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T lymphoblastic lymphoma (T-LBL) is a rare type of lymphoma with a good prognosis with a remission
rate of 85%. Patients can be completely cured or can relapse during or after a 2-year treatment. Relapses
usually occur early after the remission of the acute phase. The median time of relapse is equal to 1 year,
after the occurrence of complete remission (range 0.2–5.9 years) (Uyttebroeck et al., 2008). It can be
assumed that patients may be treated longer than necessary with undue toxicity.

The aim of our model was to investigate whether the duration of the maintenance therapy could be
reduced without increasing the risk of relapses and to determine the minimum treatment duration that could
be tested in a future clinical trial.

© The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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We developed a mathematical model of virtual patients with T-LBL in order to obtain a proportion of
virtual relapses close to the one observed in the real population of patients from the EuroLB database. Our
simulations reproduced a 2-year follow-up required to study the onset of the disease, the treatment of the
acute phase and the maintenance treatment phase.

Keywords: cancer; thymus; chemotherapy; mathematical modelling; T-cell lymphoblastic lymphoma;
randomized controlled clinical trial.

1. Introduction

This work was carried out as a part of the CRESim study (Child-Rare-Euro-Simulation), a research
project funded by the ERA-NET PrioMedChild (Priority Medicines for Children). The main objective
of the CRESim project was to create a platform for performing in silico experiments assessing and
optimizing designs of RCTs for drug evaluation in children with rare diseases. Virtual RCTs can be
simulated using different experimental designs and compared in terms of trial duration (for the patient,
the investigator and the sponsor) and precision of the estimation of the treatment effect.

In this particular work, the CRESim methodology was applied to study the duration of the maintenance
treatment of T-cell lymphoblastic lymphoma. Lymphoblastic lymphoma (LBL) is a rare form of neoplasm
that can develop from immature precursor cells in the bone marrow (BM) or from thymic T cells at varying
stages of differentiation (Cortelazzo et al. (2011); Schmidt & Burkhardt (2013)). In developed countries,
the annual cancer incidence in children under 15 years of age is estimated at 140 new cases per million
and the LBL annual incidence at 0.3 to 0.5 cases per 100,000 children and adolescents (Brugières et al.
(2012); Hochberg & Cairo (2009)).

T lymphoblastic lymphoma (T-LBL) is a rare disease with few mathematical models developed for
this type of cancer. A competition between normal and tumourous clonotypes of naive T-cells has been
modelled in Chrobak et al. (2012) as a continuous-time bivariate Markov process. The study presented
in Page & Uhr (2005) illustrates how the interaction between tumour and antibody for the murine BCL1
lymphoma leads to the dormancy of the tumour. The model takes into account cell cycle arrest and
apoptosis of the tumour cells due to the immune response. The model of Non-Hodgkins lymphomas (NHL)
(Ribba et al., 2005) includes a tumour structure incorporating mature and immature vessels, vascular
structural adaptation and NHL cell-cycle kinetics in addition to pharmacokinetics and pharmacodynamics
of the used drug (Doxorubicin). Another model of non-Hodgkin’ s lymphoma considers the tumour as
a mixture of cells, interstitial fluid, and extracellular matrix (Frieboes et al., 2013). The concentrations
of cells, as well as of oxygen and nutrients are described by partial differential equations. A recent
review of lymphoma and leukaemia models (Clapp & Levy, 2014) focuses on haematopoiesis and drug
improvement studies, and especially on drug resistance.

Most T-LBL patients typically present with a mediastinal tumour. We therefore restrict our focus on
a model of normal thymus, modelling three phases: its invasion by a tumour due to proliferation of a
single cancer cell, the treatment of the acute phase and the maintenance treatment phase. For validation
purposes, the results of our simulations compare the proportions of relapses in the virtual population with
the ones from the EuroLB database of real patients.

The aim is to build a model allowing the variation of the proportion of relapses of a population of
T-LBL patients as a function of the drug dose and as a function of the treatment duration. The simulations
should allow to test each of these essential elements separately or together. Inter-patients variability
needed to reproduce different behaviours, cured or not, of real patients can be simulated by adding
random noise to several existing models. However, to reach our objective, a more complex model is
required.
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We use a mathematical model at a cellular level to simulate tumours and healthy thymuses; the
presence or not, of surviving cancer cells after chemotherapy in a virtual patient determines his state of
health. Given the clinical presentation of the disease, our model assumes a tumour arising in the thymus.
We begin with the simulation of a healthy thymus.

The model included the onset of the disease, the treatment of its acute and maintenance phase. In
accordance with biomedical data, we assume that patient response to treatment depends on sensitivity of
cancer cell to the intracellular drug concentration. In the first part of the work, we model the proliferation
of a malignant tumour at a cell-scale. In this model, a given sensitivity of cancer cells to treatment is
assigned to each cell as a parameter. Then, taking into account the probability density function of treatment
sensitivity, the therapeutic effect of drug is simulated for virtual patients.

2. Thymus modelling

The thymus is an important organ in the development of the immune system in young children. Its
function becomes negligible in adults. The thymus is composed of several lobules, containing a cortex
and a medulla separated by a cortico medullary junction. The thymus, in particular the cortex, is the site
of maturation Brousse (2009), education and selection of T lymphocytes. Our simulations are focused
on the processes called ontogenesis.

2.1 Healthy functioning thymus modelling: Ontogenesis

The mathematical model of T cells ontogenesis takes into account four types of T cells: precursors,
double negative (DN), double positive (DP) and simple positive (SP). The mechanisms allowing their
progression between the consecutive steps implemented in our model are summarized in Fig. 1. The
given percentages of apoptosis and the proportion of each kind of T cells are observed in reality and are
computed by the model. In a healthy thymus, the proportion of T cells remains approximately constant:
3% of DN, 85% of DP and 12% of SP cells.

Fig. 1. Discursive representation of the simulated ontogenesis.
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Each day, 5 × 107 mature cells are produced but only 106 cells leave the thymus. 98% of the
thymocytes die by apoptosis by β, positive and negative selections. During their development, lym-
phocytes express several receptors allowing them to receive signals from their environment. Cells that
fail to produce a functional pre-TCR (T Cell Membrane Receptor) are eliminated by apoptosis. This
is called the β-selection. In positive selection, through contact with cortical epithelial cells, DN lym-
phocytes receive a signal of life or death. In negative selection, through contact with epithelial cells
of medulla, DP surviving lymphocytes also receive this signal. The selection processes depend on
the affinity TCRs for self MHC (Major Histocompatibility Complex) molecules from epithelial cells.
Apoptosis occurs when there is a low affinity for positive selection and a high affinity for negative
selection.

Stem cells in the BM differentiate into thymic precursors and enter the thymus through blood ves-
sels. After several stages of differentiation and proliferation, they then become T cells. Precursors are
committed to a specific lineage through signalling. We only consider the T lineage by activation of their
receptors Notch. During the early stages of maturation, precursors become DN1s, which are multipotent
cells able to differentiate into T lymphocytes, NK (Natural Killer) lymphocytes and dendritic cells. Pro
T thymocytes (DN2) mature and become DPs or NKs. Finally, DPs become SPs and exit the thymus
through blood vessels (Janeway et al., 2011). This classification depends on the expression of their recep-
tors CD4 and CD8, DP: CD4+CD8+, DN: CD4−CD8−, SP: CD4+CD8− or CD4−CD8+. The maturation,
migration, proliferation and differentiation of T cells lineage are controlled by interactions with other
cells in the thymus, especially with cortical and medullary epithelial cells, nurse cells and dendritic cells.
Our model only takes into account their actions on DNs, DPs and SPs and not their maturation pro-
cesses. In the normal thymus, mature cells produce cytokines such as interleukins, growth factors and
inhibitory factors. They provide a biological support for proliferation, differentiation or death signal. It
is suggested that intracellular signals through different MAPK (mitogen-activated protein kinase) cas-
cades selectively guide positive and negative selection of T lymphocytes (Hoelzer & Gokbuget, 2009).
They are regulators of the differentiation of immature thymocytes from DN to DP cells, most probably
acting as a transducer for pre-T cell receptor signalling (Crompton et al., 1996). The ERK (Extracellu-
lar Signal-regulated Kinease) and the p38 (a Mitogen-activated protein kinease) signalling cascades are
also critically involved in TCR signals inducing positive selection and negative selection, respectively
(Crompton et al., 1996).

Differentiation, proliferation and self-renewal of real T cells are controlled by signals emerging
from their microenvironment. In our model, the balance between cytokines families with antagonist
roles is summarized by a reaction diffusion equation and by a death probability. At each differen-
tiation stage a high rate of apoptosis is observed mostly due to positive and negative selections.
Apoptosis of T cells, whatever the cause, is modelled by a probability of remaining alive for each
cell type (cf. Subsection 3.1.4). Proliferation and differentiation of thymocytes are responses to signals
sent by epithelial cells modelled by an extra regulation using partial differential equation (Subsec-
tions 3.1.2) that influences the T cells intraregulation simulated by an ordinary differential equation
(cf. Subsection 3.1.3).

2.2 Disease modelling

The disease begins in the thymus but the tumour and the effect of the treatment can also reach the whole
body through blood vessels and affect the BM. The tumour results from a malignant transformation of
clone abnormal progenitor cells with infinite self-renewal potential which occurs in the thymus (MA
et al., 2002).
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Such cells present a genetic lesion that causes their proliferation and blocks their differentiation
(Chiaretti & Foà R., 2009). Genetic aberrations in leukaemogenesis can affect transcription factor, protein-
protein interaction, signal transduction, fate determination and cell cycle activator and differentiation
(Chiaretti & Foà R., 2009). The consequences of these genetic mutations are very complex and are not
modelled in our study.

In 90% of cases, lymphomas are caused by an excessive proliferation of immature thymocytes Brousse
(2009). Cancer cells appear to proliferate rather than to differentiate, causing the emergence and devel-
opment of a tumour. Consequently, the tumour is modelled by a set of cells that proliferate with a
low rate of apoptosis (probability of death close to zero) and without any differentiation. The intra and
extraregulations, which induce differentiation, are not taken into account for the simulation of cancer
cells.

3. Mathematical and computational model

We visualize the simplified operating process of the thymus during two years using an hybrid model with
an interface made with C++ graphical library wxWidget (Fischer et al., 2012) included in specific software
developed for haematopoiesis modelling (Bessonov et al., 2009). In this computed 2D representation, T
cells are represented as circles with specific colours for each stage of differentiation, (Figs 2 and 3). Cell
divisions are model as follow: during cell cycle, cell radius grows linearly. It becomes twice the initial
radius at the end of the cycle. Then, each mother cell is replaced by two daughter cells. Geometrically,
two circles with the initial radius are located inside the circle with a twice larger radius. The direction of
cell division, that is the direction of the line connecting the centres of daughter cells is random (Fischer
et al., 2012).

On a computer view, a cell is a set of parameters (the meaning of all the considered parameters and
their values are given in Appendix A.2). In order not to have a predetermine cell behaviour, these values
can vary with time and cells location. Each cell has its own initial and critical values and coefficients of
equations considered in the model. Their fate depend on the computation results done during their whole
life (cf. Section 3.2).

To increase legibility of this representation, cells cannot overlap. It is therefore necessary to consider
their positions and displacements (Subsection 3.1.1, equations (3.4) and (3.3)). A more complete approach
of cells motion in hybrid models can be found in Kurbatova et al. (2013); Eymard et al. (2015); Eymard
& Kurbatova (2015); Bessonov et al. (2011); Fischer et al. (2012). Displacements of cells in the thymus
are important as it corresponds to a biologic reality; their maturation depends on their location in the
thymus.

The equations of the model are solved with an algorithm involving the spatial discretization of a com-
putational domain, that is the considered thymus cut, and discretization of the time of simulation, that is
each iteration of the computation corresponds to a time step �t. In numerical simulations, equation (3.6)
is solved by a finite difference method with Thomas algorithm and an alternative direction method. Neu-
mann (no-flux) boundary conditions are considered as the boundary of the rectangular domain (Eymard
et al., 2015; Fischer et al., 2012). Constant space and time steps are used. Equations (3.4) and (3.5) are
solved by Euler method.

The outputs of our model are the amounts of each kind of cells at any time. The results obtained with
this approach cannot be directly compared with medical data. However, to our knowledge no medical
examinations are able to provide such data. We defined the number of relapses at the end of the therapeutic
maintenance phase simulation as follow: if the number of cancer cells is equal to zero, the patient is cured,
otherwise the patient relapses.
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(a)

(b)

(c)

(d)

Fig. 2. Development of the tumour in the thymus. The number of malignant cells grows exponentially with time. They invade
the thymus and push out normal cells. The volume of the thymus increases and gradually cancer cells replace the normal T-cells.
Cells shown in the figure are: DN (blue), DP (green), SP (red), stromal cells (large purple cells), malignant cells M (purple). The
extracellular substances produced by nurse cells are shown as green halos. Simulations made with the basic parameters values.
(Color code refers to the electronic version of the paper.)
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(a)

(b)

(c)

(d)

Fig. 3. Simulations of lymphoma treatment by chemotherapy. Cancer cells are killed by the treatment. When the tumour disappears,
precursors enter the thymus and recreate its normal structure after several stages of differentiation and proliferation. Precursors
(gray), DN (blue), DP (green), SP (red), stromal cells (large purple cells) malignant cells (purple). Simulations made with basic
parameters values with the exception of drug dose of acute treatment, equal to 5 (see explanation of this choice in the text). (Color
code refers to the electronic version of the paper.)
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3.1 T cell ontogenesis simulation

3.1.1 Hybrid discrete-continuous models Hybrid discrete-continuous models are widely used in the
investigation of dynamics of cell populations in biological tissues and of organisms, which involve
processes at different scales.

This model is used to describe the education of T cells, the growth of the tumour and the action
of the treatment on tumour cells. Hybrid models consist in coupling two models: one with a discrete
approach for healthy and cancer cells modelled as objects interacting with their environment, and another
with a continuous approach using ordinary and partial differential equations to describe intracellular and
extracellular regulations that determine the fate of each cell (Alarcón et al., 2003; Anderson et al., 2007;
Anderson & Chaplain, 1998; Dallon, 2007; Deutsch, 2007; Eymard et al., 2015; Kurbatova et al., 2013;
Fischer et al., 2012).

We consider the following equation to describe intracellular proteins in one cell:

dui(t)

dt
= F(ui(t), v(xi, t)), (3.1)

where ui is a vector of intracellular concentrations of the cell i, v is a vector of extracellular concentrations,
F is the vector of reaction rates which will be specified below and xi is the vector of coordinates of the
centre of the cell.

The quantity of protein depends on the concentrations of nutrients or biological products in the
extracellular matrix described by the reaction-diffusion equation:

∂v

∂t
= D �v + H(v, c), (3.2)

where c is the local cell density, D is the diffusion coefficient and H is the rate of consumption or
production of these substances by cells. These compounds can either be nutrients coming from outside
or some other bio-chemical products consumed or produced by cells (Kurbatova et al., 2013; Eymard
et al., 2015; Eymard & Kurbatova, 2015; Bessonov et al., 2011; Fischer et al., 2012; Kurbatova et al.,
2011). The value of extracellular concentration v(xi, t) in equation (3.1) is taken at x = xi.

In our model, when cells divide, they push each other and cause their displacement inside the thymus.
In order to describe mechanical interactions between cells, we restrict ourselves to the simplest model
where cells are represented as compressible elastic spheres with an incompressible core (black circle
inside each cell, Figs 2 and 3). Cell motion is determined by the sum of mechanical forces acting on a
cell by other cells. Under the assumption of small deformations, the mechanical contact forces acting
between cells can be expressed as a function f (dij) of the distance dij between their centres. Cell motion is
described by the displacement of its centre by Newton’s second law (Eymard & Kurbatova, 2015; Fischer
et al., 2012):

mẍi + μmẋi −
∑
j �=i

f (dij) = 0, (3.3)

where m is the mass of the cell, xi is the centre of the i-th cell, the second term in the left-hand side
of this equation describes the friction by the surrounding medium, the last term represents the sum of
potential forces acting on the i-th cell from all other cells (Bessonov et al., 2011; Fischer et al., 2012);
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(Kurbatova et al., 2011). The force between two spherical particles is given by the equation:

f (dij) =

⎧⎪⎪⎨
⎪⎪⎩

+∞, dij < d0 − 2H1

κ
d0 − dij

dij − d0 + 2H1
, dij < d0,

0, dij ≥ d0

(3.4)

where d0 is the sum of cells radii, κ is a positive parameter, and H1 is the size of the outer compressible
part of the cell. The force between the particles tends to infinity when dij decreases to d0 −2H1. The force
is repulsive if dij < d0 and is null otherwise.

3.1.2 Intracellular regulation of T cell In vivo experiments show that growth factors promote prolifer-
ation of early thymocyte cells (Martins et al., 2012; Peaudecerf et al., 2012). During their maturation,
thymocyte cells move and away from nurse cells and they continue to differentiate. In order to describe the
self-renewal and differentiation of thymocytes, we introduce an intracellular variable u which corresponds
to the concentration of the proteins MAPK. Its evolution is described by the equation:

du

dt
= c0 + kG, (3.5)

where c0 is a positive constant and G is the concentration of extracellular growth factors. If u exceeds
some critical value ucrit at the end of cell cycle, then the cell self-renews, otherwise it differentiates.

3.1.3 Extracellular regulation of T cell Early T cells are first located in a stromal cell niche and exposed
to stromal factors (Boehm, 2012), which determine their proliferation and differentiation (Crompton
et al., 1996; Rincon et al., 2001). Nurse cells produce growth factor G which promotes self-renewal of
thymocytes. If thymocyte cells are close to nurse cells, their intracellular concentration, denoted u, will
increase due to the presence of growth factor. It will reach the critical value and the cell will self-renew.
The cells located sufficiently far away from the nurse cells will differentiate. The concentration of the
growth factor G is described by the reaction-diffusion equation:

∂G

∂t
= D�G + W − γ G, (3.6)

where D is the diffusion coefficient, W is the production rate and γ is the degradation rate blue of growth
factor. These parameters are assumed to be constant.

The values of parameters and initial conditions described in Subsections 3.1.2 and 3.1.3 are specified
in Table 2 of Appendix A (Subsection A.2). This Table gives the basic value of parameters used for all
the presented simulations unless otherwise specified in their legends.

3.1.4 β-selection, negative and positive selections Signal transductions are responsible for the different
selections of T cells. Epithelial cells form a fibrous network in the thymus (Brousse, 2009). We assume
that they are numerous enough and uniformly distributed in space such that each T cell can receive their
signals of life and death from a cell to cell contact.

In our simulations, apoptosis is modelled by a probability of remaining alive for each cell type. The
probability of survival is equal to 60% for precursors, 40% for DN, 50% for DP and 40% for SP. After
all maturational stages, the probability of 95% of apoptosis for healthy simulated cells is observed, this
ratio is close to the ratio obtained by biological cells.
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3.2 Thymus simulation

The simulated cut of thymus is a set of cells, characterized by a list of parameters values. Initial values
are assigned to cells at birth, such as: life expectancy T (the term ‘cell cycle’ will also be used to define
this duration), and initial concentration of protein or critical values such as lethal quantity of drug pcrit

and needed amount of intracellular protein for self renewal or differentiation ucrit . These parameters can
be transmitted from mother to daughter cells or they can be random variables.

At each iteration of the computation and for each cell, the position, the intracellular amount of drug
p, of proteins u and of growth factor available are updated, by solving equations (3.3, 3.4, 4.2, 3.5 and
3.6), respectively.

It is important to note that most of the parameters are not biological characteristics of cells. They
summarize the causes of a behaviour. Several proteins, growing factors and MAPK are involved in the
choice of cell between apoptosis, self renewal and differentiation. In our model, a single protein u and
a single extracellular substance G are considered. Similarly, the values of ucrit , k and u0 are chosen to
obtain division rates close to the reality.

The choice of the parameters’ values is a result of the calibration of the model by retrospective
comparison of computational outputs with known real data. We compared the number of relapses after a
two-year treatment observed in the real EuroLB patients and the virtual patients of our model. All other
factors being equal, we varied the duration of treatments and the doses of therapy (cf. Section 4, results
shown in Fig. 6). This can be considered as a sensitivity analysis of the most important inputs of the
model: the duration of the treatment and its dose. However, a sensitivity analysis has not been performed
for all others parameters, these simplifications are necessary to keep a reasonable computation time (the
simulation of two patients requires about one day of the CPU time -bi-processeurs Intel Xeon 5650- of
10 nodes of computer cluster, namely more than 3 months of computations for all simulations).

Cell cycle duration is taken in average of T = 3 days plus/minus a random variation δ. We set δ = 1.
Cell cycle varies in the time interval [T − δ, T + δ], with a uniform distribution. After a period of time
equal to its life expectancy, the cell chooses between self-renewal, differentiation or apoptosis. In the
model, the amounts of intracellular proteins for healthy cells and of drug for cancer cells are compared
with the corresponding threshold values and a decision is taken between the three options.

When cells become SPs, they leave the thymus. To maintain a constant number of each cell types,
new cells are introduced in the computational domain if there is some space available for them, by a
periodic input of precursors. Consequently, new cells appear if the number of lymphocytes in the thymus
is sufficiently low. In the case of tumour growth, the number of cancer cells is high and no new cells
appear in the thymus.

Spatial cell organization simulations with different cell types are shown in Fig. 2. Figure A.1 shows
the results of numerical simulations of healthy thymus which correspond to one year of real time. The
number of the different cell types is constant in average with some oscillations related to cell cycle.

4. Lymphoma development and treatment

4.1 Simulation of individual behaviour of a patient with a lymphoma: the onset of the disease and its
treatment.

4.1.1 Simulation of spontaneous evolution of lymphoma The origin of a tumour is related to early
thymocytes which have an excessive self-renewal potential and insufficient differentiation and apopto-
sis because of genetic mutations. To mimic tumour onset, we introduce a single mutated cell which
proliferates. We model a tumour as a set of cancer cells. Malignant cells self-renew at the end of each
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cell cycle. They have a very low value of ucrit and stay alive with a given probability q (q = 99% in all
the simulations). In order to model the action of chemotherapy treatment on cancer cells, we prescribe
to each cell the value pcrit of the intracellular drug concentration needed to kill this particular cell. We
characterize the cell population by an average value pm

crit with a normal distribution around this average
value with standard deviation σ equal 10% of the average value.

In the computational domain, the multiplication of cancer cells increases the volume of the thymus
and gradually invades it entirely. Healthy cells cannot develop normally and are progressively replaced
by malignant cells. The tumour invades the thymus and destroys the spatial cell organization which is
necessary for normal maturation of thymocytes. The results of the corresponding simulations are shown
in Figs 2 and A.2.

4.1.2 Treatment modelling In this section, we will model the lymphoma treated with chemotherapy. The
medications used are a combination of drugs, mainly Methotrexate and Purinethol. The treatment consists
in several phases: induction, consolidation, re-induction and maintenance (Uyttebroeck et al., 2008). We
model two treatment phases: the acute phase (induction) during 1–1.5 months and the maintenance phase,
up to 2 years after the beginning of induction, (See Uyttebroeck et al. (2008)). The acute phase is not
itself the focus of this work but its modelling, even simplified, is necessary. In the model, we consider
a single cause of relapse: the presence of residual cancer cells that have not been killed during the
acute treatment. It is therefore important to have patients with or without residual cancer cells when the
maintenance treatment begins. The number of patient with potential relapses is a computation result and
not a specified parameter in the model.

Given the multiplicity of drugs, with different administration and doses, all the protocols of treatment
cannot be realistically reproduced in the model. We consider a single drug summarizing the effect of all
the drugs used. To allow this simplification, the periodicity of drug administration is also assumed to be
sufficient to allow its concentration to be constant during the treatment. Cancer cells are exposed to the
same quantity of drug regardless of their location. The maintenance treatment begins after the complete
or partial disappearance of the tumour.

We also assume that an equation similar to the equation used in the physiologically based pharma-
cokinetic model (PBPK) for Methotrexate and Mercaptopurine Ogungbenro (2014) can be used at the
cellular level:

dp∗

dt
= k+∗p∗

0 − k−∗p∗. (4.1)

here p∗ is the intracellular drug concentration and p∗
0 is the drug concentration in the thymus, which

will be considered constant. The coefficient k+∗ determines the ability of a cell to absorb the drug and
k−∗ to degrade it. When p∗(t) reaches the critical value p∗

crit , the cell dies (Fig. A.3). Cells have the ability
to change their response to treatment by changing the value of pm

crit . It corresponds to the appearance of
drug resistance. All simulations are carried out with a constant value of pm

crit , except for the simulations
to study treatment resistance (see Section 4.1.4).

The treatment dosages for Mercaptopurine (purinethol) is 50 mg/m2 daily and for Methotrexate
20 mg/m2 weekly. The intracellular drug concentration which is necessary to kill malignant cells is not
known. In what follows, both side of the equation (4.2) are divided by pm

crit in order to obtain dimensionless

concentrations
p∗

0
pm

crit
and p∗

pm
crit

, respectively notated p0 and p. The value of pm
crit is set and the other parameters
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of the modelled chemotherapy are expressed as function of this value. The equation (4.2) becomes:

dp

dt
= k+p0 − k−p. (4.2)

Fig. A.4 shows the intracellular drug concentration versus time for various values of the parameters
k− and k+. The drug concentration is uniformly distributed inside the thymus and does not depend on
time. Therefore, for a given simulation, all cells follow the same dynamics of drug accumulation. If the
intracellular drug concentration reaches the critical level pcrit at the end of the cell cycle, then the cell
dies. Since cells differ by the duration of their cell cycle and by the value of their pcrit , some cells die
while others survive even under treatment. pcrit and T are slightly different for all simulated cancer cells.
These differences at the cellular level result in the simulation of different patient behaviours.

The effect of chemotherapy on the thymus is illustrated in Fig. 3. Malignant cells are gradually
eliminated. New precursors enter the thymus and recreate its normal structure. In Fig. 3, the drug dose p0

was sufficient to kill all the cancer cells after a single cellular division. During computation, the screenshot
increases dramatically the duration of simulations. This explains why we chose a drug dose, much higher
than the usually administered dose, in order to show a quick disappearance of cancer cells and appearance
of newly healthy cells. However, this simulation is not taken into account for the evaluation of the number
of relapses (shown in Fig. 6) in order to get realistic results in accordance with the drug dosage in practice.

4.1.3 Simulation of patient’s response to treatment In the model after the acute phase therapy, the
tumour regresses partially (residual disease) or totally (complete healing). When the maintenance treat-
ment is administered, the number of cancer cells can be small or equal to zero. All the residual cancer cells
may be killed by the maintenance treatment which will lead to a complete healing or they may survive
to the maintenance treatment which will lead to a relapse. In our model, a tumour caused by cancer cells
other than residual cancer cells is a new disease and not a relapse. This assumption seems to be close to
the medical reality.

Figure 4 illustrates the ability of the virtual patients to be cured or to relapse. The number of cancer
cells is observed for a period almost equal to 2 years. The treatment regimens modelled are the same for
two pairs of a virtual couple of patients, 24 months for the couple of patients A, 12 months for the couple
of patients B. During the acute phase of the disease, the number of cancer cells increases. For patients
A and B and for the two pairs, 1 month after the beginning of the treatment the number of cancer cells
decreases and approaches zero. Figures 4 (a) and (c) show a pair of cured patients, Figs 4 (b) and (d)
show one patient completely cured and one patient who relapsed. The relapse of patient B of the pair 1
is due to residual malignant cells that have not been killed during the maintenance treatment. This is due
to the fact that cancer cells with a high value of pcrit are predominant in this patient.

4.1.4 Resistance to treatment Cancer cells can develop a resistance to the treatment due to the selection
and Darwinian evolution (Clairambault et al., 2013; Thomas et al., 2013). The most resistant cells will
survive and proliferate while less resistant cells will die.

In order to model this phenomenon, we introduce in the model the variation of the critical value pm
crit .

The value of pm
crit can be partly inherited from their mother cell, so that the value of pm

crit for daughter cell
is equal to pcrit ± ε, with pcrit the value of the mother cell. We set ε = 10%pm

crit . We have a variation of
the critical value which leads to the gradual appearance of more resistant cells. Since less resistant cells
will be eliminated by the treatment, the tumour will become more and more resistant to treatment. It is
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Fig. 4. Numerical simulations of lymphoma therapy for two pairs of patients. The first vertical line shows the beginning of treatment
of the acute phase, the second vertical line shows the end of the acute treatment and the beginning of the maintenance treatment,
the third vertical line shows the end of the maintenance treatment for the patients in Figs (b) and (d). In those examples of patient
simulations, we decided to stop treatment after 12 months for (b) and (d) patients. Other durations have been studied and results
are shown in Fig. 6. Treatment is continued for patients in figs (a) and (c). Simulations made with the basic parameters values.

important to note that the initial drug concentration in newly born cells is set at zero because the drug
half-life is very short.

A specific simulation of 10 tumours, each arising from a single cancer cell allows to test the devel-
opment of the cancer cells to resistance to the treatment (Fig. 5). Figure 5 shows the evolution of cell
distribution with respect to their critical values of pcrit . We can conclude that these distributions move
towards large critical values resulting in the appearance of cells resistant to treatment.
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Fig. 5. Cell distributions with respect to the values of pcrit after 1 (blue), 2 (pink), 4 (yellow), 9 (brown), 14 (red), 20 (black) months.
After several months of treatment, the mean value of pcrit (pm

crit) increases. We can observe a spreading of the Gaussian distribution,
the standard deviation increases with time. Each histogram corresponds to an average of 10 simulations made with basic parameters
values with the exception of pm

crit,daughter cell = pcrit,mother cell ± 10%pm
crit,mother cell . (Color code refers to the electronic version of

the paper.)

5. Simulation of virtual patients populations and comparison with patients from EuroLB
database

5.1 Sensitivity of cancer cells to treatment

Cancer relapse occurs due to remaining malignant cells after treatment. The efficacy of an anticancer drug
depends on the administered dose and on the characteristics of the cell line. Quantitative parameters, such
as growth inhibition (GI50, the concentration for 50% of maximal inhibition of cell proliferation) for each
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cell line can be determined. In order to predict the response of cancer patients to chemotherapeutic agents,
tumour chemosensitivity assay, drug response assays, or drug sensitivity assays are used (Ulukaya, 2006).
Survival of cancer cells depends on the intracellular drug concentration (Durand and Olive, 1981). Cancer
cell dies if it reaches some critical level pcrit . Biologically, the sensitivity depends on gene expression
and, possibly, on some other factors. To our knowledge, the exact causes of relapses in LBL remains still
unknown even if a genetic cause may be suspected.

Patient response to treatment depends on the sensitivity of cancer cells. This assumption is consistent
with the studies of in vivo and in vitro sensitivity to anticancer drugs. Pai et al. (2009) showed a positive
correlation between the effect of methotrexate (one of the main drugs used for lymphoma treatment) on
tumour cells in vitro and clinical response of the majority of patients. Similarly, the study of Konecny
et al. (2000) reported a strong correlation between drug sensitivity/resistance and clinical response. They
studied the in vitro chemosensitivity of primary epithelial ovarian cancer to drug combinations and
compared the results with clinical response in patients.

Similar tests can be used to determine in vitro chemosensitivity of lymphoma cells. Such tests would
allow the determination of the critical value of the intracellular drug concentration pcrit which is necessary
to kill cancer cells. Since the data on the sensitivity of T-LBL cells to Methotrexate and Purinethol are
not available, we consider the value of pcrit as a parameter of the problem. We vary it and we model the
response of the virtual population of patients to treatment assuming that patient response is determined
by the sensitivity of cancer cells.

5.2 EuroLB database population

The average duration of treatment of the 114 patients in the EuroLB database is 18 months. Short treatment
durations (less than the mean value) are due to the death of patients, to modifications, to discontinuation
of the treatment (e.g. because of side effects) or for unknown reasons. Among these real patients, 6 died
from the disease. Data are available for three of them. They died at 216, 477 and 594 days (7, 16 and
20 months) after the beginning of the maintenance treatment. The corresponding data are summarized in
Table 3.

5.3 Virtual populations

Two populations of virtual patients have been constructed for this study.

• A first population of 122 pairs of patients allows to compare two durations of the maintenance
treatment: 12 month versus 24 months. Table 1 shows the percentage of relapse of patients in the
virtual population and of the patients in the EuroLB database population.

• Another population (two sets of 100 patients have been generated) allows to test the number of
relapses as a function of the treatment durations and doses (data are summarized in Fig. 6).
In the virtual population, we can see a relationship between the number of relapses and the duration
of the treatment. In the simulations, for a duration of treatment less than 6 months, all the patients
relapse. For a higher duration of treatment, the number of relapses decreases as a function of the
duration of treatment and stabilizes around a low value (close to the value observed for a 2 years
treatment). The duration necessary to obtain the stabilization of the number of relapses also depends
on the choice of the parameters. There is a stabilization after 12 months of maintenance therapy
for p0 = 1.34 and after 18 months for p0 = 1.3 (Fig. 6). Relationships and interactions between
treatment duration, relapse rate and drug doses could be investigated in future studies.
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Table 1 Results of the simulation of a virtual population of 122 pairs
of virtual patients (244 patients) and results observed in real patients
(Uyttebroeck et al., 2008)

Treatment stopped after: 12 months 24 months

Number of relapses 16 13
Number of recovery 106 109
Total 122 122
Rate of relapse (simulations) 13 % 10 %
Rate of relapse (in Uyttebroeck et al. (2008)) - 15 %
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Fig. 6. The proportion of relapses decreases (left) and the proportion of recoveries increases (right) as a function of the duration of
the maintenance therapy for a constant p0. Green curves correspond to p0=1.34 (with a treatment of the acute phase equal to 1.25).
Black curves correspond to p0=1.3 (with a treatment of the acute phase equal to 1.3). Decrease of p0 shifts the curves as follows:
longer treatment is required to get the same ratio of relapsed and of recovered patients. Each point of the curve is the results of a
group of 10 virtual patients, corresponding to a total of 100 patients per trial (left and right hand graphics: two populations of a
hundred patients have been generated). Simulations made with basic parameters values with the exception of p0. The proportion of
relapses is not monotonically decreasing with the duration of the treatment because of random fluctuations determined by individual
characteristics of the virtual patients. (Color code refers to the electronic version of the paper.)

6. Discussion and perspectives

Rare diseases are defined as a disease with a low prevalence that requires special combined efforts to
address them. A global approach to rare diseases is consequently needed for establishing specific policies.
There is a need to facilitate the development and availability of high quality, ethically researched, and
appropriately authorized medicines in paediatric rare diseases, without subjecting children to unnecessary
trials.

The development of an in silico modelling approach and of a clinical trial simulation tool can help
to choose the future most appropriate clinical trial(s) to evaluate therapeutic strategies. In the case of
maintenance therapy for T-cell LBL, our mathematical model seems able to simulate the diversity of
patient’s behaviour, complete healing or relapses that may occur during the treatment.
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In this work, we developed a model for T-LBL that could be further considered for phase III ran-
domized clinical trials simulations purposes as considered in the CRESim project (Cornu et al., 2013;
Nony et al., 2014) in order to compare trial design performances for rare diseases and rare events
(relapses).

Our mathematical model could be extended, considering for instance a time-varying quantity of drugs
during a sequential therapy. After drug administration and depending on the pharmacokinetic properties
of each drug, the intracellular drug concentration could be modelled and simulated. According to drug
interactions and specific pharmacokinetic–pharmacodynamic relations, additional implications on the fate
of cancer cells may occur. The simulation of sequential administrations of treatments, would therefore be
closer to the real modalities of therapeutic protocols used in cancer patients. This could also be applied
for the modelling and simulations of drug side effects. Another way to develop such a model could be
further investigated, relapses being link to remaining cancer cells. The identification of biomarkers for
the residual disease and their inclusion in the model would probably allow a more specific evaluation of
the number of relapses.

Generally, all simplifications of the disease and the therapeutic models may affect the results; accord-
ingly the raw results of simulations cannot be directly applied for medical decisions in practice, for
example the choice of duration of maintenance treatment. The purpose of our study was to build a model
allowing to obtain results sufficiently close to the results observed in the study of Uyttebroeck et al.
(2008) in terms of number of relapses. With the database, we know the value of the main output of the
model (the % of relapses after a two years treatment) for real patients and we calibrate our model in order
to achieve similar results.

These results allow us to reduce the duration of virtual treatment. Let us also note that short treatments
are not recommended because of the risks involved for patients. Since the probability of survival after a
relapse in lymphoma is extremely low, then treatments with short durations are not used. According to
our results, the simulation of therapeutic such as less than 6 months is clearly not recommended.
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Appendix A

A.1 Implementation of numerical algorithms

The software used for the simulation of lymphoma is written in C++, with operating system Ubuntu. The
computations are carried out in dimensionless length units in such a way that the initial cell diameter
corresponds to one unit. The computation domain is a square with the side equal 100 length units. In
dimensional variables we consider cell diameters to be 10 microns.
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The structure of the software is as follow:

• Creation of a cell culture (list of cells) and of the computation domain. For each cell:
• Initialization of parameters. Birth of the healthy cells of a section of thymus and of one cancer

cell. Each cell has a duration of life, coordinates, and intracellular concentrations.

• Forces between cells and coordinate of cells are calculated, movement is due to Newton’s second
law.

• Intracellular and extracellular concentrations are calculated.

• Application of the rules governing healthy cell divisions.
• Every time step, age of cell is evaluated. While the age of the cell is less than or equal to the cell

cycle, the cell grows.

• If a cell survives to the three selections, it self-renews or it differentiates according to the
intracellular concentration.

• Application of the rules governing cancer cell divisions
• If the age of a cancer cell is equal or exceeds cell cycle duration and if the quantity of treatment

is less than a threshold, the cell divides. Otherwise the cell dies.

• Treatment of the disease based of the date.

• Updated of the cell culture.

A.2 Values of parameters

Three kinds of parameters are used for this study:

• Individual-based modelling creates many implicit parameters, cell radius, cell mass, parameters of
motion, etc. that are not essential in the results of simulations. They are related to the graphical
outputs of the implemented model. Their values are expressed in arbitrary units.

• Some parameters clearly change the overall cell behaviour. In our model, a single protein u and a
single extracellular substance G are considered as a way to obtain the three behaviours of a cell:
apoptosis, self renewal and differentiation. Their concentrations are described by ODE and PDE
but there are no available experimental data to set specific numerical values of parameters in these
equations. Only expected division rates are accessible. In this case, we used dichotomy algorithms
to obtain parameter values allowing division rates close to reality. On the other hand, the diffusion
coefficient for growth factors in the reaction-diffusion equation is chosen in order to locate growth
factors near the nurse cells. Moreover, the range of diffusion is set according to the size of the cells
in order to obtain a realistic process.

• The modelled treatment is a combination of drugs with a mean value of toxicity for cancer cells
(denoted pm

crit ) that cannot be exactly determined and that varies from one cell to another. For this
reason, pm

crit is an arbitrary value and the intracellular concentration of treatment is normalized by this
value. Therefore, the lack of knowledge of the lethal value for each cell does not affect the simulation
process. For similar reasons (to our knowledge, it seems impossible to estimate the drung intake and
metabolism in each cancer cell) the coefficients k+ and k− are also function of the value pm

crit .
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Table A.1 Basic values of parameters

Parameter Value Unit

Cell cycle length 72 h (hours)
Cell cycle variation 9 h (hours)

r0 0.01 L
m 1 M
μ 6 × 105 h−1

initial value of u 0.01 C
c0 (healthy cells) 6.905 × 10−6 h−1

c0 (cancer cells) 6.905 × 10−4 h−1

k 0.005 C−1

ucrit 1 C

k+∗ 0.001 C−1

k−∗ 0.001 C−1

pm
crit 3 C

p∗
0 acute phase 3.75 C

p∗
0 maintenance phase 4 C

γ 0.005 h−1

D 0.5 × 10−4 L2.h−1

w 0.5 × 10−3 molecules / L2 / h

Table A.1 gives the basic value of parameters used for all the presented simulations unless otherwise
specified in their legends.

The unit of the dimensionless concentration is denoted C, dimensionless mass unit is denoted by M
and L is dimensionless lengh unit.

A.3 Results of treatment

Table A.2 Results from EuroLB
database (follow up of 144 patients
during two years)

Duration of treatment 24 months

Number of deaths 6 ( 5% )
Number of patients 114
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A.4 Additional figures

Fig. A.1. Numerical simulations describing a healthy section of the thymus cortex. The number of cells (DN (blue), DP (green),
SP (red)) in a section of healthy thymus during one year, in the computational domain. (Color code refers to the electronic version
of the paper.)

Fig. A.2. The number of cells before and during the development of a tumour, while the number of malignant cells grows expo-
nentially, the number of normal cells decreases. The curve showing the number of malignant cells is in purple (malignant cells M),
the corresponding curves for normal cells are in blue (DN), green (DP), red (simple positive SP) and black (precursors P). (Color
code refers to the electronic version of the paper.)

Time

Quantity of drug
inside a cancer cell

Time

Life expectancy
 of a cancer cell
without treatment 

Time of cell division

P_crit

Time

Quantity of drug
inside a cancer cell

P_crit

1: without treatment

Time of cell division
 = end of cell life 

2: with treatment
Death of cell

3: with treatment

Division of cell despite treatment

Time of cell division
= Birth of two new cells 

Fig. A.3. If the drug amount in a given cell exceeds p∗
crit , at the end of its life, the cell dies otherwise it divides.
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Fig. A.4. Ratio of intracellular drug concentration p(t) and the threshold pcrit during cell cycle for k+ = 2×10−3, k−=10−3 (blue),
k+=k−=10−3 (black), k+=10−3, k− = 2 × 10−3 (green), (p0 = 1.25). (Color code refers to the electronic version of the paper.)

Figures A.1, A.2 and A.4 show simulations using basic parameters values (Table A.1).
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