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Abstract

This paper presents a new construction of homogeneous Dirichlet wavelet basis

on the unit interval, linked by a diagonal differentiation-integration relation to a

standard biorthogonal wavelet basis. This new wavelet basis allows to compute

the solution of the Poisson equation only by a wavelet coefficient renormaliza-

tion - like in Fourier domain -, which yields a linear complexity O(N) for this

problem. Another application concerns the construction of free-slip divergence-

free wavelet bases of the hypercube, in general dimension, with an associated

decomposition algorithm as simple as in the periodic case.

Keywords: Wavelets on the interval, Boundary condition, Poisson equation,

Divergence-free wavelets

1. Introduction1

Since the pioneering work of Lemarié-Rieusset [14], due to their important

role in the construction of divergence-free or curl-free wavelets, biorthogonal

multiresolution analyses linked by differentiation and integration have been

widely studied [13, 19, 22, 23]. The main purpose was to construct two mul-

∗Corresponding author
Email address: souleymane.kadri_harouna@univ-lr.fr (Souleymane Kadri Harouna )

February 15, 2019



tiresolution analyses of L2(0, 1) provided by spaces V 1
j and V 0

j such that

∀ j, d

dx
V 1
j = V 0

j . (1)

Relation (1) should be interpreted as: ∀f ∈ V 1
j , f ′ ∈ V 0

j and ∀g ∈ V 0
j , there2

exists f ∈ V 1
j such that f ′ = g.3

4

On the unit interval [0, 1], with non periodic boundary conditions, such a

construction was firstly introduced by Jouini and Lemarié-Rieusset [13]. They

started with V 1
j as a regular multiresolution analysis of L2(0, 1) reproducing

polynomial at boundaries [1, 5, 11], with the scaling function ϕ1 and wavelet

ψ1 generators on R that satisfy [14]:

(ϕ1)′ = ϕ0 − ϕ0(· − 1) and (ψ1)′ = 4ψ0. (2)

Jouini and Lemarié-Rieusset [13] used the orthogonal construction of [5] for the

space V 1
j . They show that, from relation (2) and properly setting the integer

parameters in the construction of V 1
j , one can deduce the space V 0

j that satisfies

(1). In this case, the wavelet space W 0
j is defined by differentiating the wavelet

basis of W 1
j :

W 0
j = span{ψ0

j,k := 2−j(ψ1
j,k)′}.

The corresponding biorthogonal spaces (Ṽ 1
j , Ṽ

0
j ) are respectively constructed

again using integration by part. However, the construction of [13] remains

theoretical, for instance it is not obvious to compute numerically the wavelet

filters of ψ0
j,k and ψ̃0

j,k:

ψ0
j,k =

∑
n

H0
k,nϕ

0
j+1,n and ψ̃0

j,k =
∑
n

H̃0
k,nϕ̃

0
j+1,n. (3)

where V 0
j = span{ϕ0

j,k; k} and Ṽ 0
j = span{ϕ̃0

j,k; k}. This point has been raised5

by Kadri-Harouna and Perrier in [19], they extended the construction of [13] to6

any regular scaling function generator ϕ1 and provided a numerical algorithm7

for the associated Fast Wavelet Transform.8

9
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One advantage of the construction [13, 19] is that the associated multiscale10

projectors commute with the derivative operator in H1(0, 1). This fundamental11

property enables to construct divergence-free wavelet bases as it was done in12

[19]. Another interest of this property is to make possible the Ladysenskaya-13

Babuska-Brezzi (LBB) condition for a wavelet based method in the numerical14

discretization of a mixed problem such as the Stokes problem [3, 6]. The key15

ingredient is that, commutation with derivation allows to get easily the condition16

of Fortin’s lemma [10], see [6].17

18

Ensuring the commutation of multiscale projectors with differentiation im-19

poses to the biorthogonal space Ṽ 0
j to satisfy homogeneous Dirichlet boundary20

condition [13]. In this case, Ṽ 0
j ⊂ H1

0 (0, 1) and constitutes a multiresolution21

analysis of this space (and not of L2(0, 1)). Nethertheless, relation (2) remains22

valid but only for internal scaling functions and wavelets (i.e. basis functions23

having their support included into [0, 1]). The edge functions did not strictly24

satisfy this diagonal relation, but a linear combination of them: a change of25

basis is therefore introduced [20].26

27

Recently, Stevenson [22] has proposed another construction which differs

from the existing constructions by the choice of the boundary conditions for

the dual spaces Ṽ 0
j and Ṽ 1

j . Precisely, let us suppose that ψ1
j,k and ψ̃0

j,k are

the wavelets constructed from scaling function generators satisfying (2). Then,

integration by part shows that:

ψ1
j,k(1)ψ̃0

j,k(1)− ψ1
j,k(0)ψ̃0

j,k(0) = 〈ψ0
j,k, ψ̃

0
j,k〉 − 〈ψ1

j,k, ψ̃
1
j,k〉. (4)

If the two systems (ψ1
j,k, ψ̃

1
j,k) and (ψ0

j,k, ψ̃
0
j,k) are biorthogonal, the boundary28

terms of (4) should vanish. Instead of taking ψ̃0
j,k ∈ H1

0 (0, 1) like in [13], the29

construction of [22] sets ψ1
j,k(1) = 0 and ψ̃0

j,k(0) = 0. This choice of bound-30

ary condition is more flexible and leads to Ṽ 0
j as a multiresolution analysis of31

L2(0, 1): however the commutation of multiscale projectors with differentiation32

is lost. Alternatively, to get (4) one can take (V 0
j , Ṽ

0
j ) as a multiresolution of33
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L2,0 = {u ∈ L2(0, 1) :
∫ 1

0
u(t)dt = 0} [21]. In this case, V 1

j =
∫ x

0
V 0
j ⊂ H1

0 (0, 1),34

thus only the spaces Ṽ 1
j = d

dx Ṽ
0
j can provide a multiresolution analysis of35

L2(0, 1), see Proposition 3.1 of [21].36

37

The focal point of this work is the construction of a wavelet basis satisfy-

ing homogeneous Dirichlet boundary conditions on the interval, associated to

a biorthogonal multiresolution analyses of H1
0 (0, 1), and linked by a diagonal

differentiation/integration relation to a standard wavelet bases of H1
0 (0, 1), as

in[13, 19, 22]. As for the internal wavelets (2), emphasis is made on the con-

struction of edge wavelets in order to get a diagonal differentiation relation:

ψ1
j,k(x) = 2j

∫ x

0

ψ0
j,k(t)dt and (ψ1

j,k)′(x) = 2jψ0
j,k(x). (5)

Contrarily to our previous construction [19], which started with the wavelets ψ1
j,k

and ψ̃1
j,k, in this work we begin with the knowledge of the wavelets ψ0

j,k and ψ̃0
j,k:

for this step, we will use a standard orthogonal or biorthogonal wavelet basis

on the interval [0, 1] allowing polynomial reproduction even at boundaries, see

e.g; [1, 5]. Since
∫ 1

0
ψ0
j,k(t)dt = 0, relation (5) leads to ψ1

j,k ∈ H1
0 (0, 1) instead of

ψ1
j,k ∈ H1(0, 1) as in [13, 19, 22, 23]. Denoting by W

1

j this new wavelet spaces,

one obtains the multiscale decompositions:

V 1
j = V 1

jmin
⊕W 1

jmin
⊕ · · · ⊕W 1

j−1, (6)

where incorporating homogeneous Dirichlet boundary condition in V 1
j is reduced

to the treatment of this boundary condition only at the coarse scale jmin:

V 1
j ∩H1

0 (0, 1) =
(
V 1
jmin
∩H1

0 (0, 1)
)
⊕W 1

jmin
⊕ · · · ⊕W 1

j−1, (7)

Notice that, due to the property of polynomial reproduction at boundaries, the38

multiscale de composition (7) is stable in H1
0 (0, 1):39

‖u‖2H1
0
∼
∑
k 6=0,1

| < u, ϕ̃1
jmin,k > |

2 +
∑

j≥jmin

∑
k

22j | < u, ψ̃1
j,k > |2, ∀u ∈ H1

0 (0, 1),
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whereas (6) yields a non stable multiscale decomposition of L2(0, 1).40

41

Considering the particular case ψ0
j,k = ψ̃0

j,k, which corresponds to the or-

thogonal setting, leads to:

< (ψ1
j,k)′, (ψ1

`,n)′ >= 2j+` < ψ0
j,k, ψ

0
`,n >= 2j+`δj,`δk,n. (8)

Then, from (8) we infer that the 1D Poisson equation with homogeneous Dirich-42

let boundary can be solved with a linear numerical complexity in the multireso-43

lution analysis provided by spaces V 1
j . Furthermore, this new construction still44

maintains the properties of Fortin’s lemma [10] in the numerical discretization45

of Stokes problem and allows to get a fast divergence-free wavelet transform46

algorithm similar to this of the periodic case [9]. The main difficulty of such47

a construction is the numerical implementation of the decomposition (6), this48

point will be well documented in the present work.49

50

In Section 2 we recall the construction of biorthogonal multiresolution anal-51

ysis of L2(0, 1) with polynomial reproduction and how to impose homogeneous52

boundary conditions in such context to obtain a basis of H1
0 (0, 1). Section 353

reminds the principle of the construction of BMRA linked by differentiation54

/ integration and its main properties needed for a numerical implementation.55

The new construction of BMRA linked by differentiation / integration is de-56

tailed in Section 4, while the associated fast wavelet transform algorithms are57

provided in Section 5. Finally, Section 6 presents numerical examples showing58

the potentiality of these new bases.59

60

2. Biorthogonal multiresolution analyses of L2(0, 1) reproducing poly-61

nomial62

The construction of biorthogonal multiresolution analyses (Vj , Ṽj) of L2(0, 1)

with polynomial reproduction (r, r̃) is classical [4, 7, 11]: the principle is to start

5



with generators (ϕ, ϕ̃), that are biorthogonal scaling functions of a BMRA on

R. We suppose that ϕ is compactly supported on [nmin, nmax] and reproduces

polynomials up to degree r − 1:

0 ≤ ` ≤ r − 1,
x`

`!
=

+∞∑
k=−∞

p̃`(k) ϕ(x− k), ∀ x ∈ R, (9)

with p̃`(k) = 〈x
`

`! , ϕ̃(x − k)〉. Similarly, ϕ̃ reproduces polynomials up to degree

r̃ − 1 and we note p`(k) = 〈x
`

`! , ϕ(x− k)〉. For j sufficiently large, the spaces Vj

on [0, 1] have the structure:

Vj = V [j ⊕ V intj ⊕ V ]j , (10)

where V intj = span{ϕj,k(x) = 2j/2ϕ(2jx − k) ; k = k[, 2j − k]} is the space63

generated by interior scaling functions whose supports are included into [ δ[2j , 1−64

δ]
2j ] ⊂ [0, 1] (δ[, δ] ∈ N be two fixed parameters), and k[ = δ[ − nmin and k] =65

δ] + nmax. Moreover66

V [j = span{Φ[j,`(x) = 2j/2Φ[`(2
jx) ; ` = 0, · · · , r − 1},

V ]j = span{Φ]j,`(1− x) = 2j/2Φ]`(2
j(1− x)) ; ` = 0, · · · , r − 1},

are the edge spaces, the edge scaling functions at the edge 0 being defined in

order to preserve the polynomial reproduction (9) on the interval [0, 1]:

0 ≤ ` ≤ r − 1, Φ[`(x) =

k[−1∑
k=1−nmax

p̃`(k) ϕ(x− k) χ[0,+∞[. (11)

At the edge 1, the edge scaling functions Φ]j,` are constructed on ] − ∞, 1]67

by symmetry, using the transform Tf(x) = f(1 − x). In practice we have68

to choose j ≥ jmin where jmin is the smallest integer which verifies jmin >69

log2[nmax−nmin+ δ]+ δ[] to ensure that the supports of edge scaling functions70

at 0 do not intersect the supports of edge scaling functions at 1.71

72

The polynomial reproduction in Vj is then satisfied since, for 0 ≤ ` ≤ r − 1

and x ∈ [0, 1] we have:

2j/2(2jx)`

`!
= 2j/2Φ[`(2

jx) +

2j−k]∑
k=k[

p̃`(k) ϕj,k(x) + 2j/2Φ]`(2
j(1− x)). (12)
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Similarly, the biorthogonal spaces Ṽj are defined with the same structure, al-

lowing the polynomial reproduction up to degree r̃ − 1:

Ṽj = span{Φ̃[j,`}`=0,r̃−1 ⊕ Ṽ intj ⊕ span{Φ̃]j,`}`=0,r̃−1, (13)

where Ṽ intj = span{ϕ̃j,k ; k = k̃[, 2j − k̃]} is the space generated by interior

scaling functions ϕ̃j,k(x) = 2j/2ϕ̃1(2jx − k), whose supports are included into

[ δ̃[2j , 1− δ̃]
2j ] (δ̃[, δ̃] ∈ N be two parameters). The edge scaling functions at 0 are

defined by:

0 ≤ ` ≤ r̃ − 1, Φ̃[`(x) =

k̃[−1∑
k=1−ñmax

p`(k) ϕ̃(x− k) χ[0,+∞[.

The equality between dimensions of Vj and Ṽj is obtained by adjusting the73

parameters δ̃[ = k̃[ − ñmax and δ̃] = k̃] + ñmin (with [ñmin, ñmax] = supp ϕ̃)74

such that: ∆j = dim(Vj) = dim(Ṽj) = 2j − (δ[ + δ])− (nmax − nmin) + 2r + 1.75

Remark that (δ[, δ]) remain ”free” parameters of the construction (often chosen76

equal to 0 or 1). The last step of the construction lies in the biorthogonalization77

process of the basis functions, since edge scaling functions of Vj and Ṽj are no78

more biorthogonal [1, 7, 11, 16]. Finally, the spaces (Vj , Ṽj) form a biorthogonal79

MRA of L2(0, 1).80

Boundary conditions. A multiresolution analyses of

Hm
0 (0, 1) = {f ∈ Hm(0, 1) : f (p)(0) = f (p)(1) = 0, 0 ≤ p ≤ m− 1}

can be defined from Vj by taking V m,0j = Vj ∩Hm
0 (0, 1). For instance, if m = 1,

as described in [15, 16], it suffices to remove the edge scaling functions Φ[0 at

edge 0 and Φ]0 at edge 1 which leads to:

V 1,0
j = span{Φ[j,` ; ` = 1, r − 1} ⊕ V intj ⊕ span{Φ]j,` ; ` = 1, r − 1}.

In such case, we also remove the edge functions Φ̃[0 and Φ̃]0 from Ṽj prior to81

biorthogonalization, to adjust the dimension of the biorthogonal space. Then,82

the spaces (V 1,0
j , Ṽ 1,0

j ) constitute a biorthogonal multiresolution analyses of83

H1
0 (0, 1).84
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3. Existing construction of (V 0
j , Ṽ 0

j ) linked by differentiation / inte-85

gration with (V 1
j , Ṽ 1

j )86

In this section, we recall briefly the earlier construction of the multiresolution87

analysis linked differentiation / integration. Then, we will mention their limita-88

tions in some applications that we intend to take up with our new construction89

below.90

All the constructions of biorthogonal multiresolution analyses of L2(0, 1)91

linked by differentiation / integration are based on the following proposition92

[14]:93

Proposition 1. Let (V 1
j (R), Ṽ 1

j (R)) be a biorthogonal MRA of L2(R), with94

associated scaling functions ϕ1, ϕ̃1 and wavelets ψ1, ψ̃1. Assume that V 1
j (R)95

is regular, ϕ1 ∈ C1+ε, ε > 0, and compactly supported. Then there exists a96

biorthogonal MRA (V 0
j (R), Ṽ 0

j (R)), with associated scaling functions ϕ0, ϕ̃0 and97

wavelets ψ0, ψ̃0, such that:98

(ϕ1)′(x) = ϕ0(x) − ϕ0(x− 1) and (ψ1)′ = 4 ψ0.99

The biorthogonal functions verify:
∫ x+1

x
ϕ̃1(t) dt = ϕ̃0(x) and (ψ̃0)′ = −4 ψ̃1.100

Proposition 1 provides biorthogonal multiresolution analysis of L2(R) linked101

by differentiation/ integration [14]. For the space L2(0, 1), again based on102

Proposition 1, the first construction was done by Jouini and Lemarié-Rieusset103

[13]: they prove the existence of two biorthogonal multiresolution analyses of104

L2(0, 1), denoted (V 1
j ) and (V 0

j ) linked by differentiation such that:105

d

dx
V 1
j = V 0

j . (14)

The construction of [13] allows to study divergence-free vector functions on106

hypercube [0, 1]d, thus to get commutation of multiscale projector with the107

derivation operator, the biorthogonal spaces Ṽ 0
j should satisfy:108

Ṽ 0
j = H1

0 (0, 1) ∩
∫ x

0

Ṽ 1
j =

{
f : f ′ ∈ Ṽ 1

j and f(0) = f(1) = 0
}
. (15)

Then, as mentioned before, Ṽ 0
j can not be a multiresolution analysis of L2(R)109

8



since Ṽ 0
j ⊂ H1

0 (0, 1). Furthermore, if (P1
j , P̃1

j ) are the biorthogonal projectors110

of (V 1
j , Ṽ

1
j ) and (P0

j , P̃0
j ) those of (V 0

j , Ṽ
0
j ) respectively, we have [13]:111

Proposition 2.112

(i) ∀ f ∈ H1(0, 1), d
dx ◦ P

1
j f = P0

j ◦ d
dxf ,113

(ii) ∀ f ∈ H1
0 (0, 1), d

dx ◦ P̃
0
j f = P̃1

j ◦ d
dxf .114

115

Despite of satisfying Proposition 2, the construction of Jouini and Lemarié-116

Rieusset [13] remains in a theoretical setting and inspired by the use of Daubechies117

compactly supported orthogonal generators [8]. A construction that uses classi-118

cal biorthogonal multiresolution analyses on the interval [4, 7, 11], with polyno-119

mial reproduction at boundaries, was done and implemented by Kadri-Harouna120

and Perrier [19]. In such a construction, the choice of integer parameters (δ[, δ])121

and (δ̃[, δ̃]) is very important: they must be identical for the two multiresolu-122

tion analyses to satisfy (14,15) and to provide the commutation of multiscale123

projectors with the differentiation operator.124

3.1. Wavelet spaces125

For j ≥ jmin, the biorthogonal wavelet spaces associated to V 1
j are defined

by W 1
j = V 1

j+1 ∩ (Ṽ 1
j )⊥. As for the scaling function spaces, these spaces have

the following structure:

W 1
j = W 1,[

j ⊕W
1,int
j ⊕W 1,]

j ,

where W 1,[
j is spanned by the edge wavelets at 0, W 1,int

j is spanned by the126

interior wavelets and W 1,]
j is spanned by the edge wavelets at 1, see [1, 4, 7,127

11, 16] and references therein. The biorthogonal spaces W̃ 1
j = Ṽ 1

j+1 ∩ (V 1
j )⊥ are128

constructed in the same way, finally the wavelet bases of the two spaces must to129

be biorthogonalized identically as the scaling functions. The resulting wavelet130

bases are denoted by {ψ1
j,k}k=1,2j and {ψ̃1

j,k}k=1,2j without distinction.131

132

9



The biorthogonal wavelets of W 0
j and W̃ 0

j , linked to ψ1
j,k and ψ̃1

j,k by dif-133

ferentiation/integration are defined by the following proposition, established in134

the general framework by [13]:135

Proposition 3. Let (V 1
j , Ṽ

1
j ) and (V 0

j , Ṽ
0
j ) BMRAs satisfying (14,15). The

wavelet spaces W 0
j = V 0

j+1 ∩ (Ṽ 0
j )⊥ and W̃ 0

j = Ṽ 0
j+1 ∩ (V 0

j )⊥ are linked to the

biorthogonal wavelet spaces associated to (V 1
j , Ṽ

1
j ) by:

W 0
j =

d

dx
W 1
j and W̃ 0

j =

∫ x

0

W̃ 1
j . (16)

Moreover, let {ψ1
j,k}k=1,2j and {ψ̃1

j,k}k=1,2j be two biorthogonal wavelet bases of

W 1
j and W̃ 1

j . Biorthogonal wavelet bases of W 0
j and W̃ 0

j are directly defined by:

ψ0
j,k = 2−j(ψ1

j,k)′ and ψ̃0
j,k = −2j

∫ x

0

ψ̃1
j,k. (17)

This new edge wavelets preserve fast algorithms since they satisfy two-scale136

equations [19]:137

Proposition 4. Let {ψ1
j,k}k=1,2j and {ψ̃1

j,k}k=1,2j be two biorthogonal wavelet

bases of W 1
j and W̃ 1

j associated respectively to filters G1
j and G̃1

j :

ψ1
j,k =

∑
n

(G1
j )k,n ϕ

1
j+1,n and ψ̃1

j,k =
∑
n

(G̃1
j )k,n ϕ̃

1
j+1,n.

Then there exist sparse matrices G0
j and G̃0

j defined by:

G0
j = 2−jG1

jL
1
j+1 and G̃0

j = −2jG̃1
jL

0T
j+1, (18)

such that the wavelets ψ0
j,k and ψ̃0

j,k satisfy:

ψ0
j,k =

∑
n

(G0
j )k,nϕ

0
j+1,n and ψ̃0

j,k =
∑
n

(G̃0
j )k,nϕ̃

0
j+1,n.

The matrices L1
j and L0

j correspond to the change of basis between ( d
dxV

1
j , V

0
j )

and (
∫ x

0
V 0
j , V

1
j ), respectively:

d

dx
ϕ1
j,k =

∆j−1∑
n=1

(L1
j )k,n ϕ

0
j,n and −

∫ x

0

ϕ0
j,k =

∆j∑
m=1

(L0
j )k,m ϕ1

j,m. (19)

10



138

Interior wavelets ψ0
j,k(x) = 2j/2ψ0(2jx − k) in Proposition 3 correspond to139

classical wavelets, ψ0 being a wavelet on R associated to the scaling function ϕ0
140

as in Proposition 1.141

142

In the previous works [19, 22], to construct divergence-free wavelet satisfy-143

ing free slip boundary condition, one needs to differentiate wavelets of V 1
j+1 ∩144

H1
0 (0, 1) that satisfy homogeneous Dirichlet boundary condition, which deriva-145

tives differ from the wavelets defined in (17). In this case, the numerical com-146

putation of the Helmholtz-Hodge decomposition or the numerical simulation of147

the incompressible Navier-Stokes equations should required the use of four dif-148

ferent kind of edge wavelet filters. Precisely, in two space dimension using the149

multiresolution analysis (V 1
j ⊗V 0

j )×(V 0
j ⊗V 1

j ), one should use the wavelet filters150

of (ψ1
j,k;ψ0

j,k = 2−j(ψ1
j,k)′) for the usual decomposition and the wavelet filters151

of (ψ1,0
j,k ∈ V 1

j+1 ∩ H1
0 (0, 1); 2−j(ψ1,0

j,k )′ 6= ψ0
j,k), due to the free slip boundary152

condition, see [18, 20] for details.153

154

The new construction detailed in the next section will lead to edge wavelets155

that satisfy relation (17) even if with homogeneous Dirichlet boundary condi-156

tion.157

4. New construction of (V 1
j , Ṽ 1

j ) linked to (V 0
j , Ṽ 0

j ) by differentiation158

/ integration to handle boundary conditions in V 1
j .159

In this section we present our new construction of biorthogonal multiresolu-160

tion analyses linked by differentiation and integration. The construction of the161

primal spaces (V 1
j , V

0
j ) remains the same as in the classical construction [13, 19].162

However, the construction of the biorthogonal spaces (Ṽ 1
j , Ṽ

0
j ) will be different.163

Indeed, to handle Dirichlet boundary conditions in V 1
j , we will construct new164

wavelet bases (ψ1
j,k) which will constitue a Riesz basis for the homogeneous space165

H1
0 (0, 1). This is an issue of major benefit in the construction of divergence-free166

11



wavelet satisfying physical boundary condition [19].167

168

The construction starts with (V 0
j , Ṽ

0
j ) as a standard biorthogonal multireso-169

lution analyses of L2(0, 1) [1, 4, 5] (which can be orthogonal), where the scaling170

function generators (ϕ0, ϕ̃0) satisfy Proposition 1, with at least two vanishing171

moments for the wavelet ψ0: r̃0 ≥ 2. We denote by (δ[, δ]) and (δ̃[, δ̃]) the172

integer parameters used in the construction of (V 0
j , Ṽ

0
j ). Following [13, 19],173

the classical multiresolution spaces V 1
j is constructed from the scaling function174

generator ϕ1 with the same integer parameters (δ[, δ]) and satisfy:175

d

dx
V 1
j = V 0

j and ∆1
j − 1 = ∆0

j .

In this case, for the biorthogonal space Ṽ 0
j , since ∆0

j = dim(Ṽ 0
j ), we see that:176

∆1
j − 2 = dim(

d

dx
Ṽ 0
j ).

The construction of Ṽ 1
j follows similar approach with the generator ϕ̃1. To get177

equality between dimensions of spaces V 1
j and Ṽ 1

j one needs:178

∆1
j = ∆̃1

j ,

which imposes to the integer parameters to be used for the construction of Ṽ 1
j179

to be fixed to (δ̃[ − 1, δ̃] − 1). It follows therefore that:180

d

dx
Ṽ 0
j 6⊂ Ṽ 1

j .

This is a major difference compared to the existing construction.181

4.1. A new wavelet space for V 1
j182

The construction of the wavelet basis associated to V 1
j is the major contri-

bution of the present work. In the classical construction, on defines the wavelet

space as:

V 1
j+1 = V 1

j ⊕W 1
j , where W 1

j = V 1
j+1 ∩ (Ṽ 1

j )⊥.

Then, the space W 1
j does not necessarily satisfy homogeneous Dirichlet bound-

ary condition. To compensate for that, in this work the wavelet space is defined

12



as:

W
1

j =

∫ x

0

W 0
j ,

where W 0
j is the wavelet space associated to V 0

j [1, 4, 7, 11, 16]:

W 0
j = V 0

j+1 ∩ (Ṽ 0
j )⊥.

Remark 1.

From the zero mean value property of the wavelet ψ0
j,k, by construction the space

W
1

j satisfies:

W
1

j ⊂ H1
0 (0, 1).

In the previous section, the wavelet space W 0
j was defined as W 0

j = d
dxW

1
j and

this choice of W 0
j led in general to:

W 1
j 6=

∫ x

0

W 0
j .

For all j ≥ jmin, the spaces W
1

j verify the following proposition.183

Proposition 5.

Let W 0
j be the wavelet space associated to V 0

j , where V 0
j = d

dxV
1
j . Then the

space V 1
j+1 can be decomposed as follows:

V 1
j+1 = V 1

j ⊕W
1

j , with W
1

j =

∫ x

0

W 0
j , (20)

and

V 1
j+1 = V 1

jmin
⊕W 1

jmin
⊕ · · · ⊕W 1

j . (21)

Proof. As d
dxV

1
j = V 0

j , we get:

W
1

j =

∫ x

0

W 0
j ⊂

∫ x

0

d

dt
V 1
j+1 ⊂ V 1

j+1 and

∫ x

0

W 0
j ⊂ H1

0 (0, 1).

Moreover, let uj be a function of V 1
j ∩W

1

j :

uj =
∑
k

ckϕ
1
j,k =

∑
n

dn

∫ x

0

ψ0
j,n,

we deduce that:

d

dx
uj ∈ V 0

j ∩W 0
j ⇒

d

dx
uj = 0 ⇒ uj = C ∈ R.
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Since

〈1,
∫ x

0

ψ0
j,n〉 = −〈x, ψ0

j,n〉 = 0,

we get uj = 0, which implies V 1
j ∩W

0

j = {0}. Let fj+1 ∈ V 1
j+1, then:

d

dx
fj+1 ∈ V 0

j+1 = V 0
j ⊕W 0

j .

Since fj+1(0) ∈ V 1
j (the constants are in V 1

j ), integration gives:

fj+1(x) = fj+1(0) +

∫ x

0

P0
j (

d

dx
fj+1) +

∫ x

0

Q0
j (
d

dx
fj+1) ∈ V 1

j +W
1

j ,

and this ends the proof.184

4.2. A new multiscale decomposition of H1
0 (0, 1), and relation with the derivative185

operator186

We recall that from the results of Section 2, incorporating homogeneous

boundary conditions in V 1
j consists on removing the two scaling functions that

do not satisfy the desired boundary conditions. In addition to that, one interest

of this new wavelet space construction is that the treatment of homogeneous

Dirichlet boundary conditions in V 1
j is done only at the coarse scale jmin. In-

deed, by construction the space W
1

j =
∫ x

0
W 0
j ⊂ H1

0 (0, 1) and relation (21) allow

to get the following decomposition:

V 1,0
j+1 = V 1

j+1 ∩H1
0 (0, 1) =

(
V 1
jmin
∩H1

0 (0, 1)
)
⊕W 1

jmin
⊕ · · · ⊕W 1

j . (22)

Moreover, as a matter of fact, the wavelet space W
1

j is the classical wavelet187

space of H1
0 (0, 1) associated to the multiresolution analysis constituted by V 1,0

j188

(but the wavelet basis is different), as proved in the following proposition.189

Proposition 6.

Let (V 1
j , Ṽ

1
j ) and (V 0

j , Ṽ
0
j ) be two BMRAs of L2(0, 1) linked by differentiation

and integration constructed using the parameters (δ[, δ]) and (δ̃[, δ̃]). Defining

the biorthogonal spaces (V 1,0
j , Ṽ 1,0

j ) by:

V 1,0
j = V 1

j ∩H1
0 (0, 1) and

d

dx
Ṽ 0
j = Ṽ 1,0

j , (23)

then we have:190

14



• (i) The spaces V 1,0
j provide a multiresolution analysis of H1

0 (0, 1).191

• (ii) The space W
1

j =
∫ x

0
W 0
j is the classical wavelet space associated to

V 1,0
j :

V 1,0
j+1 = V 1

j+1 ∩H1
0 (0, 1) = V 1,0

j ⊕
∫ x

0

W 0
j and

∫ x

0

W 0
j = V 1,0

j+1 ∩ (Ṽ 1,0
j )⊥.

(24)

Proof.

The first point (i) is evident. Since V 1
j is a multiresolution analysis of L2(0, 1)

and V 1,0
jmin

= V 1
jmin
∩H1

0 (0, 1), we have:

∪j≥jminV
1,0
j = H1

0 (0, 1). (25)

For the second point (ii), from the vanishing moment condition of the wavelet

basis of W 0
j we get: ∫ 1

0

W 0
j = 0 ⇒

∫ x

0

W 0
j ⊂ H1

0 (0, 1).

The differentiation relation gives:

d

dx
V 1
j+1 = V 0

j+1 ⇒
∫ x

0

V 0
j+1 ⊂ V 1

j+1,

thus ∫ x

0

W 0
j ⊂ V 1

j+1 ∩H1
0 (0, 1) = V 1,0

j+1.

Moreover, the differentiation relation:

d

dx
Ṽ 0
j = Ṽ 1,0

j

states that for any f̃1,0
j ∈ Ṽ 1,0

j , there exists f̃0
j ∈ Ṽ 0

j such that (f̃0
j )′ = f̃1,0

j ,

then:

〈
∫ x

0

ψ0
j,k, f̃

1,0
j 〉 = 〈

∫ x

0

ψ0
j,k,

d

dx
f̃0
j 〉 = −〈ψ0

j,k, f̃
0
j 〉 = 0 ⇒

∫ x

0

W 0
j ⊂ (Ṽ 1,0

j )⊥.

Then we deduce that ∫ x

0

W 0
j ⊂ V

1,0
j+1 ∩ (Ṽ 1,0

j )⊥

15



and since the two spaces have the same dimension, we get:∫ x

0

W 0
j = V 1,0

j+1 ∩ (Ṽ 1,0
j )⊥.

192

We remind that the integer parameters used in the construction of Ṽ 1
j and193

Ṽ 0
j are not the same. Then one can not expect to get commutation between194

multiscale projectors and derivation as in Proposition 2, but for the oblique195

multiscale projectors of (V 1,0
j , V 0

j ) and (Ṽ 0
j , Ṽ

1,0
j ) we can prove the following196

proposition:197

Proposition 7.198

Let (P1,0
j ,P0

j ) be the biorthogonal projectors associated with (V 1,0
j , V 0

j ) and (P̃0
j , P̃

1,0
j )199

the biorthogonal projectors associated with (Ṽ 0
j , Ṽ

1,0
j ). Then, we have:200

(i) ∀ f ∈ H1
0 (0, 1), d

dx ◦ P
1,0
j f = P0

j ◦ d
dxf.201

(ii) ∀ f ∈ H1(0, 1), d
dx ◦ P̃

0
j f = P̃1,0

j ◦ d
dxf.202

Proof.

From proposition 6, there exist two matrices denoted L1,0
j and L̃1,0

j of size (∆1
j−

2)× (∆1
j − 1), such that:

ϕ1,0
j,k =

∆1
j−1∑
n=1

(L1,0
j )k,n

∫ x

0

ϕ0
j,n and

∫ x

0

ϕ̃1,0
j,k =

∆1
j−1∑
n=1

(L̃1,0
j )k,n ϕ̃

0
j,n. (26)

Then, the biorthogonality of the basis functions ϕ1,0
j,k and ϕ̃1,0

j,k , with an integra-203

tion by part give:204

δk,m = 〈ϕ1,0
j,k , ϕ̃

1,0
j,m〉 =

∑
`

(L̃1,0
j )m,`〈ϕ1,0

j,k ,
d

dx
ϕ̃0
j,`〉 =

∑
`

(L̃1,0
j )m,`〈−

d

dx
ϕ1,0
j,k , ϕ̃

0
j,`〉

= −
∑
n

∑
`

(L1,0
j )k,n(L̃1,0

j )m,`〈ϕ0
j,n, ϕ̃

0
j,`〉 = −

∑
n

(L1,0
j )k,n(L̃1,0

j )m,n,

which means that:

I∆j−2 = −L1,0
j

tL̃1,0
j .
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Thus, the proof of the point (i) becomes a change of basis. Indeed, for f ∈205

H1
0 (0, 1), we have:206

d

dx
P1,0
j (f) =

∑
k

〈f, ϕ̃1,0
j,k〉

d

dx
ϕ1,0
j,k =

∑
k

∑
n

(L1,0
j )k,n〈f, ϕ̃1,0

j,k〉 ϕ
0
j,n

=
∑
n

〈f,
∑
k

(L1,0
j )k,nϕ̃

1,0
j,k〉 ϕ

0
j,n =

∑
n

〈f,
∑
k

∑
m

(L1,0
j )k,n(L̃1,0

j )k,m
d

dx
ϕ̃0
j,m〉 ϕ0

j,n

=
∑
n

〈f,− d

dx
ϕ̃0
j,n〉 ϕ0

j,n =
∑
n

〈 d
dx
f, ϕ̃0

j,n〉 ϕ0
j,n = P0

j (
d

dx
f).

For the second point (ii), let us consider the matrix L̃0
j defined by:

d

dx
ϕ̃0
j,k =

∆0
j−1∑
n=1

(L̃0
j )k,n ϕ̃

1,0
j,n.

Again, the duality of the basis and integration by part give:

〈 d
dx
ϕ1,0
j,k , ϕ̃

0
j,m〉 = (L1,0

j )k,m = 〈ϕ1,0
j,k ,−

d

dx
ϕ̃0
j,m〉 = −(L̃0

j )m,k,

then207

d

dx
P̃0
j (f) =

∑
k

〈f, ϕ0
j,k〉

d

dx
ϕ̃0
j,k =

∑
k

∑
n

(L̃0
j )k,n〈f, ϕ0

j,k〉 ϕ̃
1,0
j,n

=
∑
n

〈f,
∑
k

(L̃0
j )k,nϕ

0
j,k〉 ϕ̃

1,0
j,n =

∑
n

〈f,−
∑
k

(L̃1,0
j )n,kϕ

0
j,k〉 ϕ̃

1,0
j,n

=
∑
n

〈f,− d

dx
ϕ1,0
j,n〉 ϕ̃

1,0
j,n =

∑
n

〈 d
dx
f, ϕ1,0

j,n〉 ϕ̃
1,0
j,n = P̃1,0

j (
d

dx
f).

208

4.3. Fast decomposition algorithm209

In this section we provide the decomposition of a given function f ∈ H1
0 (0, 1)

in the MRA (V 1,0
j ) using (25, 22). As usual in Fast Wavelet Transforms, the

complete decomposition uses a binary tree whose elementary step is given by

the decomposition:

V 1,0
j+1 = V 1,0

j ⊕W 1

j (27)

Remembering that the space V 1,0
j is obtained from V 1

j only removing one bound-

ary scaling function at each boundary 0 and 1:

V 1,0
j = span{ϕ1,0

j ; j = 2, · · · ,∆1
j − 1}
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and that (22) holds, we first study the elementary step:

V 1
j+1 = V 1

j ⊕W
1

j .

Therefore we will study the computation of the projection of fj+1 ∈ V 1
j+1

onto V 1
j and W

1

j respectively. Precisely, starting with:

fj+1 =

∆1
j+1∑
k=1

cj+1,kϕ
1
j+1,k,

we want to compute the coefficients cj,k and dj,k from cj+1,k such that:

fj+1 =

∆1
j∑

k=1

cj,kϕ
1
j,k +

2j∑
m=1

dj,m

∫ x

0

ψ0
j,m.

Firstly, we notice that fj+1 can be split as

fj+1 =

∆1
j+1∑
k=1

cj+1,kϕ
1
j+1,k = f0

j+1 + f1,0
j+1 + f1

j+1,

with210

f0
j+1 = cj+1,1ϕ

1
j+1,1 ⇒ f0

j+1(0) 6= 0 and f0
j+1(1) = 0,

f1
j+1 = cj+1,∆1

j+1
ϕ1
j+1,∆1

j+1
⇒ f1

j+1(0) = 0 and f1
j+1(1) 6= 0,

and

f1,0
j+1 =

∆1
j+1−1∑
k=2

cj+1,kϕ
1
j+1,k ∈ V

1,0
j+1 ⊂ H

1
0 (0, 1).

Thus, the two scale decomposition of f1,0
j+1 is a classical decomposition in the

multiresolution analysis of H1
0 (0, 1) provided by the scaling function filter of

V 1,0
j and wavelet filter of W

1

j . To compute the projection of f0
j+1, one way to

proceed is to use the two scale relations satisfied by ϕ1
j+1,1:

ϕ1
j+1,1 =

∆̃1
j∑

n=1

H̃1
n,1ϕ

1
j,n +

2j∑
m=1

G̃1
m,1ψ

1
j,m =

∆̃1
j∑

n=1

H̃
1

n,1ϕ
1
j,n +

2j∑
m=1

G̃
1

m,1

∫ x

0

ψ0
j,m,

18



where the first decomposition corresponds to V 1
j+1 = V 1

j ⊕ W 1
j , with W 1

j a211

chosen classical wavelet space associated to V 1
j [4, 7, 11, 16] and the second one212

corresponds to V 1
j+1 = V 1

j ⊕W
1

j .213

214

Then, to get the new filters H̃
1

n,1 and G̃
1

n,1, according to the biorthogonal-

ization procedure that we adopted, where only the dual basis are modified, we

have:

G̃1
k,1 =

2j∑
m=1

G̃
1

m,1〈
∫ x

0

ψ0
j,m, ψ̃

1
j,k〉, (28)

and

H̃1
k,1 = H̃

1

k,1 +

2j∑
m=1

G̃
1

m,1〈
∫ x

0

ψ0
j,m, ϕ̃

1
j,k〉. (29)

Equations (28) and (29) define two linear systems with respect to the edge215

scaling function and wavelet filters G̃
1

n,1 and H̃
1

n,1. From [2, 20], the computation216

of coefficients 〈
∫ x

0
ψ0
j,m, ψ̃

1
j,k〉 and 〈

∫ x
0
ψ0
j,m, ϕ̃

1
j,k〉 is straightforward and this is217

done only for functions whose support intersect the edge function support, due218

to the compactly support properties of the generators. Then, solving these linear219

systems, and similar relations at the boundary 1, allows to get the new edge220

filters. Finally, the main steps of the decomposition algorithm are summarized221

as:222

cj,1 = cj+1,1H̃
1

1,1, (30)

cj,k =

∆j+1−1∑
n=2

cj+1,nH̃
1,0
n,k + cj+1,1H̃

1

k,1 + cj+1,∆j+1
H̃

1

k,∆j+1
, 2 ≤ k ≤ ∆j − 1,(31)

cj,∆j = cj+1,∆j+1H̃
1

∆j ,∆j+1
, (32)

and223

dj,k =

∆j+1−1∑
n=2

cj+1,nG̃
1,0
n,k + cj+1,1G̃

1

k,1 + cj+1,∆j+1G̃
1

k,∆j+1
, 1 ≤ k ≤ 2j(33)

Remark 2. Working in V 1,0
j ⊂ H1

0 (0, 1) amounts to work directly with f1,0
j+1. In224

this case the elementary decomposition step (27) is reduced to the computations225

of coefficients (31, 33).226
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Fast reconstruction algorithm. For fj+1 ∈ V 1
j+1, let us suppose that we know

its projection onto V 1
j ⊕W

1

j in terms of:

fj+1 =

∆1
j∑

k=1

cj,kϕ
1
j,k +

2j∑
m=1

dj,m

∫ x

0

ψ0
j,m,

and we want to compute its projection onto V 1
j+1 in terms of:

fj+1 =

∆1
j+1∑
k=1

cj+1,kϕ
1
j+1,k.

Setting

∆1
j∑

k=1

cj,kϕ
1
j,k = f0

j + f1,0
j + f1

j , with f0
j = cj,1ϕ

1
j,1 and f1

j = cj,∆1
j
ϕ1
j,∆1

j
,

it is easy to see that

f1,0
j +

2j∑
m=1

dj,m

∫ x

0

ψ0
j,m ∈ V

1,0
j+1,

thus we get:

cj+1,k =

∆1
j∑

n=1

cj,nH
1
n,k +

2j∑
m=1

dj,mG
1

m,k, 2 ≤ k ≤ ∆1
j+1 − 1,

and

cj+1,1 =

∆1
j∑

n=1

cj,nH
1
n,1, cj+1,∆1

j+1
=

∆1
j∑

n=1

cj,nH
1
n,∆1

j+1
.

Remark 3. Again working in V 1,0
j ⊂ H1

0 (0, 1) amounts to work directly with227

f1,0
j and f1,0

j+1, assuming that f0
j = 0 and f1

j = 0. Using (30,32), we obtain228

cj+1,1 = 0 and cj+1,∆1
j+1

= 0.229

5. Numerical examples230

We present in this section numerical examples to illustrate the effective-231

ness and the potential application of this new construction of multiresolution232

analyses linked by differentiation and integration. We first show the shape of233
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Figure 1: Plot of the internal scaling function ϕ0 (left) and the internal wavelet ψ0

(right). Daubechies orthogonal generator with r = 3.

generating functions and study the approximation errors provided by the MRA234

(V 1
j ). Second we apply the new bases to the resolution of a Dirichlet-Laplace235

problem, only using Fast Wavelet Transforms, leading to a linear complexity for236

the resolution of the problem.237

5.1. Basis functions and approximation errors238

For the different examples, the scaling function and wavelet generators (ϕ0, ψ0)

considered are Daubechies orthogonal generators, with three vanishing moments

for the wavelet [8]. The integer parameters of the construction of V 0
j thus are:

r = 3, δ[ = δ] = 1, nmin = −r + 1 and nmax = r.

On Figure 1, we show the plot of the internal scaling function ϕ0 and the wavelet

ψ0. The edge orthogonal scaling functions and wavelets are plotted on Figure 2

and Figure 3 respectively. The generators (ϕ1, ψ1) are computed from (ϕ0, ψ0)

using the formula:

ϕ1(x) =

∫ x

x−1

ϕ0(t)dt and ψ1(x) = 4

∫ x

−∞
ψ0(t)dt. (34)

The graphs of ϕ1 and ψ1 are plotted on Figure 4, Figure 5 and Figure 6 show the239

plot of the edge scaling function graphs. The edge wavelet graphs are plotted on240

Figure 7 and Figure 8. We notice that these edge wavelets satisfy homogeneous241

Dirichlet boundary condition while this boundary condition is not required for242
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Figure 2: Plot of the edge orthogonal scaling functions of V 0
j . Daubechies orthogonal

generator with r = 3.
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Figure 3: Plot of the edge orthogonal wavelet functions of W 0
j . Daubechies orthogonal

generator with r = 3.

23



0 1 2 3 4 5 6
-1

0

1

2

3

4

5

6

-5 -4 -3 -2 -1 0 1
-8

-6

-4

-2

0

2

4

6

Figure 4: Plot of the internal scaling function ϕ1(x) =
∫ x

x−1
ϕ0(t)dt (left) and the in-

ternal wavelet ψ1(x) = 4
∫ x

−∞ ψ
0(t)dt (right), where (ϕ0, ψ0) are Daubechies

orthogonal generators with r = 3.

all the edge scaling functions. Then, to get the multiresolution analysis of243

H1
0 (0, 1) provided by V 1,0

j , one must remove from V 1
j the scaling functions Φ1,[

j,0244

and Φ1,]
j,0 that allow to reproduce constants at boundaries: this is confirmed245

again by Figure 5 and Figure 6.246

247

Similarly, the generators (ϕ̃1, ψ̃1) biorthogonal to (ϕ1, ψ1) are computed us-

ing the formula:

ϕ0(x) =

∫ x+1

x

ϕ̃1(t)dt and ψ0(x) = −4

∫ x

−∞
ψ̃1(t)dt. (35)

The graphs of ϕ̃1 and ψ̃1 are plotted on Figure 9, Figure 10 and Figure 11248

show the plot of the edge biorthogonal scaling functions. The edge biorthogonal249

wavelet graphs are plotted on Figure 12 and Figure 13.250

251

We now study the interpolation error of the multiresolution analysis (V 1
j , Ṽ

1
j ).

For a given function f , whose values are known at grid points xk = k/2jmax ,

0 ≤ k ≤ 2jmax , the interpolation step consists of computing its approximation

in V 1
j defined by

P1
jmax

(f) =

∆1
jmax

−1∑
k=0

< f, ϕ̃1
jmax,k > ϕ1

jmax,k. (36)
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Figure 5: Plot of the edge scaling functions at edge 0, computed from generator

ϕ1(x) =
∫ x

x−1
ϕ0(t)dt, where (ϕ0, ψ0) are Daubechies orthogonal generators

with r = 3.
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Figure 6: Plot of the edge scaling functions at edge 1, computed from generator

ϕ1(x) =
∫ x

x−1
ϕ0(t)dt, where (ϕ0, ψ0) are Daubechies orthogonal generators

with r = 3.
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Figure 7: Plot of the edge wavelet at edge 0, computed from generator ψ1(x) =

4
∫ x

−∞ ψ
0(t)dt, where (ϕ0, ψ0) are Daubechies orthogonal generators with

r = 3.
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Figure 8: Plot of the edge wavelet at edge 1, computed from generator ψ1(x) =

4
∫ x

−∞ ψ
0(t)dt, where (ϕ0, ψ0) are Daubechies orthogonal generators with
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Figure 10: Plot of the edge biorthogonal scaling functions, where (ϕ0, ψ0) are

Daubechies orthogonal generators with r = 3.
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Figure 11: Plot of the edge biorthogonal scaling functions, where (ϕ0, ψ0) are

Daubechies orthogonal generators with r = 3.
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Figure 12: Plot of the edge biorthogonal wavelets, where (ϕ0, ψ0) are Daubechies or-

thogonal generators with r = 3.
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Figure 13: Plot of the edge biorthogonal wavelets, where (ϕ0, ψ0) are Daubechies or-

thogonal generators with r = 3.
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Figure 14: Plot of the interpolation error ‖f− f̃jmax‖∞ (left) and ‖f− f̃jmax‖2 (right)

in loglog scale, where (ϕ0, ψ0) are Daubechies orthogonal generators with

r = 3.

We adapted the quadrature formula and algorithms of [16] to the biorthogonal

case to compute numerically the inner product < f, ϕ̃1
jmax,k

>. For the function

f defined by:

f(x) = sin(2πx) sin(50x) + 1, (37)

we show on Figure 14 the snapshot of the interpolation error ‖f − P1
jmax

(f)‖252

according to the different values of jmax.253

254

Again, from the approximation f̃jmax = P1
jmax

(f), we study the projection

error in V 1
` :

‖f̃jmax
− P1

` (f̃jmax
)‖, jmin ≤ ` ≤ jmax − 1,

involved in the fast wavelet transform algorithm. Figure 15 shows the plot of255

the projection error in a loglog scale with respect to the resolutions j. The256

Figure 16 shows the plot of this error at grid points for jmax = 16 and j = 9 or257

j = 13.258

259

To prove the sparse approximation property of the wavelet basis ψ1
j,k, we260

studied the non-linear approximation error of f defined in (37). On Figure 17261

we plot the evolution of this error according the ratio of wavelet coefficients262

retained.263
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264

In each of these experiences, the errors decay order obtained is about s ≈ −4.265

Since f is very smooth, this is in accordance with the theoretical order which is266

the polynomial approximation order of the space V 1
j .267

5.2. One dimensional laplacian operator268

In this section, we evaluate the performance of our new wavelet basis con-

struction, in the numerical resolution of one dimensional Poisson equation with

homogeneous Dirichlet boundary condition:
−u′′(x) = f(x), x ∈]0, 1[,

u(0) = u(1) = 0.

(38)

Usually, the numerical resolution of problem (38) with a wavelet based method is

done using a Galerkin (or Petrov-Galerkin) method. This leads to the resolution

of a linear algebraic system with the stiffness matrix of the considered wavelet

basis [2, 6]. In our construction, the wavelet basis ψ0
j,k can be chosen as an

orthogonal basis. In this case, it is easy to see that the stiffness matrix of the

wavelet basis ψ1
j,k constructed by integrating ψ0

j,k is a diagonal matrix:

< −(ψ1
j,k)′′, ψ1

`,n >=< (ψ1
j,k)′, (ψ1

`,n)′ >= 2j+` < ψ0
j,k, ψ

0
`,n >= 2j+`δj,`δk,n.

(39)

Then, if the solution u is searched in terms of its wavelet series:

u =
∑
j,k

uj,kψ
1
j,k, (40)

the coefficients uj,k are given by:

uj,k = 2−2j−4fj,k, where f =
∑
j,k

fj,kψ̃
1
j,k. (41)

Thus, the resolution of (38) is reduced to a wavelet coefficient normalization,269

with a linear numerical complexity. We notice that, at the coarse scale jmin we270

also have to invert the stiffness matrix of the scaling function ϕ1
jmin,k

. The size271

of this matrix is very small compared to the size of the whole system.272
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273

To see the efficiency of this approach, we firstly compare its numerical com-

plexity to the complexity of a finite difference method and the multi-grid method

of [12]. The main criterion we took is the real computational time of the MAT-

LAB code [17] that encodes the method. For this purpose, two numerical ex-

periences have been conducted. The first experience is done with the exact

solution:

u(x) = x3 − x4. (42)

The source term f is appropriately computed from the solution u. On Tab. 1,274

we provide the different mean real computational time according to the space275

resolution j. It can be observed that the present method performs better than276

these two methods when the resolution j increases, with a good accuracy on the277

relative L2-error.

Computational time

Method resolution j t (seconds) L2-error

Multi-grid 8 0.010705 4.4184E−5

Present 8 0.000625 1.3302E−9

Finite difference 8 0.000205 4.4341E−5

Multi-grid 10 0.019202 2.7255E−6

Present 10 0.000835 3.1552E−11

Finite difference 10 0.000389 2.7640E−6

Multi-grid 16 0.089770 2.0575E−7

Present 16 0.007712 5.6942E−11

Finite difference 16 0.018695 9.2095E−10

Table 1: Comparison of the real computational time and the relative L2-error for the

exact solution: u(x) = x3 − x4.

278

279
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The second experience concerns the source term f defined by:

f(x) =



0, 0 ≤ x < 3/8,

2, 3/8 ≤ x ≤ 5/8,

0, 5/8 < x ≤ 1,

(43)

and this corresponds to an exact solution u of (38) defined by:

u(x) =



1
4x, 0 ≤ x < 3/8,

−x2 + x− 9
64 , 3/8 ≤ x ≤ 5/8,

− 1
4x+ 1

4 , 5/8 < x ≤ 1.

(44)

The function f has discontinuities at x = 3/8 and x = 5/8. Then, the motivation280

for this experience is to highlight the adaptativity of the wavelet basis ψ1
j,k.281

6. Fast divergence-free wavelet transform282

Another application of our new construction of wavelet linked by differen-283

tiation and integration is the implementation of a fast divergence-free wavelet284

transform algorithm, similar to this of [9] for the periodic case. Since we have285

a diagonal differentiation relation between the wavelets ψ1,0
j,k and ψ0

j,k even at286

boundaries, the algorithm will be the same, except that we have to take care287

of the lowest scale jmin, which cannot be equal to 0 as in the periodic case. To288

make the text simpler, we will present only the three dimensional case, knowing289

that the generalization to higher dimension is straightforward.290

291

Specifically, the divergence-free function space that we are concerned is

Hdiv(Ω):

Hdiv(Ω) = {u ∈ (L2(Ω))3 : ∇ · u = 0 and u · ~n|∂Ω = 0}, (45)
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Figure 18: From top to bottom, plot of the computed solution, its wavelet coefficients

and the residual error (first column j = 8 and second column j = 16).

Where (ϕ0, ψ0) are Daubechies orthogonal generators with r = 3.
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where Ω = [0, 1]3 and ~n denotes the unit outward normal at boundary ∂Ω.292

293

For the sake of convenience, we denote by {ψ1,0
j,k} and {ψ0

j,k} the scaling

functions and wavelets of V 1,0
j and V 0

j , respectively (the scaling function at

coarsest scale jmin will be denoted like the wavelet but with a scale index j =

jmin − 1). In the three dimensional case, as explained in [9, 20, 21, 22, 23] one

can construct three kind of anisotropic divergence-free wavelets by:

Ψdiv,1

j,k
:= curl

∣∣∣∣∣∣∣∣∣
0

0

ψ1,0
j1,k1

⊗ ψ1,0
j2,k2

⊗ ψ0
j3,k3

=

∣∣∣∣∣∣∣∣∣
ψ1,0
j1,k1

⊗ (ψ1,0
j2,k2

)′ ⊗ ψ0
j3,k3

−(ψ1,0
j1,k1

)′ ⊗ ψ1,0
j2,k2

⊗ ψ0
j3,k3

0

,

(46)

Ψdiv,2

j,k
:= curl

∣∣∣∣∣∣∣∣∣
ψ0
j1,k1

⊗ ψ1,0
j2,k2

⊗ ψ1,0
j3,k3

0

0

=

∣∣∣∣∣∣∣∣∣
0

ψ0
j1,k1

⊗ ψ1,0
j2,k2

⊗ (ψ1,0
j3,k3

)′

−ψ0
j1,k1

⊗ (ψ1,0
j2,k2

)′ ⊗ ψ1,0
j3,k3

,

(47)

Ψdiv,3

j,k
:= curl

∣∣∣∣∣∣∣∣∣
0

ψ1,0
j1,k1

⊗ ψ0
j2,k2

⊗ ψ1,0
j3,k3

0

=

∣∣∣∣∣∣∣∣∣
−ψ1,0

j1,k1
⊗ ψ0

j2,k2
⊗ (ψ1,0

j3,k3
)′

0

(ψ1,0
j1,k1

)′ ⊗ ψ0
j2,k2

⊗ ψ1,0
j3,k3

,

(48)

By construction these wavelets are contained in Hdiv(Ω) and the space Wdiv
j

that they spanned is included into the BMRA of (L2(Ω))3 endowed with the

free-slip boundary condition generated by:

~Vj =
(
V 1,0
j ⊗ V 0

j ⊗ V 0
j

)
×
(
V 0
j ⊗ V

1,0
j ⊗ V 0

j

)
×
(
V 0
j ⊗ V 0

j ⊗ V
1,0
j

)
. (49)

According to Proposition 7, the spaces ~Vj provide an internal multiscale approx-

imation process for Hdiv(Ω). Precisely, let ~Pj be the biorthogonal multiscale

projector associated to ~Vj :

~Pj =
(
P1,0
j ⊗ P0

j ⊗ P0
j

)
×
(
P0
j ⊗ P

1,0
j ⊗ P0

j

)
×
(
P0
j ⊗ P0

j ⊗ P
1,0
j

)
,
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and P0
j = P0

j⊗P0
j⊗P0

j the projector associated to V0
j = V 0

j ⊗V 0
j ⊗V 0

j . Then, the

commutation of the one dimensional multiscale projectors with differentiation

allows to get:

∀ u ∈ Hdiv(Ω), ∇ · ~Pj(u) = P0
j (∇ · u) = 0 ⇒ ~Pj(Hdiv(Ω)) = ~Vj ∩Hdiv(Ω).

Thus, the spaces ~Vdiv
j = ~Vj ∩ Hdiv(Ω) constitute a multiresolution analysis of

Hdiv(Ω) and the anisotropic multiscale decomposition of ~Vdiv
j reads:

~Vdiv
j = ~Vdiv

jmin

⊕
jmin≤|j|≤j−1

Wdiv
j .

Proposition 8. A basis of the finite dimensional space ~Vdiv
j = ~Vj ∩ Hdiv(Ω)

is given by the following divergence-free scaling function basis:

~Vdiv
j = span{Φdiv,1

j,k
,Φdiv,2

j,k
}, (50)

where

Φdiv,1
j,k

:= curl

∣∣∣∣∣∣∣∣∣
0

0

ϕ1,0
j,k1
⊗ ϕ1,0

j,k2
⊗ ϕ0

j,k3

=

∣∣∣∣∣∣∣∣∣
ϕ1,0
j1,k1

⊗ (ϕ1,0
j2,k2

)′ ⊗ ϕ0
j3,k3

−(ϕ1,0
j1,k1

)′ ⊗ ϕ1,0
j2,k2

⊗ ϕ0
j3,k3

0

, (51)

and

Φdiv,2
j,k

:= curl

∣∣∣∣∣∣∣∣∣
ϕ0
j,k1
⊗ ϕ1,0

j,k2
⊗ ϕ1,0

j,k3

0

0

=

∣∣∣∣∣∣∣∣∣
0

ϕ0
j1,k1

⊗ ϕ1,0
j2,k2

⊗ (ϕ1,0
j3,k3

)′

−ϕ0
j1,k1

⊗ (ϕ1,0
j2,k2

)′ ⊗ ϕ1,0
j3,k3

, (52)

with 2 ≤ k1, k2 ≤ ∆1
j−1 and 1 ≤ k3 ≤ ∆0

j−1 for Φdiv,1
j,k

and 2 ≤ k2, k3 ≤ ∆1
j−1294

and 1 ≤ k1 ≤ ∆0
j − 1 for Φdiv,2

j,k
.295

296

Proof. First by construction we have span{Φdiv,1
j,k

,Φdiv,2
j,k
} ⊂ ~Vdiv

j , using (26)

left which leads to:

(ϕ1,0
j,k)′ =

∆1
j−1∑
n=1

(L1,0
j )k,n ϕ

0
j,n
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This shows the first inclusion.297

Conversely, let u ∈ ~Vdiv
j and denote by c1k, c2k and c3k the coefficients of its298

decomposition onto the scaling function basis of ~Vj :299

u =

∑
k

c1kφ
1
j,k;

∑
k

c2kφ
2
j,k;

∑
k

c3kφ
3
j,k

 ,

where φ1
j,k := ϕ1,0

j,k1
⊗ ϕ0

j,k2
⊗ ϕ0

j,k3
, φ2

j,k := ϕ0
j,k1
⊗ ϕ1,0

j,k2
⊗ ϕ0

j,k3
and φ3

j,k :=

ϕ0
j,k1
⊗ ϕ0

j,k2
⊗ ϕ1,0

j,k3
.

Now, from u we define a divergence-free function udiv ∈ span{Φdiv,1
j,k

,Φdiv,2
j,k
}

by:

udiv =
∑
k

cdiv,1
k

Φdiv,1
j,k

+
∑
k

cdiv,2
k

Φdiv,2
j,k

,

with

cdiv,1k1,k2,k3
= 〈
∑
m

c1mφ1
j,m,−ϕ̃1,0

j,k1
⊗
∫ x

0

ϕ̃1,0
j,k2
⊗ ϕ̃0

j,k3〉 = −
∑
m

c1k1,m,k3(L̃1,0
j )k2,m

and

cdiv,2k1,k2,k3
= 〈
∑
m

c3mφ3
j,m, ϕ̃0

j,k1 ⊗
∫ x

0

ϕ̃1,0
j,k2
⊗ ϕ̃1,0

j,k3
〉 =

∑
m

c3k1,m,k3(L̃1,0
j )k2,m,

where L1,0
j and L̃1,0

j are the change of bases matrices defined in (26). Then, to

get the second inclusion ~Vdiv
j ⊂ span{Φdiv,1

j,k
,Φdiv,2

j,k
}, it suffices to prove that

u− udiv = 0.

For this, let c̄1k, c̄2k and c̄3k be the coefficients of the decomposition of udiv onto

the scaling function basis of ~Vj . Since the following biorthogonal relation holds:

〈(ϕ1,0
j,k)′,−

∫ x

0

ϕ̃1,0
j,n〉 = 〈ϕ1,0

j,k , ϕ̃
1,0
j,n〉 = −(L1,0

j
tL̃1,0
j )n,k = δn,k, (53)

a simple computation shows that:

c̄1k = c1k, c̄2k =
∑
m

(
−cdiv,1m,k2,k3

(L1,0
j )m,k1 + cdiv,2k1,k2,m

(L1,0
j )m,k3

)
and c̄3k = c3k.

On the other hand, the divergence-free relation ∇ ·u = 0 expressed in terms of

the coefficients c1k, c2k and c3k reads:∑
m

(
c1m,k2,k3(L1,0

j )m,k1 + c2k1,m,k3(L1,0
j )m,k2 + c3k1,k2,m(L1,0

j )m,k3

)
= 0.
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Then, using again the relation (53) we get:300

c2k1,k2,k3 = −
∑
n

∑
m

(
c1m,n,k3(L1,0

j )m,k1(L̃1,0
j )k2,n + c3k1,n,m(L1,0

j )m,k3(L̃1,0
j )k2,n

)
=

∑
m

(
[
∑
n

c1m,n,k3(L̃1,0
j )k2,n](L1,0

j )m,k1 + [
∑
n

c3k1,n,m(L̃1,0
j )k2,n](L1,0

j )m,k3

)
=

∑
m

(
−cdiv,1m,k2,k3

(L1,0
j )m,k1 + cdiv,2k1,k2,m

(L1,0
j )m,k3

)
.

Thus c̄2k = c2k, which means that u− udiv = 0.301

302

This proposition provides an algorithm that allows us to compute cdiv,1
k

and

cdiv,2
k

from c1k, c2k and c3k by:

cdiv,1k1,k2,k3
= −

∑
m

c1k1,m,k3(L̃1,0
j )k2,m and cdiv,2k1,k2,k3

=
∑
m

c3k1,m,k3(L̃1,0
j )k2,m.

(54)

Conversely, from cdiv,1
k

and cdiv,2
k

one can compute c1k, c2k and c3k by:303

c1k1,k2,k3 =
∑
m

cdiv,1k1,m,k3
(L1,0

j )m,k2 (55)

c2k1,k2,k3 =
∑
m

(
−cdiv,1m,k2,k3

(L1,0
j )m,k1 + cdiv,2k1,k2,m

(L1,0
j )m,k3

)
(56)

c3k1,k2,k3 = −
∑
m

cdiv,2k1,m,k3
(L1,0

j )m,k2 . (57)

On the wavelet basis, this change of bases reduces to a simple wavelet coeffi-

cients renormalization as in the periodic case: let d1
j,k, d2

j,k and d3
j,k be the

coefficients of the decomposition of u in the anisotropic wavelet basis associated

to ~Vj , and ddiv,1
j,k

and ddiv,2
j,k

the coefficients of its decomposition in the wavelet

basis of ~Wdiv
j . Then, we have:

ddiv,1
j,k

= 2−j2−2d1
j,k and ddiv,2

j,k
= −2−j2−2d3

j,k, (58)

and

d1
j,k = 2j2+2ddiv,1

j,k
, d2

j,k = −2j1+2ddiv,1
j,k

+2j3+2ddiv,2
j,k

and d3
j,k = −2j2+2ddiv,2

j,k
.

(59)
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Figure 19: Linear approximation L2-error (left) and nonlinear approximation L2-error

(right) in log-log scale, obtained with the fast divergence-free transform al-

gorithm. Where u is defined in (60) and (ϕ0, ψ0) are Daubechies orthogonal

generators with r = 3.

Remark 4.304

As no distinction is made between the scaling functions ϕ1,0
j,k and the wavelet305

ψ1,0
j,k in the definition of the divergence-free wavelets (46, 47, 48), the definition306

of coefficients (ddiv,1
j,k

, ddiv,2
j,k

) and (c1j,k, c
2
j,k, c

3
j,k) in (58, 59) must be adapted307

following the scaling function cases listed above if at least one coordinate of j is308

jmin.309

We tested the fast divergence-free wavelet transform algorithm on a toy

vector field u defined by:

u(x, y, z) =

∣∣∣∣∣∣∣∣∣
sin2(2πx) sin(4πy) sin(4πz)

sin(4πx) sin2(2πy) sin(4πz)

−2 sin(4πx) sin(4πy) sin2(2πz)

(60)

For the construction of V 1,0
j and V 0

j , we kept the same parameters as in the310

previous sections: again (ϕ0, ψ0) are the Daubechies orthogonal generators with311

r = 3. On Figure 19, we show both the plot of the linear and nonlinear approx-312

imation L2-errors in a log-log scale. Since the vector field u is smooth enough,313

the expected decay orders of the errors are achieved.314

315

316
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The construction extends to larger dimensions d > 3 readily. We obtain in

this case (d − 1) types of linear independent divergence-free wavelet functions.

For 1 ≤ i ≤ d− 1, the general formula of these wavelets is given by:

Ψdiv,i

j,k
:=

0
...

0

row i 2ji+1+2ψ0
j1,k1

⊗ · · · ⊗ ψ0
ji−1,ki−1

⊗ ψ1,0
ji,ki
⊗ ψ0

ji+1,ki+1
⊗ · · · ⊗ ψ0

jd,kd

row i+ 1 −2ji+2ψ0
j1,k1

⊗ · · · ⊗ ψ0
ji,ki
⊗ ψ1,0

ji+1,ki+1
⊗ ψ0

ji+1,ki+2
⊗ · · · ⊗ ψ0

jd,kd

0
...

0

(61)

The wavelets Ψdiv,i

j,k
satisfy the boundary condition Ψdiv,i

j,k
· ~n = 0 by construc-

tion. The space Wdiv
j spanned by these wavelets is included into the following

standard BMRA of (L2(Ω))d:

~Vj = V1
j × · · · ×Vd

j with Vi
j = V

δ1,i
j ⊗ · · · ⊗ V δd,ij , 1 ≤ i ≤ d, (62)

where δi,j denotes the Kronecker symbol. To satisfy the free-slip boundary317

condition we must replace V 1
j by V 1,0

j in (62). We also emphasized that, the318

corresponding spaces ~Vdiv
j = ~Vj ∩ Hdiv(Ω) = ~Pj(Hdiv(Ω)) provide a multires-319

olution analysis of Hdiv(Ω). Following a similar approach as for d = 3, and320

taking the (d− 1) scaling functions that generated the previous divergence-free321

wavelets, we obtain a divergence-free scaling functions basis of ~Vdiv
j .322

7. Conclusion323

In this paper we have presented a new construction of biorthogonal wavelet324

bases linked by differentiation and integration. In opposite to the existing con-325

structions, the differentiation relation between the wavelet basis ψ1
j,k and ψ0

j,k326

remains diagonal as for the internal wavelet, and including an homogeneous327

boundary condition on the boundary. Several experiments have demonstrated328

44



the potential applications of this new construction in signal compression and329

in the numerical resolution of the Poisson equation in one dimensional space.330

Moreover, the diagonal relation between the wavelet bases improves the com-331

plexity of the fast divergence-free wavelet transform algorithms.332
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[14] P.G. Lemarié-Rieusset, Analyses multi-résolutions non orthogonales, com-364
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nulle, Revista Matemática Iberoamericana 8(2) (1992) 221–236.366

[15] R. Masson, Biorthogonal spline wavelets on the interval for the resolution367

of boundary problems, M3AS. 6 (6) (1996) 749–791.368

[16] P. Monasse, V. Perrier, Orthogonal Wavelet Bases Adapted For Partial369

Differential Equations With Boundary Conditions, SIAM J.Math. Anal.370

29 (1998) 1040–1065.371

[17] S. Kadri-Harouna, http : //pageperso.univ −372

lr.fr/souleymane.kadri harouna/Softwares.html373

[18] S. Kadri-Harouna, V. Perrier, Divergence-free Wavelet Projection Method374

for Incompressible Viscous Flow, SIAM Multiscale Modeling and Simulation375

13(1) (2015) 399–422.376

[19] S. Kadri-Harouna, V. Perrier, Effective construction of divergence-free377

wavelets on the square, J. of Computational and Applied Math. 240 (2013)378

74–86.379

46



[20] S. Kadri-Harouna, V. Perrier, Helmholtz-Hodge Decomposition on [0, 1]d380

by Divergence-free and Curl-free Wavelets, Lecture Notes in Computer Sci-381

ence series 6920 (2012), springer, 311–329.382

[21] R. Stevenson, Divergence-free wavelet bases on the hypercube: Free-slip383

boundary conditions, and applications for solving the instationary Stokes384

equations, Math. Comp. 80 (2011) 1499–1523.385

[22] R. Stevenson, Divergence-free wavelet bases on the hypercube, Appl. Com-386

put. Harmon. Anal. 30 (2011) 1–19.387

[23] K. Urban, Wavelet Bases in H(div) and H(curl), Math. Comput. 70388

(2000) 739–766.389

47


	Introduction
	Biorthogonal multiresolution analyses of L2(0,1) reproducing polynomial
	Existing construction of (V0j,0j) linked by differentiation / integration with (V1j,1j)
	Wavelet spaces

	New construction of (V1j,1j) linked to (V0j,0j) by differentiation / integration to handle boundary conditions in V1j.
	A new wavelet space for V1j
	A new multiscale decomposition of H10(0,1), and relation with the derivative operator
	Fast decomposition algorithm

	Numerical examples
	Basis functions and approximation errors
	One dimensional laplacian operator

	Fast divergence-free wavelet transform
	Conclusion

