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In this paper, the problem of local observer design for discrete-time Takagi-Sugeno fuzzy systems is addressed. The observers being designed are local in the sense that relaxed asymptotic convergence conditions are sought locally, rather than globally, while also determining the region where the conditions are valid. The design conditions are derived using both quadratic and non-quadratic Lyapunov functions. The obtained results are expressed in terms of linear matrix inequalities and they are illustrated on a numerical example.
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INTRODUCTION

Since the work of [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF], a lot of attention has been paid to nonlinear systems represented by the so-called Takagi-Sugeno (TS) models. The TS models consist in a time-varying interpolation of several linear models. The main appealing property of the obtained global system is its ability to exactly describe the original nonlinear system, at least on a compact set of the state and input space [START_REF] Tanaka | Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach[END_REF]. Thanks to the linear structure of the submodels many tools can been adapted from linear control theory and among then the powerful and tractable linear matrix inequality (LMI)based [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] analysis and synthesis.

Starting from the seminal works of [START_REF] Tanaka | On the concepts of regulator and observer of fuzzy control systems[END_REF][START_REF] Tanaka | Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[END_REF][START_REF] Wang | An approach to fuzzy control of nonlinear systems: stability and design issues[END_REF], the LMIbased stability analysis and the derived controller and observer designs received a considerable amount of attention. Most of the obtained results are derived from Lyapunov analysis and more specifically based on the use of different types of Lyapunov function candidates. The first and simplest one to be used was the quadratic Lyapunov function [START_REF] Wang | An approach to fuzzy control of nonlinear systems: stability and design issues[END_REF][START_REF] Tanaka | Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[END_REF][START_REF] Tanaka | Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach[END_REF][START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF]. The obtained results are known to be conservative since a common Lyapunov matrix is sought to satisfy the set of LMI constraints. Fuzzy or multiple Lyapunov functions were introduced to bring more degrees of freedom in the LMI optimization [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF][START_REF] Mozelli | Reducing conservativeness in recent stability conditions of TS fuzzy systems[END_REF]. More recently non-quadratic Lyapunov functions (roughly defined with the inverse of the fuzzy Lyapunov gain) were proposed [START_REF] Feng | A survey on analysis and design of modelbased fuzzy control systems[END_REF][START_REF] Tanaka | A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions[END_REF][START_REF] Guerra | An efficient Lyapunov function for discrete TS models: observer design[END_REF]. Checking stability generally reduces to checking the negativity of multiple polytopic sums. By the appropriate factorizations of these sums the conditions can be relaxed, leading eventually to asymptotically necessary and sufficient (ANS) conditions in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF]. The ANS conditions go along with an increasing number of LMI to be satisfied and consequently to numerical intractability. Other ways to relax the LMI optimization process involve the introduction of slack variables [START_REF] Mozelli | Reducing conservativeness in recent stability conditions of TS fuzzy systems[END_REF] or using the so-called descriptor redundancy [START_REF] Tanaka | A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions[END_REF][START_REF] Guelton | Robust dynamic output feedback fuzzy Lyapunov stabilization of Takagi-Sugeno systems -a descriptor redundancy approach[END_REF] approach.

In the continuous-time case, the main inconvenient in the fuzzy Lyapunov function approach is that differentiating the Lyapunov function means differentiating the membership functions. The latter derivatives cannot be easily linked to the system states and at the same time to derive tractable conditions. In [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF], the proposed solution is to assume known upper bounds of the first time derivative of the membership functions. First, this assumption induces local results: they are valid on the validity domain of the bounding assumption and a key point is then to enlarge this domain [START_REF] Lee | Relaxed LMI conditions for local stability and local stabilization of continuoustime Takagi-Sugeno fuzzy systems[END_REF]. Second, these upper bounds are far from being trivial to compute.

In the discrete time case, the time derivative of the Lyapunov candidate is no longer needed as it becomes a time difference, thus non-quadratic Lyapunov functions have shown a real improvement [START_REF] Guerra | LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF][START_REF] Ding | Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno's form[END_REF][START_REF] Dong | Dynamic output feedback H ∞ control synthesis for discrete-time T-S fuzzy systems via switching fuzzy controllers[END_REF][START_REF] Lee | Approaches to extended non-quadratic stability and stabilization conditions for discrete-time Takagi-Sugeno fuzzy systems[END_REF] for developing global stability and design conditions. This fact also allows some relaxations by calculating this difference between α -instead of the usual two -consecutive instants [START_REF] Kruszewski | Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: A new approach[END_REF] or by considering delayed Lyapunov functions [START_REF] Lendek | Controller design for TS models using non-quadratic Lyapunov functions[END_REF]. Since no further conditions are introduced, such results are global, meaning that if the developed conditions are feasible, then stability of the corresponding system is ensured globally -actually in the largest Lyapunov level set included in the domain where the TS model is defined. However, it is possible that stability (of the closedloop system or error dynamics, as might be the case) cannot be ensured on the full domain where the TS model is defined, but by reducing this domain, the conditions become feasible [START_REF] Pitarch | Estimating domains of attraction of fuzzy polynomial systems[END_REF].

Based on the above considerations, in this paper we consider the local design of TS observers, while concomitantly aiming to find the region where the estimation error can be proven stable. The observer design mainly uses the theoretical tools introduced in [START_REF] Lendek | Local stability of discrete-time TS fuzzy systems[END_REF] concerning the local stability.

The remainder of the paper is organized as follows. Section 2 is devoted to the problem formulation and some backgrounds and notations that are used afterwards. The main results are presented in Section 3 and are illustrated on a numerical example in Section 4. Finally, in Section 5 some concluding remarks are given.

PROBLEM FORMULATION AND PRELIMINARIES

The considered discrete-time nonlinear systems are defined as

x(k + 1) = f (x(k), u(k)) y(k) = g(x(k), u(k)) (1) 
where x(k) ∈ R n , u(k) ∈ R nu , y(k) ∈ R ny are respectively the state vector, the control input, the measured output.

It is known [START_REF] Tanaka | Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach[END_REF]) that, at least in a compact set D of the input and state (1) can be described, without any approximation, by the discrete time TS model defined by

x(k + 1) = r i=1 h i (z(k))(A i x(k) + B i u(k)) y(k) = r i=1 h i (z(k))(C i x(k) + D i u(k)) (2) 
where the functions h i are the membership functions depending on the decision variable z(k) ∈ R q involving the input, the output and/or the system state. Each membership function h i (.) quantifies the relative importance of the i th submodel (A i , B i , C i ) in the global nonlinear system (2). These functions satisfy the convex sum properties

r i=1 h i (z(k)) = 1 and 0 ≤ h i (z(k)) ≤ 1, ∀k ≥ 0 (3)
Notations. The notation * is used for the blocks induced by symmetry, for any square matrix M , S(M ) is defined by S(M ) = M + M T , I is the identity matrix, 0 is the null matrix of appropriate dimensions. A block diagonal matrix with diagonal blocks P i is denoted diag(P 1 , P 2 , . . . ). The set of the r first strictly positive integers is denoted by I r = {1, 2, . . . , r}. For any sets of matrices X i , with i ∈ I r , the polytopic matrices X h , X -1 h , and X h-are defined by

X h = r i=1 h i (z(k))X i , X h+ = r i=1 h i (z(k + 1))X i X -1 h = r i=1 h i (z(k))X i -1
The polytopic matrices obtained from a double (triple) summation of X ij , for (i, j) ∈ I 2 r (X ijk , for (i, j, k) ∈ I 3 r ) are denoted by X hh (X hhh-) and defined as

X hh = r i=1 r j=1 h i (z(k))h j (z(k))X ij X hhh+ = r i=1 r j=1 r k=1 h i (z(k))h j (z(k))h k (z(k + 1))X ijk (4)
In what follows, the decision variable z(k) is assumed to be real time accessible (e.g. known exogenous signal, input signal).

Our objective is to design a state observer of the form

x(k + 1) = A h x(k)+B h u(k)+M -1 h L h (y(k)-ŷ(k)) ŷ(k) = C h x(k)+D h u(k) (5) 
The goal reduces to find the observer gains M h and L h such that the state estimate x asymptotically converges towards the system state x. In order to relax the conditions, we search for a domain D R , defined as the domain where the following inequality in the state estimation error

e(k) = x(k)-x(k) is satisfied for some symmetric matrix R e(k) e(k + 1) T R e(k) e(k + 1) > 0 (6)
Obviously the obtained results are only valid in a specific domain of the state and error space, meaning that the asymptotical convergence of the state estimation error to zero is not guaranteed for any possible trajectories in the whole definition domain of (2).

Remark: Note that for any R > 0, (6) will hold. However, due to the error dynamics, the actual domain where the error may be situated may be reduced to ∅.

The derived results will be obtained by exploiting two kinds of Lyapunov functions depending on the state estimation error. The first one is a quadratic Lyapunov function and the second one is a non-quadratic one. They are defined by

V (e(k)) = e T (k)P e(k) (7) 
where P ∈ R n×n is symmetric positive definite and by Ṽ (e(k)) = e T (k)P h e(k)

where P i ∈ R n×n for i ∈ I r are symmetric positive definite matrices.

In what follows, we will use the following lemmas. The two first ones are the well known S-procedure and the Finsler lemma and the two other ones are classical relaxation schemes used to check the negativity of a double sum X hh . Lemma 1. (S-procedure). [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] Consider some matrices

F i = F T i ∈ R × and a vector z ∈ R , such that z T F i z ≥ 0, i ∈ I p . If there exist τ i ≥ 0, i ∈ I p , such that F 0 - p i=1 τ i F i > 0
then the following quadratic inequality holds for z = 0.

z T F 0 z > 0 (9) Lemma 2. (Finsler lemma). [START_REF] Skelton | A Unified Approach to Linear Control Design[END_REF] For any vector z ∈ R and any matrices Q = Q T ∈ R × and S ∈ R m× such that rank(S) < , the two following statements are equivalent.

(1) z T Qz < 0, z ∈ R , such that z = 0 and Sz = 0 (2) ∃M ∈ R ×m such that Q + S(MS) < 0 Lemma 3. [START_REF] Wang | An approach to fuzzy control of nonlinear systems: stability and design issues[END_REF] The inequality [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF] The inequality

x T X hh x < 0 holds ∀x ∈ R n if the following inequalities are satisfied 0 > X ii , i ∈ I r (10a) 0 > X ij + X ji , (i, j) ∈ I 2 r , i < j (10b) Lemma 4.
x T (k)X hh x(k) < 0 holds ∀x ∈ R n if the following inequalities are satisfied 0 > X ii , i ∈ I r (11a) 0 > 2 r -1 X ii + X ij + X ji , (i, j) ∈ I 2 r , i = j (11b)

LOCAL OBSERVER DESIGN FOR TS SYSTEMS

This section presents our main results. The observer design aims at finding the gains M h and L h guaranteeing a local convergence of the state estimation error. Under the assumption that the scheduling vector depends only on measured variables, the estimation error dynamics, from (2) and ( 5), are given by

e(k + 1) = (A h -M -1 h L h )e(k) (12 
) First, the proposed observer (5) is designed using a common quadratic Lyapunov function, after which the local non-quadratic stabilization of the estimation error will be studied.

Quadratic design

The following theorem details the existence condition of the observer (5) in the quadratic case. Theorem 5. There exists an observer of the form (5) for the system (2), such that the state estimation error e(k) asymptotically converges towards the origin in the largest Lyapunov level set included in the domain D ∩D R , if there exists a positive scalar ε, a symmetric positive definite matrix P ∈ R n×n , a symmetric matrix R ∈ R 2n×2n , matrices M i ∈ R n×n and L i ∈ R n×ny , for i ∈ I r , satisfying the following matrix inequality

S(ε(M

h A h -L h C h )) -P M h A h -L h C h -εM T h P -S(M h ) + R < 0 (13)
Proof. In order to prove the local asymptotical convergence of the state estimation error, we have to prove the negativeness of the difference of the quadratic Lyapunov function, namely

∆V (k) = e(k) e(k + 1) T -P 0 0 P e(k) e(k + 1) < 0 (14)
in D R defined by ( 6) and along the trajectory of ( 12). The dynamics of the state estimation error (12) can also be written as the following equality constraint

A h -M -1 h L h -I e(k) e(k + 1) = 0 (15) Defining M h by M h = εM h M h (16) 
the inequality (13) can be written as

R + -P 0 0 P + S M h A h -M -1 h L h -I < 0 (17)
Pre-and post-multiplying ( 17) by z T = (e T (k) e T (k + 1)) and z, from lemma 2, it implies that e(k) e(k + 1)

T P 0 0 -P -R e(k) e(k + 1) > 0 (18)
holds along the trajectory of ( 12). From lemma 1, with τ = 1, F 1 = R and F 0 = diag(P, -P ), inequality ( 18) implies that, in D R (i.e. if z T Rz > 0 is satisfied), we have z T diag(P, -P )z > 0 (19) This last inequality is equivalent to ( 14) and achieves the proof.

Since the matrix inequality ( 13) is based on a double summation both involving the same weighting functions h i (z(k)), the relaxation schemes in Lemmas 3 or 4 can easily be used to derive sufficient conditions that are numerically tractable with classical dedicated softwares. Moreover, in this case, the observer gains in ( 5) are directly obtained from the numerical solution of the LMI problem given in the following corollary. Corollary 6. There exists an observer (5) for the system (2), such that the state estimation error e(k) asymptotically converges towards the origin in the largest Lyapunov level set included in D ∩ D R , if there exists a positive scalar ε, a symmetric positive definite matrix P ∈ R n×n , a symmetric matrix R ∈ R 2n×2n , matrices M i ∈ R n×n for i ∈ I r and L i ∈ R n×ny satisfying (10) or ( 11) where X ij , for (i, j) ∈ I 2 r , are defined as

X ij = S(ε(M j A i -L i C j )) -P M j A i -L i C j -εM T j P -S(M j ) + R (20)
Remark: Due to ε, the conditions in Corollary 6 are parameterized LMIS. To obtain LMIs, ε may be fixed or can be searched for in a logarithmically spaced family of values [START_REF] Oliveira | Parameterdependent LMIs in robust analysis: Characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations[END_REF], ε ∈ {10 -6 , 10 -5 , . . . , 10 6 }.

Non-quadratic design

As widely known, the use of a common quadratic Lyapunov function may introduce some conservatism. In order to obtain a more general result, the non quadratic Lyapunov function ( 8) is exploited here and the following theorem details the existence condition of the observer (5) in the non-quadratic case. Theorem 7. There exists an observer (5) for the system (2), such that the state estimation error e(k) asymptotically converges towards the origin in the largest Lyapunov level set included in D ∩ D R , if there exists a positive scalar ε, symmetric positive definite matrices P i ∈ R n×n , a symmetric matrix R ∈ R 2n×2n , matrices M i ∈ R n×n and L i ∈ R n×ny , for i ∈ I r , satisfying the following inequalities.

S(ε(M

h A h -L h C h )) -P h M h A h -L h C h -εM T h P h+ -S(M h ) + R < 0 (21)
Proof. The proof follows the same line as the one of the theorem 5, except that the difference of the Lyapunov function ( 8) is given by

∆ Ṽ (k) = e(k) e(k + 1) T -P h 0 0 P h+ e(k) e(k + 1) (22) 
Because of the chosen Lyapunov function, the matrix inequality ( 21) needs a triple summation to be written as an LMI optimization problem and Lemmas 3 and 4 need to be slightly adapted as follows:

Lemma 8. The inequality x T X hhh+ x < 0 holds ∀x ∈ R n if the following inequalities are satisfied 0 > X iik , (i, k) ∈ I 2 r (23a) 0 > X ijk + X jik , (i, j, k) ∈ I 3 r , i < j (23b) Lemma 9. The inequality x T X hhh+ x < 0 holds ∀x ∈ R n if the following inequalities are satisfied 0 > X iik , (i, k) ∈ I 2 r (24a) 0 > 2 r 1 X iik + X ijk + X jik , (i, j, k) ∈ I 3 r , i = j (24b)
Then the conditions of Theorem 7 can be set up as the parameterized LMI problems given in the following corollary.

Corollary 10. There exists an observer (5) for the system (2), such that the state estimation error e(k) asymptotically converges towards the origin in the largest Lyapunov level set included in D ∩ D R , if there exists a positive scalar ε, a symmetric positive definite matrix P i ∈ R n×n , a symmetric matrix R ∈ R 2n×2n , matrices M i ∈ R n×n for i ∈ I r and L i ∈ R n×ny satisfying ( 23) or ( 24) where X ijk , for (i, j, k) ∈ I 3 r , is defined as

X ijk = S(ε(M j A i -L i C j )) -P j M j A i -L i C j -εM T j P k -S(M j ) + R (25) 
Note that, contrary to existing results, for this design it is not necessary that M h + M T h > 0. This is because the negativity of the difference in the Lyapunov function can be compensated by the matrix R.

NUMERICAL EXAMPLE

In what follows, we illustrate the developed conditions on a numerical example. Example 11. Consider the four-rule TS model defined on the domain D = {x 1 , x 2 ∈ [-2, 2]}, with local matrices

A 1 = -2 -1 1 4.25 C 1 = (1 0) A 2 = -2 -1 1 -4.25 C 2 = (-5 0) A 3 = 2 -1 1 4.25 C 3 = (1 0) A 4 = 2 -1 1 -4.25 C 4 = (-5 0)
and membership functions

h 1 (x 1 ) = (2 -x 1 ) 4 
(1 -sin(x 1 )) 2

h 2 (x 1 ) = (2 -x 1 ) 4 
(1 + sin(x 1 )) 2

h 3 (x 1 ) = (2 + x 1 ) 4 
(1 -sin(x 1 )) 2

h 4 (x 1 ) = (2 + x 1 ) 4 
(1 + sin(x 1 )) 2 The above membership functions satisfy (3).

Note that for this specific TS model, neither a PDC nor a non-PDC observer can be designed, independent of the Lyapunov function used (common quadratic or nonquadratic) -the LMI conditions are unfeasible. In what follows, we study if a local observer can be designed using the conditions of Theorem 5. In order to maximize the domain D R , the matrix R has been chosen with the following structure R = diag( R, -I) (26) where R is a decision variable whose trace is maximized.

The conditions of Theorem 5 with ε = 0 and using Lemma 3 for relaxation are feasible and the following results have been obtained: To verify in which domain the estimation error converges to zero, the domain D R and the Lyapunov level sets are presented in Figure 1. Note that for x 1 ≤ -0.2 and x 1 ≥ 0.25, the Lyapunov level sets included in D R are reduced to zero, as seen in Figure 2. A trajectory of the error dynamics, with x(0) = [-0.15, -1] T and e(0) = [-1, 1] T is presented in Figure 3.

P = 1 0 0 1 R =    1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 -1    M 1 = 10
It has to be noted that although the conditions of Theorems 5 and 7 may be used to design local observers, the shortcoming of this design is that the domain has to be verified a posteriori. 

CONCLUSION

In this paper, LMI conditions have been proposed for the design of local state observers for TS fuzzy systems. Both quadratic and non-quadratic Lyapunov functions have been employed to derive the conditions. In our future work, we will extend the results for α sample variation of the Lyapunov function. The possible improvement obtained with the introduction of delayed Lyapunov functions should also be studied. Finaly, in order to make the verification of the domain of convergence easier, we will use a domain description depending on the measurement error instead of the estimation error.
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 1 Fig. 1. The domain D R (*) and the Lyapunov level sets for different values of the scheduling variables.

Fig. 2 .

 2 Fig. 2. The domain D R (*) and the Lyapunov level sets for x 1 = 0.25.

  Even if the Lyapunov function in this case is quadratic and thus does not depend on the scheduling variables, one should note that due to its definition, D R depends both on e(k) and e(k + 1) and thus indirectly depends on the scheduling variable z(k). Consequently, the actual region of attraction D R depends on z(k).
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