performed by the user in the past, while the negative user profile Uneg is built over
non-performed activities. The content-based score of an upcoming activity is then computed
as a linear combination of cosine similarity measures in such a way that the similarity to non-
performed activities is used as a penalty, i.e. r̂cb(a, u) = αu · cos(Upos, ~e) − βu · cos(Uneg, ~e).
The parameters αu and βu are defined for a given user as optimisation parameters of the loss
function with regularisation over the 10-fold cross-validation sets.

Categorical Influence: We suggest to use the categories of activities already performed by
the user. Each activity a is associated with a list of categories Ca = {cj}. Thus, for each user
and each category, we compute the frequency of a category based on the user’s past activities

as freq(ci, u) =
|Au,ci

|·wa

|Au| , where |Au,ci | is the number of activities performed by user u that

belong to the category ci, wa = 1/|Ca| is the weight calculated as a ratio to the number of
categories an activity a ∈ Au,ci is associated with, and |Au| is the number of all activities
performed by user u. Given a user and an activity, we then estimate an activity categorical
score as the sum of corresponding categorical frequencies, i.e. r̂cat(a, u) =

∑
Ca freq(cj , u).

Temporal Influence: Another factor that might have an impact on users’ decision on joining
an activity is the temporal aspect, i.e. when an activity takes place. The intuition behind is
that there are several parts of a day when a person is more active. To formalise this intuition,
we split a day into 15 minutes long timeslots. We then represent each activity as a binary
1×96-dimensional vector ta with a vector component set to 1 if the availability time window of
an activity includes that timeslot. A user is then represented as the binary vector built over the
union of the timeslots of his/her past activities tu . The temporal score is defined based on the
temporal relations between a timeslots vector of an upcoming activity and a user’s temporal

profile, as: r̂time(a, u) =

 1, if ta ∩ tu
0.5, if ta ∩ {tu − 1 ∪ tu + 1}
0.1, otherwise

. We adapt the scores proposed in [5].

To further improve the effectiveness of recommendation, we propose to make use of the three
aforementioned influences by combining them in two ways. First, we propose to define Hybrid
Score (LinC) as follows: r̂hyb(u, a) = (γu · r̂cb(u, a)+ δu · r̂cat(a, u)) · r̂time(a, u), where γu and δu
are defined for a given user as optimisation parameters of the loss function with regularisation
over the 10-fold cross-validation sets. Secondly, we suggest to fit the logistic regression classifier
with categorical, textual and temporal scores as parameters, and consider the probability of
assigning an activity to the class 1 as Logistic Regression Score (LogR).

We suggest to organise scores estimation process under two strategies that we call Strategy
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Strategy 1: All-at-once ;
Input: User’s Attendance
Matrix M, New activities
NewEvent ;
Output: Activities scores R;
Calculate R(NewEvents,M)

Strategy 2: Day-after-Day ;
Input: User’s Attendance Matrix M, New
activities NewEvent, Number of past days
PastDays, Total number of days DayNum ;
Output: Activities scores R ;

InitialisationM(0) ←M ;
for i← PastDays to DayNum do

Calculate R(i)(NewEvent(i),M(i)) ;

M(i) ←M(i) ∪R(i) ;
i← i+ 1

end

Table 3: Strategy 1 and 2 to estimate the interest scores of activities

1 (’All-at-Once’) and Strategy 2 (’Day-after-Day’) strategies. Table 3 depicts the pseudocodes
of the algorithms. Thus, Strategy 1 considers all upcoming activities at once and estimates
their scores with respect to the above models, while Strategy 2 estimates activities scores on a
daily basis and enriches user’s experience of past events with estimated scores that are further
used as user’s historical data at the next iteration.

3.2 User’s Behavioural Pattern Mining

This section addresses our RQ2. Our goal is to retrieve the most typical transitions between
consecutive activities, i.e. users’ activities sub-sequences or behavioural patterns. Two activi-
ties are considered to form a sequence if the time interval between the end of the first and the
start of the second one is within a fixed threshold [13].

We propose to construct an activity-activity transition graph (A2TG) and a category-category
transition graph (C2TG) by extending the concept of location-location transition graph used to
model the transitions between POIs [13]. The A2TG models the transitions between activities
determined by their time and location. Due to the uniqueness of activities, the A2TG cannot
be used directly for the estimation of the transition probabilities between new activities. Thus,
we use it to construct the C2TG that models generalised transitions between categories.

Based on users historical traces and the program of a distributed event we retrieve users
activity sequences and construct the A2TG. Its nodes, V = {a1, ..., aN}, correspond to the
activities undertaken by a user. In contrast to [13], we assign the number of incoming edges
InCount(ai) since we suppose that the user’s satisfaction depends more on the previous expe-
rience rather than on the future one. The edges stand for transitions between activities and are
associated with the number of transitions, TransCount(ai → aj). We further propose to move
to the category level under the assumption that the categories of activities are known.

C2TG is constructed in a similar way. Its nodes represent categories ci associated with un-
dertaken activities and are characterised by the number of incoming edges, InCount(ci), calcu-
lated as follows: InCount(ci) =

∑
aj∈ci

InCount(aj). The edges stand for transitions between cat-

egories and are associated with the number of transitions, TransCount(ci → cj), which is cal-
culated using the TransCount of corresponding activities as follows: TransCount(ci → cj) =∑
ak∈cj ,
ag∈ci

TransCount(ak → ag). Given C2TG, we estimate the probability of transition from
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Activity sequence: {Crafts: Door Hangers → Pictionary Challenge → Singles’ Lunch →
Goofy → The Comedy and Hypnosis of Ricky Kalmon}
Categories sequence: {Fun for All Ages (F) → Fun for All Ages (F) → Adults (A) →
Characters (C) → Fun for All Ages (F)}
A2TG: C2TG:

a1

: 0

a2

: 1

a3 : 1

a4: 1

a5 : 1

1 1

1

1

C : 1

F

: 2

A : 11

1

1

1 PT (F → A) = 1;

PT (F → F ) = 1/2; PT (A → C) = 1;
PT (C → F ) = 1/2

Table 4: Example of A2TG, C2TG and PT . Node labels stand for InCount.

one category to another as follows: PT (ci → cj) =



TransCount(ci→cj)
InCount(cj)

, if InCount(cj) 6= 0

0, if InCount(cj) = 0
and ci 6= cj

1, if InCount(cj) = 0
and ci = cj

To estimate the transition probability between two activities, the reverse process has to be
undertaken. An example of A2TG, C2TG and transition probabilities PT is shown in Tab. 4.

3.3 Itinerary construction

In this section, we focus on RQ3. Given a user, a set of activities A defined by their locations
given by coordinates, the time windows of their availability, the duration, personalised interest
scores, the travel time between a pair of locations, the fixed starting and ending point, we
want to find a sequence of activities that maximises the overall collected score, i.e. user’s
satisfaction from undertaken activities. Therefore, the itinerary construction problem can be
formulated as the Orienteering Problem with Time Windows (OPTW) [9]. Vansteenwegen et
al. [9] proposed the Iterated Local Search (ILS) algorithm to solve OPTW. ILS is a heuristic
algorithm that iteratively searches a node to be included in the current path that will maximise
the total score of the itinerary. A feasibility check is performed to ensure that the insertion of
a new node would not make any already included visit violate its time window constraint. At

each iteration, ILS adds a feasible node ak with the highest Ratiok =
r̂2k

Shiftk
, i.e. the ratio

of squared node score r̂k to the time shift Shiftk needed for insertion of the activity ak into
the path caused by the insertion of the node. Due to the limited space, we do not include
the mathematical formulation of the OPTW problem here (for more details, refer to [9]). We
propose an adaptation of the ILS algorithm in adjusting the value of Ratiok with the transition

probability from the previous activity ak−1 to the current one ak: Ratiok = r̂k∗PT (ak−1→ak)
Shiftk

,

where r̂k is the score of the activity ak, PT (ak−1 → ak) is the transition probability from the
activity ak−1 to ak. We denote our transition probability enhanced ILS as ILS TP. The intuition
behind is that incorporating the sequential characteristics of already undertaken activities could
enhance the prediction power of itinerary recommendation.
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Statistic # Activities # Days # Users # Locations # Categories
Value 595 7 23 47 52

Table 5: Dataset Statistics

4 Results and Discussion

4.1 Dataset

To the best of our knowledge, there is no available dataset for personalised recommendation of
itineraries during distributed events. Therefore, we have created a dataset and have performed
the evaluation offline. The dataset simulates users’ attendance of a cruise and was created as
follows. We have collected the plannings of activities from a Disney’s 7-nights cruise5. We
have created an online survey that consisted of 3 parts: (I) Personal Profile (i.e. completion of
personal information, e.g. gender, cruise experience, type of group a user is travelling with) (II)
Interest in Activities (i.e. given a list of activities, respondents have indicated their interest in
each activity on a 5-point scale ranging from 1-Never to 5-Won’t Miss) (III) Daily Itineraries
(i.e. given a list of activities with their time slots, users have indicated their intent to join or
not a particular activity for each day out of 7, i.e. they have organised the activities into a
day-wise itineraries). Thus, 23 contributions have been collected. Dataset statistics are given
in Tab. 5. If not provided, we have enriched activity descriptions of movies and characters
using IMDb (http://www.imdb.com/) and Wikia (http://disney.wikia.com/) respectively.

4.2 Evaluation Protocol

The itineraries provided by users have been split into two parts: the first was used as historical
data in order to extract the sequential patterns and users’ interests, and the second was used as
the test set to evaluate the results obtained with our approach. Partitions of various sizes (on
the day level ranging from 1 to 6) have been explored. The evaluation process was performed
in two steps. First, we have evaluated the accuracy of estimated activities scores using four
metrics: MAE, RMSE, Precision at rank k [7] and AUC (area under the ROC-curve). The
rank k of Precision was defined for each user and set to the average number of daily activities
performed by a given user in the past days. The motivation behind such a setting lies in the fact
that different users have different density of activities. The lower values of MAE, RMSE and the
higher values of Precision and AUC are the better. Ten cases were considered w.r.t. the method
to compute activity score: Category-based, Content-based, Time-based, Hybrid and Logistic
Regression under two strategies (see Section 3.1). The results have been compared with the
ground truth composed of the binary attendance of activities. Second, we have evaluated the
itinerary construction by comparing ILS TP and the original ILS with the sequences that were
annotated by users (Ground Truth). We consider the ratio of recommended activities matching
Ground Truth to the length of the Ground Truth as the evaluation metric (”Similarity”).

4.3 Results

We implemented the estimation of the activities scores and the transition probabilities using
Python 3.5.2, and itinerary construction using GNU Octave. Firstly, we evaluated the accuracy
of obtained activities scores (see Fig. 1). It can be seen that the exploitation of multiple factors

5http://disneycruiselineblog.com/2015/07/personal-navigators-7-night-eastern-caribbean-cruise-on-disney-
fantasy-itinerary-a-june-20-2015/
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Figure 1: Values of evaluation metrics of the quality of activities score estimation.

History Days 1 2 3 4 5 6 Average
Strategy 1 6.1 3.4 6.5 6.2 9.9 11.3 7.4
Strategy 2 25.0 10.3 4.4 13.5 14.3 11.3 13.5

Table 6: Improvement of ILS TP over ILS in terms of similarity to Ground Truth, %

increases the predictive power of the model. Thus, the Hybrid scores outperform the others in
terms of precision and AUC, while having the second result in terms of MAE. It can be noticed
that the performance is enhanced when using the Strategy 2 (the dash lines in the plots). These
results were expected since Strategy 2 applies the enrichment of historical data. We can see that
considering 2 history days and more dos not affect much the performance of the algorithms. We
find that the results reflect well the users’ intentions, in particular the Hybrid score-Strategy
2. Thus, we selected Hybrid scores under Strategy 1 and 2 for the next evaluation step. We
used them as input data for ILS and ILS TP algorithms. We varied the number of history days
from 1 to 6. The obtained results show that incorporating the transition probability into the
itinerary construction improves the performance. Thus, the average improvement of ILS TP
over ILS is 7.3% for Hybrid score-Strategy 1 and 14.1% for Hybrid score-Strategy 2 (see Tab.
6). The variations of performance w.r.t. the number of history days could be explained by the
introduction of transition probabilities that are computed over the users’ past experience.

5 Conclusion

Here we studied the problem of the recommendation of activity sequences during distributed
events which is highly challenging as it combines the problem of item recommendation and
the scheduling problem. We proposed an integrated framework for the recommendation of
unique activity sequences that exploits categorical, textual and temporal influences to estimate
users’ interest scores in activities, and makes use of sequential influence in order to recommend a
better itinerary. Two strategies of calculation of activity score were presented. We evaluated our
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approach on a dataset created by conducting a user study that simulated the users’ attendance of
a cruise. The experiments show that our solution outperforms state-of-the-art algorithm. The
described framework allows mitigating the impact of uncertainties stemming from uncertain
preferences, imprecise and unclear relationship between the characteristics of activities and
interests of an attendee. It is to note that users’ interest in an activity does not always result in
joining it and vice versa. Thus, according to our user study, 15.73% of activities were selected
by users as performed (i.e. marked as ’going’ by respondents), but marked as non representing
interest; while 58.12% of activities where marked as interesting but were not attended. In future
work, we plan to explore different research directions. First, other types of influence on the
interest score of activities could be investigated, including users demographics, or the group
that a user performs activities with. Second, we plan to incorporate multiple time windows and
multiple locations into the itinerary construction part of our approach. Finally, we would like
to use the crowdsourcing as an evaluation tool: 1. to rate the activities according to interests.
2. to make a planning of activities to perform. 3. to evaluate recommendation results.
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