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GENERALIZED RANDOM FIELDS AND

LÉVY’S CONTINUITY THEOREM ON

THE SPACE OF TEMPERED DISTRIBUTIONS

HERMINE BIERMÉ, OLIVIER DURIEU, AND YIZAO WANG

Abstract. In this note, we recall main properties of generalized random fields
and present a proof of the continuity theorem of Paul Lévy for generalized

random fields in the space of tempered distributions. This theorem was first

proved by Fernique [6] in a more general setting. The aim of this note is to
provide a self-contained proof that in particular avoids the abstract theory of

nuclear spaces.

1. Introduction

The notion of generalized random fields has been introduced in the 50’s by
Gel′fand [7]. Such a field is a collection of real random variables that is indexed
by a class of functions and that satisfies linearity and certain regularity conditions.
It can also be seen as a single random variable taking values in the space of gen-
eralized functions (or distributions). The name random distribution is also used
in the literature. The interest for generalized random fields was first due to their
applications in many areas. They were used in constructive quantum field theory
(see [3, 18]), in stochastic differential equations in infinite-dimensional spaces (see
[14]), and in sparse stochastic modeling (see [4]). In comparison to classical prob-
ability theory, two theorems stand out for generalized random fields. The first is a
Bochner-type theorem obtained by Minlos [17] that gives sufficient conditions on a
functional on the Schwartz space to be the characteristic functional of some gener-
alized random field. The second is a Lévy-type continuity theorem, saying that the
convergence in distribution of generalized random fields can be determined by the
pointwise convergence of the corresponding characteristic functionals, provided in
addition that the limit is continuous at zero. The Lévy’s continuity theorem was
obtained by Fernique [6] and generalized by Meyer [16] (see also [2]) in the setting of
nuclear spaces, and has found various applications in for example particle systems
[10, 11] and image processing [5]. Our own motivation came from the investigation
of limit theorems for the so-called random-ball models, which will be discussed in
a forthcoming paper. In all these applications, Lévy’s continuity theorem is used
for generalized random fields in the space of tempered distributions, which is the
dual of the Schwartz space.

Although Lévy’s continuity theorem in very general setups has been known since
Fernique [6] in the 60’s, a simple and self-contained proof in the specific case of the
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theorem; Minlos–Bochner’s theorem.

1
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space of tempered distributions, without using the general framework of nuclear
spaces and their dual spaces, cannot be found in the literature. The space of
tempered distributions as the dual of Schwartz space, a countably Hilbert space,
enjoys several nice properties. Standard references as Gel′fand and Vilenkin [9] and
Kallianpur and Xiong [14] provide excellent introductions to generalized random
fields taking values in the space of tempered distributions. However, both treat-
ments stop at Minlos–Bochner’s theorem. It is the purpose of this paper to fill in
the gap by presenting a proof of Lévy’s continuity theorem for generalized random
fields, without using abstract theory on nuclear spaces.

Throughout the paper, the integer d ≥ 1 is fixed; N stands for the set of non-
negative integers {0, 1, 2, . . . }; for n ∈ N, Γn denotes the net-square {0, . . . , n}d; for
each integer s ≥ 2, ζ(s) denotes the finite constant

∑
n≥1 n

−s.

2. Generalized random fields and main results

Recall that the Schwartz space S = S(Rd) consists of infinitely differentiable
functions f : Rd → R that are rapidly decreasing, that is, for all m ∈ N and
j = (j1, . . . , jd) ∈ Nd,

(1) ‖f‖m,j = sup
x∈Rd

(1 + |x|)m
∣∣Djf(x)

∣∣ <∞,
where Djf(x) = ∂j1 ...∂jd

∂x
j1
1 ...∂x

jd
d

f(x) denotes the partial derivative of order j. It is a

linear vector space and it is equipped with the topology generated by the family of
semi-norms ‖ · ‖m,j , m ∈ N and j ∈ Nd. It is well known that S is a Fréchet space
(i.e. a locally convex metrizable complete space).

The space of tempered distributions S ′ = S ′(Rd) is the topological dual of S,
the space of continuous linear functionals on S. For F ∈ S ′ and f ∈ S, the real
number F (f) is usually denoted by (F, f). The duality bracket ( ·, · ) : S ′ × S → R
is a bilinear form.

We shall work with two topologies on S ′, the strong topology τs and the weak
topology τw. The strong topology τs on S ′ is generated by the family of semi-norms

qB(F ) = sup
f∈B
|(F, f)|, B ⊂ S bounded.

Recall that a subset B of a topological vector space is bounded if for all neighbor-
hood V of 0, there exists λ > 0 such that B ⊂ λV . The weak topology on S ′ is
simply induced by the family of semi-norms |( ·, ϕ)|, ϕ ∈ S. In particular Fn con-
verges to F in S ′ with respect to the weak topology, when limn→∞(Fn, ϕ) = (F,ϕ)
for all ϕ ∈ S. We show in Section 3.3 that the Borel σ-fields corresponding to both
topologies coincide. Therefore we shall talk about the Borel σ-fields B(S ′) of S ′
without specifying the topology.

Let (Ω,A,P) be a probability space. By a generalized random field defined on
(Ω,A,P), we refer to a random variable X with values in (S ′,B(S ′)), namely, a
measurable map X : (Ω,A) → (S ′,B(S ′)). In this case, X(f) is a real-valued
random variable for all f ∈ S and f ∈ S 7→ X(f)(ω) is linear and continuous for
all ω ∈ Ω. Here, we are mostly interested in the law of the generalized random field

PX = P ◦X−1,
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the induced probability measure on (S ′,B(S ′)). We shall nevertheless talk about
convergence of generalized random fields instead of convergence of laws of general-
ized random fields, for the sake of simplicity.

A fundamental object in the investigation of generalized random fields is the
characteristic functional, playing the role as the characteristic function for a random
variable in R. First, recall that the law of a real random variable Y defined on
(Ω,A,P) is uniquely determined by its characteristic function LY defined as

LY (t) = E(eitY ) =

∫
Ω

eitY dP, t ∈ R.

The function LY is positive-definite, continuous and satisfies LY (0) = 1. Here we
understand that a complex-valued function L is positive-definite if for all m ≥ 1,
all complex numbers c1, . . . , cm, and all t1, . . . , tm ∈ R,

∑m
i,j=1 cic̄jL(ti − tj) ≥ 0.

The well known Bochner’s theorem states that conversely, if a map L : R → C is
positive-definite, continuous at 0, and L(0) = 1, then there exists a real random
variable Y such that LY = L.

Similarly, for a generalized random field X with law PX , we define its charac-
teristic functional by

LX(f) = E(eiX(f)) =

∫
S′
eiF (f)dPX(F ), f ∈ S.

Note that LX is again positive-definite, continuous, and LX(0) = 1. Here and in
the sequel, we say that a functional L : S → C is positive-definite, if for all m ≥ 1,
c1, . . . , cm ∈ C and f1, . . . , fm ∈ S,

m∑
i=1

m∑
j=1

cic̄jLX(fi − fj) ≥ 0.

The Minlos–Bochner theorem says that the converse is true.

Theorem 2.1 (Minlos–Bochner). If a functional L : S → C is positive-definite,
continuous at 0, and L(0) = 1, there exists a generalized random field X defined on
a probability space (Ω,A,P) such that LX = L.

In order to be self-contained, we give a proof of this theorem in Section 4 as well
as a similar result for random variables taking values in S (Theorem 4.3), which will
be needed in the proof of Lévy’s continuity theorem. Minlos–Bochner’s theorem has
a direct application in proving existence of generalized random fields. For example,
consider the functional L : S → C defined by L(f) = exp(−‖f‖22/2), where ‖f‖2
denotes the L2-norm of f . Theorem 2.1 yields the existence of a generalized random
field X such that LX(·) = L(·). This field X is known as the standard generalized
Gaussian field in the literature (see e.g. [12, 15]).

More generally, there are situations that a collection of real random variables
X = (X(f))f∈S are given, such that for all m ≥ 1, a1, . . . , am ∈ R, f1, . . . , fm ∈ S,

(2) X

(
m∑
i=1

aifi

)
=

m∑
i=1

aiX(fi), a.s.

Although a priori this does not necessarily imply that (X(f))f∈S is determined by
a generalized random field X, Minlos–Bochner’s theorem yields a simple criterion
for X to admit a version as a generalized random field. By a version of X, we mean
a generalized random field X̃, not necessarily defined on the same probability space
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as X, such that (X(f))f∈S and (X̃(f))f∈S have the same finite-dimensional dis-
tributions. Given a collection of random variables (X(f))f∈S , with slightly abused

notation we write LX(f) = E(eiX(f)). The linearity (2) shall imply that LX(f) is
positive-definite. We hence have the following.

Corollary 2.2. Let X = (X(f))f∈S be a collection of real random variables on
(Ω,A,P) that are linear in the sense of (2). If LX(f) is continuous at zero on S,
then X admits a version that is a generalized random field.

Our notion of version is weaker than the notion of regularization in [12] where

X̃ is required to be on the same probability space, and P(X̃(f) = X(f)) = 1 for all
f ∈ S. However, our notion of version suffices for many applications on convergence
in distribution of generalized random fields.

Another important theorem concerning characteristic functional is the Lévy’s
continuity theorem that characterizes convergence in distribution. Let (Xn)n≥1

and X be generalized random fields with laws (PXn)n≥1 and PX respectively. We
say that Xn converges in distribution to X with respect to the strong topology (of
S ′) if

(3) lim
n→∞

∫
S′
ϕ(F )dPXn(F ) =

∫
S′
ϕ(F )dPX(F ), for all ϕ ∈ Cb(S ′, τs),

where Cb(S ′, τs) is the space of bounded continuous functions on S ′ given the strong
topology.

The main result of the paper is a self-contained proof of the following version of
Lévy’s continuity theorem for generalized random fields.

Theorem 2.3. Let (Xn)n≥1 be a sequence of generalized random fields. If LXn

converges pointwise to a functional L : S → C which is continuous at 0, then
there exists a generalized random field X such that LX = L and Xn converges in
distribution to X with respect to the strong topology.

Another natural notion of convergence in the space S ′ is the convergence in
distribution with respect to the weak topology, which is defined similarly as in (3),
with test functions from Cb(S ′, τw) instead of Cb(S ′, τs). It is straightforward to show
that the convergence with respect to the strong topology implies the convergence
with respect to the weak topology, and that the latter convergence implies the
convergence of the characteristic functionals. The main theorem above shows that
the three types of convergence are equivalent.

Corollary 2.4. Let (Xn)n≥1, X be generalized random fields. The following con-
ditions are equivalent:

(i) Xn converges in distribution to X with respect to the strong topology,
(ii) Xn converges in distribution to X with respect to the weak topology,

(iii) limn→∞ LXn
(f) = LX(f) for all f ∈ S,

(iv) Xn(f) converges in distribution to X(f) in R for all f ∈ S.

As we pointed out before, Theorem 2.3 and the discussion above are a special
case of a more general result of [6, 16], where, however, the background on nuclear
spaces are required. The aim of the paper is to present a simpler and self-contained
proof in this special case of the space S ′ that cannot be found in the literature, to
the best of our knowledge.
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The paper is organized as follows. Some preliminary results on Schwartz space
and the space of tempered distributions are provided in Section 3. Section 4 estab-
lishes Milnos–Bochner’s theorems. Section 5 proves the Lévy’s continuity theorem
for generalized random fields. Section 6 provides some topological properties of S
and S ′ that are needed in the proofs.

3. The Schwartz space and the space of tempered distributions

3.1. The Schwartz space S as a countably Hilbert space. A countable or-
thonormal basis (a complete orthonormal system) of L2(R) is given by the family
of Hermite functions {hn}n∈N, defined as

hn(x) = (−1)n(2nn!
√
π)−1/2e

x2

2

(
d

dx

)n
e−x

2

, n ∈ N, x ∈ R.

On Rd, we define the Hermite functions {hn}n∈Nd by

hn(x) =

d∏
i=1

hni
(xi), n = (n1, . . . , nd) ∈ Nd, x = (x1, . . . , xd) ∈ Rd.

The family of Hermite functions on Rd is an orthonormal basis of L2(Rd). Any
function f ∈ L2(Rd) can be written as

f =
∑
n∈Nd

〈f, hn〉hn,

where 〈·, ·〉 denotes the inner product in L2(Rd) given by 〈f, g〉 =
∫
Rd f(x)g(x)dx.

We can then define a family of increasing norms on L2(Rd) by

(4) ‖f‖2p =
∑
n∈Nd

(1 + n)2p〈f, hn〉2, p ∈ N, f ∈ L2(Rd),

where here and in the sequel, we write

(5) (1 + n)q =

d∏
i=1

(1 + ni)
q for q ∈ Z, n = (n1, . . . , nd) ∈ Nd.

For each p ∈ N, we denote by Sp = Sp(Rd) the space of all L2(Rd)-functions such
that ‖f‖p <∞. Note that each ‖ · ‖p is the norm associated to the inner product

〈f, g〉p =
∑
n∈Nd

(1 + n)2p〈f, hn〉〈g, hn〉.

The spaces (Sp)p∈N play a crucial role in our study.
For each p ∈ N, Sp is a separable Hilbert space with a countable orthonormal

basis given by {h(p)
n := (n + 1)−phn , n ∈ Nd}. Note that S0 is just the space

L2(Rd), and for each p ∈ N, Sp+1 ⊂ Sp with ‖ · ‖p ≤ ‖ · ‖p+1. It is well known that
S =

⋂
p≥0 Sp and that both families of semi-norms {‖ · ‖m,j | m ∈ N, j ∈ Nd} and

{‖ · ‖p | p ∈ N} generate the same topology on S. See for example [14, Theorem
1.3.2]. A basis of neighborhoods of 0 in S is then given by the sets

(6) Bp(r) = {f ∈ S | ‖f‖p < r}, p ∈ N, r > 0.
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Concerning the space of tempered distributions, we have S ′ =
⋃
p≥0 S ′p, where S ′p

is the dual of Sp. On S ′p, we consider the dual norm defined by

‖F‖′p = sup
‖f‖p≤1

|(F, f)| for all F ∈ S ′p.

3.2. The multi-sequence representation of S and S ′. The representation of
S as a countably Hilbert space is convenient to establish the main theorems in
Sections 4 and 5. As soon as we have this representation, we can think of the

spaces S and S ′ as subspaces of RNd

, the space of real-valued multi-sequences. It
gives a more concrete description of these spaces and it simplifies our arguments in
the sequel. In this section we recall this multi-sequence representation as introduced
by Reed and Simon [19].

Let RNd

be the set of multi-sequences with real values. For a = (an)n∈Nd and
b = (bn)n∈Nd such that

∑
n∈Nd |anbn| <∞, we denote

〈a, b〉 =
∑
n∈Nd

anbn.

For all integer p ∈ Z, and all multi-sequence a = (an)n∈Nd ∈ RNd

, we set

‖a‖2p =
∑
n∈Nd

(1 + n)2pa2
n.

We define

Sp = {a ∈ RNd

| ‖a‖p <∞}, p ∈ Z, and S =
⋂
p∈N

Sp.

Note that for each p ∈ Z, Sp is a Hilbert space with respect to the inner product
〈a, b〉p =

∑
n∈Nd(1 + n)2panbn, and ‖a‖2p = 〈a, a〉p. The set S is then given the

topology generated by the family of Hilbert norms ‖ · ‖p, p ∈ Z.

For each p ∈ Z, we let S′p denote the dual space of the space Sp. The dual norm
on S′p is given by ‖F‖′p = sup‖a‖p≤1 |(F, a)|, and we have S′ =

⋃
p≥0 S′p.

Lemma 3.1. For each p ∈ Z, the map b 7→ 〈b, ·〉 is an isometry from S−p to S′p.

Proof. Let φ denote the map of interest b 7→ 〈b, ·〉. Note that, by Cauchy–Schwarz
inequality, for a ∈ Sp and b ∈ S−p,

|〈b, a〉| ≤ ‖a‖p‖b‖−p,

and ‖φ(b)‖′p = sup‖a‖p≤1 |〈b, a〉| ≤ ‖b‖−p. Thus φ maps S−p into S′p. Further, for

b ∈ S−p by setting a = (an)n∈Nd with an = ‖b‖−1
−p(n + 1)−2pbn we have ‖a‖p = 1

and thus

‖φ(b)‖′p ≥ |〈b, a〉| = ‖b‖−1
−p

∑
n∈Nd

(n+ 1)−2pb2n = ‖b‖−p.

Thus, for all b ∈ S−p, ‖φ(b)‖′p = ‖b‖−p.
Now, to see that φ is surjective, suppose F ∈ S′p, F 6= 0, let c be an element in

Sp such that ‖c‖p = 1 and c is orthogonal to Ker(F ). Define b = (bn)n∈Nd with

bn = F (c)cn(1 + n)2p for n ∈ Nd. Then, it follows that ‖b‖−p = F (c) < ∞, hence

b ∈ S−p. Now for all a ∈ Sp, write a = a1 + a2 with a1 = (F (a)/F (c))c and
a2 = a− a1 ∈ Ker(F ). Then 〈b, a〉 = 〈b, a1〉 = F (a). �
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In the sequel, we identify the spaces S′p and S−p. We thus have S′ =
⋃
p≥0 S−p ⊂

RNd

and then the duality bracket ( ·, · ) corresponds to 〈 ·, ·〉.

Lemma 3.2. Let b = (bn)n∈Nd ∈ RNd

. Then b ∈ S′ if and only if there exist p ∈ N
and c > 0 such that for all n ∈ Nd, |bn| ≤ c(1 + n)p.

Proof. If b ∈ S′, there exists p ∈ N such that b ∈ S−p. Then, for all n ∈ Nd,
(1 + n)−p|bn| ≤ ‖b‖−p and the first implication, with c = ‖b‖−p, is proved.

Conversely, if there exist p ∈ N and c > 0 such that for all n ∈ Nd, |bn| ≤ c(1 +n)p,
then

‖b‖2−p−1 =
∑
n∈Nd

(n+ 1)−2p−2b2n ≤ c2
∑
n∈Nd

(n+ 1)−2 = c2ζ(2) <∞.

Thus b ∈ S′p+1 ⊂ S′. �

Now, we show that S is topologically isomorphic to S. Recall that two topo-
logical vector spaces are said to be topologically isomorphic if there exists a linear
isomorphism from one to the other which is also a homeomorphism (a bi-continuous
map). Such a map is called a topological isomorphism.

Proposition 3.3. The map Φ : S → S, f 7→ (〈f, hn〉)n∈Nd is a topological isomor-
phism.

Proof. For any f ∈ S and p ∈ N,

‖Φ(f)‖2p =
∑
n∈Nd

(1 + n)2p〈f, hn〉2 = ‖f‖2p <∞.

Thus the linear map Φ is well-defined and continuous. Further, each ‖ · ‖p being
a norm on S, the map Φ is injective. Let us show that it is also surjective. Let
a = (an)n∈Nd ∈ S and define fm =

∑
n∈Γm

anhn, for all m ∈ N. For all p ∈ N and
k ∈ N,

‖fm+k − fm‖2p ≤
∑
n/∈Γm

(n+ 1)2pa2
n → 0 as m→∞.

Thus (fm)m∈N is a Cauchy sequence in S and then it converges to f ∈ S. By
continuity of Φ, we see that Φ(f) = a. The equalities ‖Φ(f)‖p = ‖f‖p, p ∈ N,
prove that Φ is a homeomorphism. �

We can also introduce a topology on S′ to make it topologically isomorphic to
(S ′, τs), thanks to the following result.

Proposition 3.4. The map Ψ : S ′ → S′, F 7→ ((F, hn))n∈Nd is a linear isomor-
phism.

Proof. For all F ∈ S ′ and n ∈ Nd, there exists p ∈ N, such that F ∈ S ′p and then,

for all n ∈ Nd,
|(F, hn)| ≤ ‖F‖′p‖hn‖p = ‖F‖′p(n+ 1)p.

Thus, by Lemma 3.2, the linear map Ψ is well-defined. Further, Ψ is injective, since
Ψ(F ) = 0 implies that (F, hn) = 0 for all n ∈ Nd, and then by linearity of F , it
implies F (f) = 0 for all f ∈ S. It remains to show that Ψ is surjective. Let b =
(bn)n∈Nd ∈ S′ and hence, b ∈ S−p for some p ∈ N. We define the map F : S → R,
f 7→ 〈b,Φ(f)〉, where Φ is the topological isomorphism in Proposition 3.3. Then,
F is a continuous linear map from S to R. Indeed, the linearity is clear and the
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continuity comes from |〈b,Φ(f)〉| ≤ ‖b‖−p‖Φ(f)‖p = ‖b‖−p‖f‖p. Thus F ∈ S ′. It
is clear that Ψ(F ) = b. �

As a consequence, (S ′, τs) and (S′,Ψ(τs)) are topologically isomorphic. The
topology πs = Ψ(τs) on S′ is called the strong topology on S′. It is generated by
the semi-norms

qB(·) = sup
a∈B
|〈 ·, a〉|, B bounded in S.

In the same way, (S ′, τw) and (S′,Ψ(τw)) are topologically isomorphic. The topology
πw = Ψ(τw) on S′ is called the weak topology on S′. It is generated by the semi-
norms |〈 ·, a〉|, a ∈ S. In the sequel, if we do not precise, S′ is assumed given the
strong topology.

The following facts will be useful in the next section.

Proposition 3.5. S, S′, and hence S and S ′ are separable spaces.

Proof. The set of elements of RNd

with rational coordinates and only finitely many
non-zero ones is dense in Sp for all p ∈ Z. It is then dense in both S and S′. �

Lemma 3.6. For each p ∈ N, the injection map ip : S′p → S′ is continuous with
respect to the strong topology on S′ (and hence also with respect to the weak topol-
ogy).

Proof. Let S′ be given the strong topology. Let V = {b ∈ S′ | qB(b) < ε} for some
bounded set B ⊂ S and some ε > 0. For each b0 ∈ i−1

p (V ), we have qB(b0) < ε and
for all b ∈ S′p,

qB(b) ≤ sup
a∈B
|〈b− b0, a〉|+ sup

a∈B
|〈b0, b〉|

≤ ‖b− b0‖′p sup
a∈B
‖a‖p + qB(b0).

Thus, if ‖b− b0‖′p <
ε−qB(b0)

supa∈B ‖a‖p+1 , then b ∈ i−1
p (V ). �

3.3. Cylinder σ-fields and Borel σ-fields. On the space RNd

, the product σ-

field generated by the sets {a ∈ RNd | (ai)i∈Γ ⊂ B} for all finite subsets Γ of Nd
and all Borel sets B ∈ B(R#Γ) is the same as the Borel σ-field associated to the

product topology on RNd

(see [13, Lemma 1.2]). It is denoted by B(RNd

).
On S, the cylinder σ-field, denoted by C(S), is generated by the cylinder sets

{a ∈ S | (〈b1, a〉, . . . , 〈bm, a〉) ∈ B},
for all m ≥ 1, b1, . . . , bm ∈ S′, B ∈ B(Rm). We easily see that C(S) is the σ-field

induced by B(RNd

) on S.
On S′, the cylinder σ-field, denoted by C(S′), is generated by the cylinder sets

{b ∈ S′ | (〈b, a1〉, . . . , 〈b, am〉) ∈ B} ,
for all m ≥ 1, a1, . . . , am ∈ S, B ∈ B(Rm). Again, C(S′) is the σ-field induced by

B(RNd

) on S′. Further, by definition, we see that C(S′) is also the Borel σ-field
corresponding to the weak topology πw on S′.

Recall that, in our setting, S is given the topology generated by the family of
norms ‖ · ‖p, p ∈ N, and S′ is given the strong topology πs. The corresponding
Borel σ-fields are denoted by B(S) and B(S′), respectively. Of course, we have

Φ−1(B(S)) = B(S) and Ψ−1(B(S′)) = B(S ′)
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for the topological isomorphisms Φ and Ψ from Propositions 3.3 and 3.4, and where
B(S) and B(S ′) are respectively the Borel σ-fields of S and S ′ given the strong
topology τs.

Proposition 3.7. C(S) = B(S).

Proof. Recall that a countable basis of neighborhoods of 0 ∈ S is given by the sets
Bp(1/k), p ∈ N, k ≥ 1 (see (6)). Note that, by Lemma 3.1, Bp(1/k) is an open set
that can be written as

Bp(1/k) =

{
a ∈ S | sup

‖b‖−p≤1

|〈b, a〉| < 1/k

}
=
⋃
n≥1

⋂
b∈D−p

{a ∈ S | |〈b, a〉| < 1/k − 1/n},

where D−p is a countable dense subset in the unit ball of S−p. So, each Bp(1/k)
belongs to C(S). Now, since S is separable, there exists a countable dense subset
D ⊂ S, and for any open set U in S, we have

U =
⋃

a∈D, p∈N, k≥1
s.t. a+Bp(1/k)⊂U

(a+Bp(1/k))

which is a countable union of elements of C(S), and thus B(S) ⊂ C(S).

The converse inclusion comes from the fact that the maps fb : a ∈ S 7→ 〈b, a〉,
b ∈ S′, are continuous on S and thus B(S)-measurable. �

Proposition 3.8. C(S′) = B(S′).

Proof. Since for all a ∈ S, the map ga : b ∈ S′ 7→ 〈b, a〉 is continuous on S′, the
inclusion C(S′) ⊂ B(S′) is clear.

For the converse, let V be an open set in S′ with respect to πs. By Lemma 3.6,
for each p ∈ N, Vp = V ∩ S′p is open in S′p, and we can write V =

⋃
p∈N Vp. To

conclude we prove that open sets in S′p (with respect to the topology generated by

‖·‖′p) belong to C(S). Indeed, for each p ∈ N and r > 0, consider

B−p(r) = {b ∈ S′ | ‖b‖−p < r} =
⋃
n≥1

⋂
a∈Dp

{b ∈ S′ | |〈b, a〉| < r − 1/n}

where Dp a countable dense subset of the unit ball of Sp, and we see that B−p(r) ∈
C(S′). A countable basis of the topology of S′p is given by the sets b+B−p(1/k), for
all k ≥ 1 and b in a given countable dense subset of S′p. We infer that Vp ∈ C(S). �

Further, since the cylinder σ-field on S′ corresponds to the Borel σ-field of the
weak topology, we have the following corollary.

Corollary 3.9. On S′ (and S ′), the Borel σ-field of the strong topology and the
Borel σ-field of the weak topology coincide.
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4. Minlos–Bochner’s theorems

In this section, we study the existence of generalized random fields. Thanks
to Proposition 3.4, in order to define a random variable with value in (S ′,B(S ′)),
we can define a random variable X with values in (S′,B(S′)) and then consider
Ψ(X). Conversely, for any generalized random field Y with values in (S ′,B(S ′)),
the variable X = Ψ−1(Y ) is a random variable with values in (S′,B(S′)). By
extension, we also call X a generalized random field and we have

• for all ω ∈ Ω, X(ω) ∈ S′;
• for all a ∈ S, 〈X, a〉 : ω 7→ 〈X(ω), a〉 is a real random variable.

We see that a generalized random field X provides a collection (〈X, a〉)a∈S of real
random variables. The finite-dimensional distributions of the generalized random
field X on (Ω,A,P) are given by the law of the real vectors (〈X, a1〉, . . . , 〈X, am〉)
for all m ≥ 1, a1, . . . , am ∈ S. By linearity, the finite-dimensional distributions are
determined by the characteristic functional of X defined by

LX(a) = E(ei〈X,a〉) =

∫
Ω

ei〈X,a〉dP, a ∈ S.

More generally, for a probability measure µ on (RNd

,B(RNd

)), we call the charac-
teristic functional of µ the functional

Lµ(a) =

∫
RNd

ei〈b,a〉dµ(b),

defined for multi-sequences a such that 〈b, a〉 is finite for µ-almost all b ∈ RNd

. It is

always defined for multi-sequences a ∈ RNd

with finitely many non-zero coordinates.
In particular, for a generalized random field X with law µ = P ◦ X−1, we have
LX = Lµ.

Theorem 4.1. If a functional L : S→ C is positive-definite, continuous at 0, and
L(0) = 1, then it is the characteristic functional of a generalized random field on
S′.

Theorem 2.1 and Corollary 2.2 are direct consequences. To prove the present
theorem, we need the following key lemma.

Lemma 4.2. Let µ be a Borel probability measure on RNd

, p ∈ Z, c > 0, and ε > 0

such that for all a ∈ RNd

with finitely many non-zero coordinates,

1− ReLµ(a) ≤ ε+ c‖a‖2p.
Then for all q > p, and σ > 0,∫

RNd
1− exp

(
−σ

2

2
‖b‖2−q

)
dµ(b) ≤ ε+ cσ2ζ(2(q − p))d.

In particular,
µ(S−q) ≥ 1− ε.

Proof. Recall the expression of (1+n)q in (5). For all σ > 0 and m ∈ N, we consider
the Gaussian probability measure νm,σ on RΓm defined by, for a = (an)n∈Γm ∈ RΓm ,

dνm,σ(a) =
⊗
n∈Γm

(2πσ2(n+ 1)−2q)−1/2 exp

(
− a2

n

2σ2(n+ 1)−2q

)
dan.

Then νm,σ satisfies:
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(i) νm,σ(RΓm) = 1,

(ii)

∫
RΓm

anamdνm,σ(a) = σ2(n+ 1)−2q1{n=m}, and

(iii)

∫
RΓm

ei〈b,a〉dνm,σ(a) = exp

(
−σ

2

2

∑
n∈Γm

(n+ 1)−2qb2n

)
.

By Fubini’s theorem, we have∫
RNd

1− exp

(
−σ

2

2

∑
n∈Γm

(n+ 1)−2qb2n

)
dµ(b)

=

∫
RNd

∫
RΓm

1− ei〈b,a〉dνm,σ(a)dµ(b)

=

∫
RΓm

∫
RNd

1− ei〈b,a〉dµ(b)dνm,σ(a)

=

∫
RΓm

1− Lµ(a)dνm,σ(a),

which is then a real quantity, and by assumption,∫
RΓm

1− Lµ(a)dνm,σ(a) ≤ ε+ c

∫
RΓm

‖a‖2pdνm,σ(a)

= ε+ c
∑
n∈Γm

(n+ 1)2p

∫
RΓm

a2
ndνm,σ(a)

= ε+ cσ2
∑
n∈Γm

(n+ 1)−2(q−p).

Since
∑
n∈Γm

(n+ 1)−2(q−p) ↑ ζ(2(q − p))d as m→∞, by dominated convergence,
we get ∫

RNd
1− exp

−σ2

2

∑
n∈RNd

(n+ 1)−2qb2n

 dµ(b) ≤ ε+ cσ2ζ(2(q − p))d.

Now, since exp(−σ2 ‖b‖2−q /2) = 0 for all b /∈ S−q, it follows that

µ(S−q) ≥
∫
RNd

exp

(
−σ

2

2
‖b‖2−q

)
dµ(b) ≥ 1− ε− cσ2ζ(2(q − p))d.

The last desired statement follows by taking σ ↓ 0. �

Proof of Theorem 4.1. Let L : S → C be positive-definite, continuous at 0, and
L(0) = 1. For any finite subset Γ of Nd, we can consider the restriction of L to
RΓ ⊂ S (by completing the multi-sequences of RΓ by zeros). Thus, by Bochner’s
theorem, there exists a unique probability measure µΓ on the product σ-field of RΓ,
such that, for all a ∈ RΓ,

L(a) =

∫
RΓ

ei〈b,a〉dµΓ(b).

Further, if Γ ⊂ Γ′ are finite subsets of RNd

and πΓ′,Γ is the canonical projection

from RΓ′ to RΓ, we have µΓ′ ◦π−1
Γ′,Γ = µΓ. By Kolomogorov’s extension theorem [13,

Theorem 5.16] there exists a unique probability measure µ on the product σ-field

of RNd

such that for all finite Γ, µ ◦π−1
Γ = µΓ, where πΓ is the canonical projection
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from RNd

to RΓ. Since any element a ∈ S can be approximated by multi-sequences
with only finitely many non-zero coefficients, by dominated convergence and the
fact that L is continuous, we get that for all a ∈ S, L(a) = Lµ(a).

It remains to show that µ(S′) = 1. Fix ε > 0. The continuity of L implies that
there exists p ∈ N and δ > 0,

1− ReL(a) ≤ ε, for all a ∈ S such that ‖a‖p < δ.

Thus,

1− ReLµ(a) ≤ ε+ 2δ−2‖a‖2p, for all a ∈ S.

By Lemma 4.2 for q = p + 1, we have µ(S−q) ≥ 1 − ε. We infer µ(S′) ≥ 1 − ε for
all ε > 0, that is µ(S′) = 1. �

In order to prove Lévy’s continuity theorem in the next section, we need another
Minlos–Bochner’s theorem. Now, we consider random variables with values in
(S,B(S)). For such a random variable X, one can similarly define its characteristic
functional by

LX(b) = Lµ(a) =

∫
S
ei〈b,a〉dµ(a), b ∈ S′,

where µ = P ◦X−1 is the law of X on (S,B(S)).

Theorem 4.3. If a functional L : S′ → C is positive-definite, continuous at 0 (with
respect to the topology πs), and L(0) = 1, then it is the characteristic functional of
a random variable on (S,B(S)).

Proof. Let L : S′ → C be as in the statement. As we did in the proof of Theorem 4.1,
using Bochner’s theorem and Kolmogorov’s extension theorem, we can show that

there exists a probability measures µ on B(RNd

) such that for all b ∈ S′, Lµ(b) =
L(b).

Again, it remains to show that µ(S) = 1. Fix ε > 0. Since L is continuous on S′,
by Lemma 3.6, its restriction to S−p is also continuous for each p ∈ N. Thus, for
all p ∈ N, there exists δp > 0,

1− ReL(b) ≤ ε, for all b ∈ S−p such that ‖b‖−p < δp.

Thus,

1− ReLµ(b) ≤ ε+ 2δ−2
p ‖b‖2−p, for all b ∈ S−p.

By Lemma 4.2 for q = −p+ 1, µ(Sp−1) ≥ 1− ε. Since this is true for all p ≥ 1, and
since the sets (Sp)p∈N form a non-increasing sequence, we get

µ(S) = µ

⋂
p≥0

Sp

 ≥ 1− ε.

Finally, ε > 0 being arbitrary, µ(S) = 1. �
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5. Lévy’s continuity theorem

For Borel probability measures (µn)n≥1 and µ on (S′,B(S′)), we say that µn
converges weakly to µ with respect to the strong topology (of S′), if

lim
n→∞

∫
S′
ϕ(b)dµn(b) =

∫
S′
ϕ(b)dµ(b), for all ϕ ∈ Cb(S′, πs).

Accordingly, for generalized random fields (Xn)n≥1 and X in S′, we say Xn con-
verges in distribution to X with respect to the strong topology (of S′), if the cor-
responding probability law converges weakly. Thanks to Proposition 3.4, to prove
Theorem 2.3 it is equivalent to prove the following.

Theorem 5.1. If (µn)n≥1 is a sequence of Borel probability measures on S′ such
that Lµn converges pointwise to a functional L : S → C which is continuous at 0,
then there exists a Borel probability measure µ on S′ such that Lµ = L and µn
converges weakly to µ with respect to the strong topology.

Proof. Let (µn)n≥1 be as in the statement. By pointwise convergence, L is also
positive-definite and L(0) = 1. By Theorem 4.1, there exists a Borel probability
measure µ on S′ such that Lµ = L.

Let P(S′) denote the set of all Borel probability measures on S′. The main step
of the proof is to show that, under the assumptions, the sequence (µn)n≥1 is tight
in P(S′), i.e. for all ε > 0, there exists a strongly compact set K in S′ such that
µn(K) ≥ 1− ε for all n ≥ 1.

Assume we have proved it and let us conclude the proof. From tightness, we infer
that the sequence (µn)n≥1 is relatively sequentially compact with respect to the
topology of the weak convergence in P(S′), see [14, Theorem 2.2.1]. Thus, from any
subsequence of (µn)n≥1, we can extract a sub-subsequence that converges weakly
to a probability measure ν ∈ P(S′). But, by weak convergence, the characteristic
functional of ν is necessarily the pointwise limit of (Lµn)n≥1, which is L. Hence
ν = µ and we conclude that µn converges weakly to µ.

It remains to prove that (µn)n≥1 is tight in P(S′). This follows from the following
two lemmas. �

Lemma 5.2. Let (µn)n≥1 be a sequence of Borel probability measures on S′. If
(ReLµn)n≥1 is equicontinuous on S, then (µn)n≥1 is tight in P(S′).

Proof. Let ε > 0. The equicontinuity of (ReLµn
)n≥1 implies that there exist p ∈ N

and δ > 0 such that for all n ≥ 1,

‖a‖p < δ implies 1− ReLµn
(a) < ε.

By Lemma 4.2 for q = p+ 1, for all n ≥ 1 and all σ > 0,∫
S′

1− exp

(
−σ

2

2
‖b‖2−p−1

)
dµn(b) ≤ ε+ 2δ−2σ2ζ(2)d.

Then, fix σ > 0 such that 2δ−2σ2ζ(2)d = ε and choose κ > 0 such that
exp

(
−σ2κ2/2

)
≤ ε. We need the fact that the set

K = {b ∈ S′ | ‖b‖−p−1 ≤ κ}
is strongly compact in S′. This follows from the fact that in S′, the strongly closed
and bounded subsets are strongly compact. We provide a proof of this fact in
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Proposition 6.1 in the appendix. The set {b ∈ S′ | ‖b‖−p ≤ C} is strongly (or
weakly) closed as the intersection of the closed sets {b ∈ S′ | |〈b, a〉| ≤ C}, a ∈ S
with ‖a‖p ≤ 1. It is strongly bounded since for all bounded set B ∈ S, with
M = supa∈B ‖a‖p <∞, we have qB(b) ≤M‖b‖−p.

We have, for all n ≥ 1,

µn(K) ≥
∫
S′

exp

(
−σ

2

2
‖b‖2−p−1

)
dµn(b)−

∫
Kc

exp

(
−σ

2

2
‖b‖2−p−1

)
dµn(b)

≥ 1− 2ε− ε.

Thus (µn)n≥1 is tight. �

Lemma 5.3. (ReLµn)n≥1 is equicontinuous.

Proof. Assume that (ReLµn)n≥1 is not equicontinuous. Then, there exist ε > 0
and a sequence of elements ak = (ak,n)n∈Nd ∈ S, k ∈ N, such that ak → 0 in S as
k →∞, and an increasing sequence of integers (nk)k≥1 such that

(7) 1− ReLµnk
(ak) ≥ ε, for all k ≥ 1.

Since ak → 0 in S, considering a subsequence if necessary, we can assume that
2kak → 0 in S. That is, for all p ∈ N, limk→∞ ‖2kak‖p = 0. For a positive integer
k0 to be fixed later, we define the functional Q : S′ → R+ by

Q(b) =
∑
k≥k0

〈b, ak〉2, b ∈ S′.

Note that, if b ∈ S′, there exists p ≥ k0 such that b ∈ S−p and thus

Q(b) ≤
p∑

k=k0

〈b, ak〉2 + ‖b‖−p
∑
k≥p+1

‖ak‖2p <∞

because ‖ak‖2p = o(2−2k). This proves that Q is well-defined. Further, Q is contin-

uous at 0. Indeed, since 2kak → 0, the set B = {2kak | k ∈ N} is bounded in S,
and for all η > 0, the neighborhood Vη = {b ∈ S′ | qB(b) < η} of 0 in S′ satisfies
that for all b ∈ Vη, |〈b, ak〉| ≤ η2−k, and thus

|Q(b)−Q(0)| = Q(b) ≤ η2
∑
k≥k0

2−k ≤ η2.

Next, Q is negative-definite, i.e. for all m ∈ N, all c1, . . . , cm ∈ C such that∑m
i=1 ci = 0, and all b1, . . . , bm ∈ S′,

m∑
i=1

m∑
j=1

cicjQ(bi − bj) ≤ 0.

Indeed, it is sufficient to notice that

m∑
i=1

m∑
j=1

cicjQ(bi − bj) = −2

 m∑
i=1

ci
∑
k≥k0

〈bi, ak〉

2

.

The functional U : S′ → [0, 1], defined by

U(b) = exp(−Q(b)), b ∈ S′,
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is then positive-definite (see [1, Chap. 3, Theorem 2.2]), continuous at 0 and U(0) =
1. Hence, by Theorem 4.3 there exists a Borel probability measure ν on S such that
Lν = U .

Note that, since it can be written as the limit of the measurable maps (b, a) 7→∑
n∈ΓN

anbn as N → ∞, the bilinear map 〈·, ·〉 is B(S′)× B(S)-measurable. Using
Fubini’s theorem, for all n ∈ N, we can write∫

S′
U(b)dµn(b) =

∫
S′

∫
S
ei〈b,a〉dν(a)dµn(b) =

∫
S
Lµn

(a)dν(a).

But, by dominated convergence,

lim
n→∞

∫
S
Lµn(a)dν(a) =

∫
S
Lµ(a)dν(a).

Again, by Fubini’s theorem,
∫
S Lµ(a)dν(a) =

∫
S′ U(b)dµ(b), and thus,

lim
n→∞

∫
S′
U(b)dµn(b) =

∫
S′
U(b)dµ(b).

Now, recalling the definition of U , we can fix k0 such that∫
S′

1− U(b)dµ(b) < ε/2,

and find N ∈ N such that for all n ≥ N ,∫
S′

1− U(b)dµn(b) < ε.

As a consequence, for all n ≥ N , and k ≥ k0,∫
S′

1− exp
(
−〈b, ak〉2

)
dµn(b) ≤

∫
S′

1− U(b)dµn(b) < ε.

We infer that for all n ≥ N , and k ≥ k0,

1− ReLµn
(ak) =

∫
S′

1− cos(−〈b, ak〉)dµn(b) < Mε,

where M = supx≥0
1−cos(x)

1−exp(−x2) < ∞. This contradicts (7). From Lemma 5.2, we

infer that (µn)n≥1 is tight in P(S′). �

6. Appendix

The goal of the appendix is to prove the following proposition.

Proposition 6.1. In S′, the strongly closed and strongly bounded subsets are
strongly compact.

This proposition tells that S′ is a Montel space. See Remark 6.6 at the end. We
provide a self-contained proof here, which consists of several steps.

Proposition 6.2. In S (and hence in S), the bounded subsets are relatively com-
pact.

Proof. As S is metrizable, compactness and sequential compactness are equivalent.
Let (fn)n∈N be a bounded sequence in S. Let (K`)`≥1 be an increasing sequence of
compact subsets of Rd whose union is Rd. Recall that (‖ · ‖m,j)m∈N,j∈Nd in (1) and

(‖ · ‖p)p∈N in (4) generate the same topology in S. For each m ∈ N and j ∈ Nd,
the sequence of functions x → (1 + |x|)mDjfn(x), n ∈ N, is uniformly bounded



16 HERMINE BIERMÉ, OLIVIER DURIEU, AND YIZAO WANG

and equicontinuous on K1 and hence, by Arzèla–Ascoli’s theorem, there exists a
subsequence that converges uniformly on K1. By diagonal extraction, we can find
a subsequence (fϕ(n))n∈N for which (1 + | · |)mDjfϕ(n)(·) converges uniformly on

K1 for all m ∈ N and j ∈ Nd. We can successively repeat the same procedure on
each K`, ` ≥ 1, and finally, another diagonal extraction leads to a subsequence that
converges with respect to all the semi-norms ‖·‖m,j , and hence in S. �

Lemma 6.3. If H ⊂ S′ is weakly closed and weakly bounded, then it is weakly
compact.

Proof. Let H ⊂ S′ be weakly closed and weakly bounded. Then, for all n ∈ Nd,
the set Hn = {bn | (bk)k∈Nd ∈ H} is closed and bounded in R. By Tychonoff’s

theorem, the set
∏
n∈Nd Hn is compact in RNd

. Therefore H, being a closed subset
of
∏
n∈Nd Hn, is compact. �

We say that a set H ⊂ S′ is equicontinuous if for all ε > 0, there exists a
neighborhood V of 0 in S such that, for all b ∈ H and a ∈ V , |〈b, a〉| < ε.

Lemma 6.4. If H ⊂ S′ is equicontinuous, the weak topology and the strong topology
are identical on H.

Proof. It suffices to prove that the induced strong topology on H is weaker than the
induced weak topology. For this purpose, we show that for all ε > 0, B a bounded
set in S and b0 ∈ H, the strongly open set O := {b ∈ H | qB(b− b0) < ε} contains
a weak neighborhood of b0. By equicontinuity, there exists a neighborhood V of
0 in S such that |〈b, a〉| < ε/3 for all b ∈ H and a ∈ V . Since B is bounded, by
Proposition 6.2, it is relatively compact in S. Thus, we can find a1, . . . , an ∈ B,
such that

B ⊂
n⋃
i=1

(ai + V ).

The set O′ := {b ∈ H | |〈b− b0, ai〉| < ε/3 for all i = 1, . . . , n} is a weak neighbor-
hood of b0 and we have O′ ⊂ O. Indeed, for all b ∈ O′ we can find, for all a ∈ B,
i ∈ {1, . . . , n}, such that a− ai ∈ V . Then,

|〈b− b0, a〉| ≤ |〈b, a− ai〉|+ |〈b− b0, ai〉|+ |〈b0, a− ai〉| < ε/3 + ε/3 + ε/3.

Thus, qB(b− b0) < ε and hence b ∈ O. �

Lemma 6.5. If H ⊂ S′ is strongly bounded, then it is equicontinuous.

Proof. Let H ⊂ S′ be strongly bounded. In the sequel, we denote Bp(ε) = {a ∈ S |
‖a‖p < ε} for p ∈ N and ε > 0. We first show that the set {qBp0

(1)(b) | b ∈ H}
is bounded for some p0 ∈ N. Assume it is not the case. Then, for each p ∈ N,
there exist ap ∈ Bp(1/p) and bp ∈ H such that |〈bp, ap〉| > p. Since each ap belongs
to Bp(1/p), the sequence (ap)p∈N converges to 0 in S and thus it is bounded. But
then, for the bounded set B = {ap | p ∈ N}, we have qB(bp) > p for all p ∈ N which
is a contradiction with the fact that H is strongly bounded.
Now for such a p0, letting M = supb∈H qBp0

(1)(b) < ∞, we have that for all ε > 0

and for all a ∈ Bp0
(ε/M),

|〈b, a〉| ≤ ‖b‖′p0
‖a‖p0

≤Mε/M = ε, for all b ∈ H.

�
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Proof of Proposition 6.1. Let H be a strongly closed and strongly bounded subset
of S′. In particular, H is weakly bounded and, by Lemma 6.3, its weak closure H̄
is weakly compact. Now, by Lemma 6.5, H is equicontinuous and then H̄ is also
equicontinuous. Hence, strong and weak topology are identical on H̄ by Lemma 6.4.
As H is strongly closed, it is also weakly closed and we infer that H̄ = H. Hence
H is weakly compact and then strongly compact. �

Remark 6.6. Proposition 6.2 tells that S and S are actually Montel spaces (i.e.
a locally convex Hausdorff barreled space in which every closed bounded set is com-
pact). See also [20, Example 10.IV and Proposition 34.4] and [8, Section I.6.5].
Proposition 6.1 tells that S ′ and S′ are also Montel spaces. Furthermore, as a con-
sequence of Banach–Steinhauss theorem, any weakly convergent sequence of S ′ (or
S′) is also strongly convergent (see [20, Corollary 1 of Proposition 34.6] and [8,
Section I.6.4]).
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