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The underlying in vivo mechanisms of rituximab action remain
incompletely understood in chronic lymphocytic leukemia.
Recent data suggest that circulating micro-ribonucleic acids  corre-

late with chronic lymphocytic leukemia progression and response to rit-
uximab. Our study aimed at identifying circulating micro-ribonucleic
acids that predict response to rituximab monotherapy in chronic lym-
phocytic leukemia patients. Using a hierarchical clustering of micro-
ribonucleic acid expression profiles discriminating 10 untreated patients
with low or high lymphocyte counts, we found 26 micro-ribonucleic
acids significantly deregulated. Using individual  real-time reverse tran-
scription polymerase chain reaction, the expression levels of micro-
ribonucleic acids representative of these two clusters were further vali-
dated in a larger cohort (n=61). MiR-125b and miR-532-3p were inverse-
ly correlated with rituximab-induced lymphodepletion (P=0.020 and
P=0.001, respectively) and with the CD20 expression on CD19+ cells
(P=0.0007 and P<0.0001, respectively). In silico analyses of genes puta-
tively targeted by both micro-ribonucleic acids revealed a central role of
the interleukin-10 pathway and CD20 (MS4A1) family members.
Interestingly, both micro-ribonucleic acids were negatively correlated
with MS4A1 expression, while they were positively correlated with
MS4A3 and MSA47. Our results identify novel circulating predictive bio-
markers for rituximab-mediated lymphodepletion efficacy in chronic
lymphocytic leukemia, and suggest a novel molecular mechanism
responsible for the rituximab mode of action that bridges miR-125b and
miR-532-3p and CD20 family members. (clinicaltrials.gov Identifier:
01370772).  
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ABSTRACT



Introduction

Micro-ribonucleic acids (miRNAs) are a class of small
noncoding RNAs that regulate gene expression at the post-
transcriptional level and play an important regulatory role
in many cellular processes.1 Deregulated expression of
miRNAs could play a critical oncogenic or tumor-suppres-
sor role and has  therefore been associated with cancer,
including hematological malignancies and, especially, B-cell
lymphomas.2-4 MiRNAs correlate with the clinical charac-
teristics or outcome of chronic lymphocytic leukemia
(CLL) patients, allowing the identification of CLL sub-
groups with worse outcomes.5-7 Some of these miRNAs
contribute to the deregulation of pathways involved in
CLL oncogenic processes, such as PI3K/Akt (miR-22), NF-
κB (miR-9 family), or toll-like receptor 9 (miR-17~92 fami-
ly).8-10 The B-cell receptor (BCR) signaling pathway was
recently shown to be directly regulated by miR-34, miR-
150, and miR-155 in CLL,11,12 in addition to BCL2 (miR-
15a/16), TCL1 (miR-29 and miR-181), P53 (miR-15a/miR-
16-1 cluster, miR-17-5p, miR-29c and miR-34a), or PTEN
(miR-26a and miR-214).13-17 Response to a CLL treatment
could also be regulated by miRNAs. Thus, patients refrac-
tory to fludarabine exhibit significantly higher expression
levels of miR-21, miR-148a and miR-222 than fludarabine
sensitive patients.18 The activation of P53-responsive genes
was found only in fludarabine responsive patients, suggest-
ing a possible link between abnormal miRNA expression
and P53 pathway dysfunction in non-responder patients.
Links between miRNAs, fludarabine-refractory CLL and
genomic abnormalities were further demonstrated, under-
lying the crucial role of MYC and P53 regulatory networks
in determining cell response to fludarabine in CLL.19 Finally,
in a prospective clinical trial aiming at evaluating the con-
tribution of 17p deletion or TP53 mutation in fludarabine-
refractory CLL, miR-34a expression at baseline was lower
than in a control cohort of CLL non-refractory patients.20

The detection of miRNAs in serum and other body fluids
under physiological and pathological conditions raises the
possibility of using them as diagnostic or prognostic bio-
markers.21-23 Visone et al. found that blood expression levels
of miR-181b decreased in progressive CLL patients but not
in patients with stable disease.24 Recently, we have shown
that high miR-125b blood concentration can predict clinical
benefit of rituximab (MabThera®, Rituxan®) treatment in
patients with rheumatoid arthritis, and preliminary results
suggested a similar prognostic value of miR-125b in B-cell
lymphoma patients.25 Interestingly, the expression of miR-
125b is high in hematopoietic stem cells (HSCs) and
decreases in committed progenitors.26 In addition, overex-
pression of miR-125b in mice HSCs is associated with the
development of lymphoproliferative disease.27 Finally, miR-
125b expression is reduced in CLL patients as compared
with healthy donors.28 Altogether, these studies suggest
that low expression of circulating miR-125b might be asso-
ciated with lymphoproliferation and poor treatment
response to rituximab.  

The in vivo mechanisms of rituximab action remain
incompletely understood, and could differ depending on
the subtype of B-lymphoproliferative disorders. In vitro
data demonstrate that rituximab is able to induce apopto-
sis, complement-dependent cytotoxicity (CDC), anti-
body-dependent cellular cytotoxicity (ADCC) and anti-
body-dependent cellular phagocytosis (ADCP). Although
the influence of FcγRIIIa-V158VV on rituximab response

in follicular lymphoma patients strongly suggests that
ADCC occurs in vivo, there is a lack of evidence for the
other immune mechanisms.29 One of the main barriers to
improve our knowledge is the scarcity of clinical situations
in which rituximab is used alone. Indeed, chemotherapy
associated with rituximab pollutes any definitive conclu-
sions in studies attempting to analyze in vivo rituximab
mechanisms of action. Recently, we conducted a clinical
phase II study testing a new approach of dose-dense ritux-
imab pre-phase before immunochemotherapy.30 This
study was based on increased rituximab elimination
observed in CLL patients compared to lymphoma patients
in different clinical trials.31 Thus, this study provided a
unique opportunity to dissect the mechanisms of action of
rituximab in CLL patients. The study herein aimed at
identifying a blood-based miRNA signature at diagnosis,
before rituximab monotherapy, that predicts rituximab
efficacy in CLL patients. It also aimed at shedding light on
the miRNA-mediated molecular mechanisms involved in
rituximab's mode of action in vivo.

Methods

CLL2010FMP protocol
A prospective, randomized, open-label, phase II study

(CLL2010FMP, clinicaltrials.gov Identifier: 01370772) included 140
treatment-naive patients (aged 18-65 years) diagnosed with con-
firmed chronic lymphocytic leukemia, according to  the
International Workshop on Chronic Lymphocytic Leukemia
(IWCLL) 2008 criteria, and Binet stage C, or with active Binet stage
A or B.32 An additional inclusion criteria was the absence of 17p
deletion, assessed by  fluorescence in situ hybridization (FISH)
(<10% positive nuclei). Each patient provided written informed
consent before enrolment. Participating centers are listed in the
Online Supplementary Information. Patients were stratified according
to IGHV mutational status, FISH analysis (11q deletion or not) and
were randomly assigned to receive either 6 cycles of chemoim-
munotherapy combining fludarabine, cyclophosphamide, and rit-
uximab (FCR) (rituximab 375mg/m2 for the first course, Day (D)1
and 500mg/m2 for the others, fludarabine 40mg/m2/d D2-4,
cyclophosphamide 250mg/m2/d D2-4) every 28 days, or Dense-
FCR with an intensified rituximab pre-phase (500mg on D0, and
2000mg on D1, D8 and D15) before initiating the standard FCR
treatment. The main objective was to increase the complete
response rate with undetectable minimal residual disease three
months after treatment, as published previously.30 In the study
herein we have explored miRNA signature in a cohort of 123
patients, 61 receiving rituximab pre-phase before
immunochemotherapy (Dense-FCR arm) and 62 receiving the
FCR chemotherapy (standard arm). The study was approved by
the institutional ethics committee of each participating center
according to the principles of the Declaration of Helsinki.

Gene expression analysis
Details are described in the Online Supplementary Information.

FCGR3A genotyping
Single-step multiplex allele-specific PCR assays were performed

as initially described by Dall’Ozzo et al. introducing minor modi-
fications (for details see the Online Supplementary Information). 

IL-10 competent CLL cells identification
Interleukin (IL)-10-competent CLL cell counts were determined

by flow cytometry analysis of IL-10 production. Peripheral blood
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mononuclear cells (PBMCs) were purified from peripheral blood
samples of the Dense-FCR arm of the protocol using Ficoll-
Hypaque density gradients (Eurobio, Courtaboeuf, France).33

Clonal CLL cells were identified as CD19+ CD5+ CD20int lympho-
cytes with a previously described protocol.34 Analyses were per-
formed on a CyAnTM ADP flow cytometer (Beckman Coulter,
Brea, CA, USA).   

Cell surface CD20 expression analysis
CD20 expression was quantified using CD20-PE

QuantiBRITETM reagents (Ratio 1:1) according to manufacturer’s
recommendations (BD Biosciences, Le Pont-de-Claix, France).
Calibration and quantification were performed using a FAC-
SCANTO II cytometer (BD, Biosciences, Le Pont-de-Claix,
France), and details are in the Online Supplementary Information.
Circulating CD20 antigen was evaluated by considering the lym-
phocyte count and blood volume for each patient.

Statistical analysis
The distribution of data was tested with the Shapiro-Wilk test.

A X2 or Fisher's test were used to compare categorical data. For
numerical data, medians were compared using a Student's t-test or
Mann-Whitney test. All variables with a P value <0.10 in univari-
ate analysis were included in an intermediate model. The final
model variables were determined by backward selection using a
Student's t-test (P<0.05 as significant model). The Spearman‘s cor-
relation test was used to assess the association between two
numerical data. All statistical analyses were performed at the con-
ventional two-tailed α level of 0.05 using R software version
3.0.2.10.

Results 

Patients’ characteristics
Sixty-one CLL patients were allocated to receive ritux-

imab pre-phase. Their clinical and biological characteris-
tics are presented in Table 1. They did not differ from the
entire cohort. Median age was 58 years (interquartile
range (IQR): 53-61), 28% were females and 77% were
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Table 1. Patients’ characteristics for the protocol CLL2010FMP.
Cohort (n=123) FCR (n=62) Dense FCR (n=61)

n (%) Median (IQR) n (%) Median (IQR) n (%) Median (IQR)

Age (years) - 58.45 (52.82-61-83) - 59.95 (52.32-62.00) - 58.34 (53.22-61.36)
Women 33 (26.83) - 16 (25.81) - 17 (27.87) -

Binet stage AB 91 (73.98) - 44 (70.97) - 47 (77.05) -

ECOG 0 86 (69.92) - 41 (66.13) - 45 (73.77) -

IGHV unmutated 75/119 (63.03) - 39/59 (66.10) - 36/60 (60.00) -

Cytogenetic abnormalities
Del(13q) 54/96 (56.25) - 29/48 (60.42) - 25/48 (52.08) -
Del(11q) 24/120 (20.00) - 12/61 (19.67) - 12/59 (20.34) -
Trisomy 12 9/82 (10.98) - 5/40 (12.50) - 4/42 (9.52) -

�β2 microglobulin (mg/L) 114 (92.68) 3.05 (2.35-4.00) 56 (90.32) 3.22 (2.42-4.20) 59 (96.72) 2.80 (2.32-3.68)
IL-10-competent B cells 44 (35.77) 2.97 (0.98-9.58) - - 44 (72.13) 2.97 (0.98-9.58)
FCGR3A

V/V 14 (12.17) - 8 (14.04) - 6 (10.34) -

V/F 55 (47.83) - 26 (45.61) - 29 (50.00) -

F/F 46 (40.00) - 23 (40.35) - 23 (39.66) -
IQR: interquartile range; FCR: fludarabine, cyclophosphamide, and rituximab; ECOG: Eastern Cooperative Oncology Group; IL-10: interleukin-10.

Table 2. List of the 26 miRNAs differentially expressed in CLL patients
with low or high lymphocyte counts at D0.
miRNA ID Ct value in high Fold Change P

lymphocyte low/high
count lymphocyte count
(mean) (mean)

Cluster 1
hsa-miR-323-3p 31.8 9.6 0.022
hsa-miR-99b 26.5 8.7 0.003
hsa-miR-326 31.3 7.5 0.001
hsa-miR-365 31.6 7.5 0.004
hsa-miR-125b 28.6 5.2 0.033
hsa-miR-494 28.4 4.3 0.022
hsa-miR-193b 25.6 3.3 0.009
hsa-miR-211 28.0 2.8 0.012
hsa-miR-193a-5p 26.5 2.1 0.020
hsa-miR-212 26.4 1.8 0.012
hsa-miR-184 29.1 0.2 0.041
Cluster 2
hsa-miR-328 22.9 5.1 0.015
hsa-miR-486 18.9 4.7 0.013
hsa-miR-532-3p 22.1 4.4 0.010
hsa-miR-484 17.4 3.7 0.028
hsa-miR-324-3p 22.2 2.9 0.004
hsa-miR-92a 17.2 2.9 0.001
hsa-miR-339-5p 23.3 2.8 0.010
hsa-miR-223 14.5 2.5 0.034
hsa-miR-423-5p 22.8 2.3 0.013
hsa-miR-652 21.2 2.2 0.038
hsa-miR-30c 16.6 2.0 0.029
hsa-miR-16 16.6 0.4 0.044
hsa-miR-26a 17.6 0.3 0.031
hsa-miR-29c 19.6 0.1 0.002
hsa-miR-29a 18.9 0.1 0.002
The cycle threshold (Ct) value is defined as the number of cycles required for the flu-
orescent signal to cross the background level. Fold Change is the fold ratio of the geo-
metric means of miRNA expression from low and high lymphocyte count patients.
The P value is determined by t-test and considered significant for P<0.05.  



Binet stage A or B. Cytogenetic analysis demonstrated
del11q in 20% of patients and median lymphocyte count
was 89 G/L (IQR: 43-123).

Blood miRNA expression profile discriminates CLL
patients with high and low lymphocytosis

Because miR-125b expression is reduced in CLL patients
compared with healthy donors and is a key regulator of
lymphoproliferation,28 we performed real-time PCR-based
high-throughput miRNA arrays comparing CLL patients
with high lymphocyte counts (>93.93G/L, Q3) versus low
lymphocyte counts (<11.67G/L, Q1) at baseline. Q1 and
Q3 were interquartile values of lymphocyte counts at D0
for patients of the Dense-FCR arm analyzed by  TaqMan
low-density array (TLDA). After filtering (fold change ≥1.5
and cycle threshold (Ct) values <32) on the differentially
expressed miRNAs, we found 5 miRNAs downregulated
and 21 miRNAs upregulated in CLL patients with low
lymphocyte counts compared with those with high lym-
phocyte counts (P<0.05) (Table 2). The heat map showed
results of the unsupervised hierarchical clustering based
on the significantly differentially expressed miRNAs
(Figure 1A). Two patterns of miRNA expression profile
named cluster 1 and cluster 2 were clearly identified
according to lymphocyte counts. To confirm this finding,
we selected four miRNAs (two from each cluster) based
on technical criteria (21<Ct<29 and 2-fold difference
between high and low lymphocyte count at D0 between
two miRNAs in each cluster), and on the literature.28,35,36

We therefore assessed their expression in a cohort of 123
CLL patients (Figure 1B). Expression patterns of miR-193b,
miR-125b, miR-652 and miR-532-3p were consistent with

the array data. Scatter plots confirmed that increased lym-
phocyte counts were inversely correlated with the expres-
sion levels of miR-193b and miR-125b (P=0.03 and
P=0.0001, respectively) for cluster 1, and miR-652 and
miR-532-3p (P=0.0017 and P=0.0001, respectively) for
cluster 2 (Figure 1B). No significant correlation was found
between individual miRNAs (miR-125b, miR-193b, miR-
532-3p, miR-652) and clinical (age, Binet stage, Eastern
Cooperative Oncology Group (ECOG)) or biological
(IGHV mutation, cytogenetic abnormalities (del11q,
del13q, trisomy 12), B10 frequency, or FcγRIIIa-158V/F
polymorphism) parameters (data not shown). Finally, our
results demonstrated that all 4 miRNAs were markedly
downregulated in the blood of CLL patients displaying
high lymphocyte counts. 

miR-125b and miR-532-3p expression levels correlate
with lymphodepletion observed after rituximab 
treatment

We hypothesized that lymphocyte depletion observed
after rituximab infusions was related to in vivo rituximab
activity, and then monitored the lymphocyte depletion in
our CLL cohort following four rituximab infusions at D22.
We thus determined whether a correlation existed
between the miRNA expression profile that discriminates
CLL patients with high lymphocytosis before treatment
and the efficacy of lymphocyte depletion with rituximab.
The median lymphocyte count was 89G/L (range: 4-351)
before rituximab treatment and 3G/L (range: 0.1-189) after
four rituximab infusions, bringing the median lymphocyte
depletion after rituximab treatment up to 95.9% (range: -
5.0-99.6). 

miRNAs predicting rituximab efficiency
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Figure 1. MicroRNAs expression profile discriminates CLL patients with low or high lymphocyte counts before treatment. (A) The profiles of 26 microRNAs signifi-
cantly differently expressed (P<0.05) between high and low lymphocyte concentration samples isolated from CLL patients (n=5/group) were visualized using a super-
vised heatmap (average linkage and Pearson’s correlation). Relative miRNA expression was calculated using the comparative threshold cycle (Ct) method. For nor-
malization, the mean Ct value of all miRNA targets was used. Dendrograms indicated the correlation between groups of samples and miRNAs. Samples are in
columns and miRNAs in rows. Each column represents an individual sample and each row represents a single miRNA. The heat map shows relative levels of miRNA
expression in a green (low relative expression) to red (high relative expression) scale. (B-C) Expression levels of 4 miRNAs representative of each cluster, miR-193
band miR-125b for cluster 1 (B), and miR-532-3p and miR-652 for cluster 2 (C), were measured for 123 CLL patients included in the CLL2010FMP protocol, using
RT-qPCR. A significant inverse correlation was observed depending on the lymphocyte counts for miR-193b r=-0.19), miR-125b (r=-0.39), miR-652 (r=-0.30) and miR-
532-3p (r=-0.34) (Spearman's correlation test).
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Only 2 out of the 4 validated miRNAs, namely miR-
125b and miR-532-3p, were significantly correlated with
lymphodepletion, whereas miR-652 and miR-193b did not
correlate with lymphodepletion. Thus, the lymphodeple-
tion rate was inversely correlated with the expression lev-
els of miR-125b and miR-532-3p (P=0.020 and P=0.001,
respectively), as shown in the scatter plots in Figure 2.
However, no correlation was found between miRNAs and
the clinical response assessed 3 months after
immunochemotherapy by FCR. 

Our group recently showed that the frequency of IL-10-
competent B cells adversely impacts  lymphodepletion fol-
lowing rituximab treatment of CLL patients and also cor-
relates with clinical response assessed 3 months after
immuno-chemotherapy by FCR.34 Because we reported
that the IL-10-competent regulatory B cells frequency pre-
dicts efficacy of rituximab-mediated lymphodepletion and
clinical CLL outcome, we integrated this third variable in
our analysis. Logistic regression analyses showed that
only IL-10-competent B cells frequency and miR-532-3p
were associated with 90% lymphodepletion after ritux-
imab monotherapy (odds ratio (OR)=0.87; 95% confi-
dence interval (CI)=0.76-0.97; P=0.014, and OR=0.0002;
95% CI=<10-4-0.34; P=0.029, respectively). Receiver
operating characteristic curve (ROC) using IL-10-compe-
tent B cells frequency and miR-532-3p expression levels
showed a highly discriminative power (area under the
curve (AUC)=0.795; 95% CI=0.652-0.939), allowing one
to predict patients who will have more than 90% of lym-
phodepletion after rituximab pre-phase. 

Putative and validated target genes of miR-125b and
miR-532-3p

Using the miRWalk database, a tool that compares
miRNAs binding sites resulting from 5 main existing
miRNA-target prediction programs (DIANA, RNA22,
PicTar, miRanda and TargetScan), we investigated putative
target genes for the two miRNAs associated with ritux-
imab-induced lymphodepletion.37 Two lists of putative
target genes were obtained: 5053 genes for miR-125b and
6652 for miR-532-3p. The Venny program, an interactive
tool for comparing lists, identified 3151 common genes
targeted by both miR-125b and miR-532-3p.38 We then

compared them with transcriptomic datasets available for
IL-10-competent B cells.39 Among the 104 genes differen-
tially expressed in the study that compared IL-10+ and IL-
10- human regulatory B cells, 33 and 46 genes overlapped
with miR-125b and miR-532-3p putative targeted genes,
respectively.39 Importantly, 26 genes were common targets
of both miRNAs (Figure 3A). Consequently, in the context
of rituximab, which is known to target the pan-B-cell
marker CD20/MS4A1, we wondered whether this gene
could also be targeted by miR-125b and miR-532-3p. We
found that both miRNAs were predicted to target MS4A1.

Pathway enrichment analysis was performed using the
web-based bioinformatics application Ingenuity Pathway
Analysis (IPA Ingenuity Systems) based on the in silico 26
predicted target genes common to miR-125b, miR-532-3p
and differentially regulated in human IL-10–/IL-10+ regula-
tory B cells, as well as on MS4A1. A hierarchical layout
was built with only miRNA/mRNA interactions display-
ing high predicted scores and for which the correlation
was experimentally observed in humans (Figure 3B). All
the 9 genes presented in this figure were associated with
the IL-10 pathway (EGR3, IL1A, IL10, IL10RA, IRF4, IRF5,
MS4A1, TLR7 and TSC22D3).

Expression of CD20 family members, miR-125b and
miR-532-3p on CLL cells

We analyzed the association between miR-125b and
miR-532-3p expression levels and the CD20 surface
expression on CD19+/CD5+ CLL cells. In both cases, a sig-
nificant inverse correlation was observed between CD20
protein and miRNA expression levels (Figure 4). A high
expression level of CD20 at the surface of CLL cells corre-
lated with a low expression level of miR-125b and miR-
532-3p (P=0.0007 and P<0.0001, respectively). Since
miRNAs are negative regulators of gene expression, we
monitored the mRNA level of CD20 in the blood of CLL
patients. CD20 (MS4A1) mRNA tended to be inversely
correlated with both miR-125b and miR-532-3p (Figure
5A). Interestingly, the expression of two other members of
the CD20 family, namely MS4A3 and MS4A7, might also
be controlled by miR-125b and miR-532-3p. Indeed, both
MS4A3 and MS4A7 mRNAs present putative binding sites
for miR-125b and miR-532-3p, not only at the 3’UTR

A-L Gagez et al.
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Figure 2. Efficacy of lymphodepletion after rituximab treatment inversely correlates with miR-125b and miR-532-3p expression levels. miR-125b (r=-0.42) (A) and
miR-532-3p (r=-0.49) (B) expression levels were quantified by RT-qPCR. The lymphodepletion was measured 22 days after 4 doses of rituximab infusion and corre-
lated with miRNAs (Spearman's correlation test) (n=61).
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region, but also in the promoter, 5’UTR and coding
regions as shown in Figure 5B. MS4A7 mRNA levels were
positively correlated with both miR-125b and miR-532-3p
expression levels, whereas MS4A3 mRNA levels were
positively correlated with miR-125b expression only.
Overall, these results suggest that miR-125b and miR-532-
3p might differentially control the expression of the CD20
family members.

Discussion

In the study herein, we investigated whether a blood-
based miRNA signature can predict the efficacy of ritux-
imab-mediated lymphodepletion in CLL patients, and pro-
vide some clue as to the underlying molecular mecha-
nisms. We showed that miR-125b, miR-193b, miR-652
and miR-532-3p expression levels were inversely correlat-
ed with lymphocyte counts in untreated patients, and that
miR-125b and miR-532-3p negatively correlated with
lymphocyte depletion after rituximab monotherapy.
Finally, our data suggest that both miR-125b and miR-532-
3p expression levels might provide a link between the
expression level of CD20 family members and the efficacy
of rituximab-mediated lymphodepletion. 

Both miR-125b and miR-532-3p have been previously
described in leukemia disorders. Recently, it has been
shown that miR-125b was involved in specific subtypes of
leukemia, either through IRF4 silencing, genetic deletion
or chromosomal translocation as evidenced in B-cell
leukemia or myeloid leukemia, respectively.40-42 One of the
two genes encoding for the mature form of miR-125b,
namely miR-125b-1, maps at 11q24, a chromosomal
region that is close to the epicenter of 11q23 deletions
found in CLL, and might explain why miR-125b expres-
sion is reduced in CLL patients compared to healthy
donors.28 In the study herein, although the number of
patients with a del11q was small, no correlation was
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Figure 3. Target gene prediction for miR-125b and miR-532-3p. (A) To identify putative miR-125b and miR-532-3p target genes, we used miRWalk software. VENNY,
an interactive tool for comparing lists with Venn Diagrams, was used to predict common genes between human regulatory B cells IL-10+ and IL-10–,39 and putative
miR-125b and miR-532-3p target genes. 26 genes putatively targeted by miR-125b and miR-532-3p, and specifically dysregulated in IL-10+ B cells transcriptome
analysis are listed. (B) The layout of these 26 putative targets was built in the context of rituximab treatment (MS4A1 (CD20 gene)) using Ingenuity Pathway Analysis
(IPA). 9 genes revealed a central role for the IL-10 pathway.

Figure 4. Inverse correlation between miR-125b and miR-532-3p expression
levels and circulating CD20 surface antigen expression on CD19+ cells in CLL
patients blood. CD20 expression levels on CD19+ lymphocytes were quantified
using flow cytometry. PBMCs were collected and miR-125b (r=-0.37) (A) and
miR-532-3p (r=-0.29) (B) were quantified using RT-qPCR. Circulating CD20 anti-
gen was correlated to miRNA expression (Spearman's correlation test) (n=61).   

A

B

IL-10-competent B cell



found with miR-125b expression levels. In a recent study
investigating miRNA changes upon B-cell receptor stimu-
lation in distinct subclasses of CLL patients, the expression
of miR-532-3p was increased at 48 hours exclusively in
CLL patients with stable disease.6 Like miR-125b, the role
and implication of miR-532-3p in CLL are established,
especially as it is strongly associated with progression-free
survival in CLL.35 

Our data thus identify a novel prognostic relevance for
miRNAs, and specifically for miR-125b and miR-532-3p,
which are able to predict the efficacy of rituximab-medi-
ated lymphodepletion, independently of the clinical out-
come. In the study herein, logistic regression analysis
showed that IL-10-competent B cells frequency and miR-
532-3p were associated with lymphodepletion after ritux-
imab pre-phase, whereas no correlation was found
between miRNAs and the clinical response assessed 3
months after immunochemotherapy by FCR.

Taking advantage of the signatures of these 2 miRNAs
for predicting the effect of rituximab, we searched for
putative target genes according to these variables. Using
available software and databases, we identified 3151 com-
mon putative target genes for miR-125b and miR-532-3p,
which represent over 62% and 50% of miR-125b and
miR532-3p targets, respectively. The lack of sequence
homology between miR-125b and miR-532-3p, neither for
the seed sequence nor for the entire miRNA mature
sequence, does not explain such a surprisingly large num-
ber of overlapping putative targets. None of the few com-
mon validated target genes reported so far for both
miRNAs have been studied together in the same cellular

context. In silico analyses reveal that these two miRNAs
rather target distinct sequences and/or regions of the same
gene, suggesting a synergistic effect by collective target
regulation by both miRNAs. Among the 104 genes differ-
entially expressed between IL-10+ and IL-10− cells,39 we
found over 50% of genes putatively targeted by miR-125b
and/or miR-532-3p, among which 26 genes are common
for both miRNAs. Pathway enrichment analysis identified
9 genes associated with the IL-10 pathway in the ritux-
imab context. Some of these genes are already validated
targets for miR-125b. Rossi et al. showed that miR-125b
was involved in T-cell differentiation through the silencing
of IL-10 receptor α (IL10RA). MiR-125b expression in
CD4+ T cells could contribute to the maintenance of the
naive state, while its downregulation is associated with
the acquisition of an effector-memory phenotype.26 MiR-
125b inhibits the expression of IRF4 in B lymphocytes, dif-
fuse large B-cell lymphomas and myeloma cell lines, and
promotes myeloid and B-cell neoplasm by inducing
tumorigenesis in mice hematopoietic progenitor cells.40,42,43

An indirect implication of miR-532-3p on TLR7 gene
expression mediated by an upregulation of IL-4 was
reported in peripheral blood samples from CLL
patients.44,45 The dysregulation of miR-532-3p was also
evidenced in Binet A stage CLL patients as compared with
a normal B-cell subset population.35 Among the miRNAs
tested in relation with clinical data, miR-532-3p is part of
a miRNA-based signature strongly associated with pro-
gression-free survival.35

In humans, the MS4A gene includes CD20 and 18 other
genes.46 Rituximab is a chimeric type I monoclonal antibody
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Figure 5. miR-125b and miR-532-3p
expression levels correlate with the
expression of three MS4A family mem-
bers. (A) Spearman’s correlation between
miR-125b or miR-532-3p and MS4A
mRNA family expression levels in CLL
patients blood (n=61). (B) Putative miR-
125b and miR-532-3p target binding sites
on MS4A family members. CDS: coding
DNA sequence; rho: correlation coeffi-
cient; UTR: untranslated region.
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that specifically binds to inter-tetramers of CD20.29 CD20
could form homo- or hetero-oligomeric complexes with
CD20 family members.47 Herein, we show that miR-125b
and miR-532-3p putatively target other members of the
MS4A family, including MS4A1 (coding CD20), MS4A3
(alias Htm4) and MS4A7. MS4A3 is a cell surface signaling
molecule involved in the cell cycle of hematopoietic and
tumor cells, whereas MS4A7 is expressed in lymphoid tis-
sues.47,48 However, their role in the mode of action of ritux-
imab is unexplored. Herein, we showed a significant corre-
lation between miR-125b and miR-532-3p expression levels
and three MS4A family members in CLL patients; CD20
being negatively correlated and MS4A3 and MS4A7 being
positively correlated.48,49 Negative regulation of gene expres-
sion by miRNAs through translational repression and dead-
enylation-dependent decay of messengers is widely
described. Emerging evidence reveal that miRNAs and their
associated multiprotein complexes can directly or indirectly
stimulate gene expression.50 GW182 is an essential compo-
nent of the repressive miRNA complex that interacts with
Ago1/2, leading to mRNA degradation. In conditions of qui-
escence, the absence of GW182 favors the interaction of
FXR1 with Ago1/2 and induces the translation of the target-
ed mRNA.50 In the context of CLL, which is a unique malig-
nancy where quiescent B cells accumulate in the peripheral
blood, we may hypothesize that miR-125b and miR-532-3p

might differently affect the expression of the 3 MS4A fam-
ily members and thus modulate the lymphodepletion out-
come upon rituximab treatment. In Figure 6, we propose a
schematic explanation on how miR-125b and miR-532-3p
can act in CLL patient cells to modulate rituximab efficacy
on lymphodepletion. 

Overall, our results suggest that miR-125b and miR-532-
3p are potential non-invasive biomarkers, detectable in the
peripheral blood of CLL patients before treatment, which
predict rituximab-mediated lymphodepletion efficacy.
These miRNAs might also play a role in the molecular
mechanisms involved in the rituximab-mediated mecha-
nism of action, through their implication in the IL-10 path-
way, including IL-10-competent B cells, and through the
modulation of the MS4A family members’ expression.
Further investigations in an independent cohort are need-
ed to further explore these hypotheses.
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Figure 6. Schematic representation of the potential mechanisms of action of miR-125b and miR-532-3p on the modulation of rituximab activity in CLL cells. In
CLL patients displaying low expression levels of miR-125b and miR-532-3p, the MS4A1 mRNA and CD20 surface receptor are upregulated, while the expression of
MS4A3 and MS4A7 mRNA are downregulated (MS4A3 and MS4A7 protein expressions were unknown). Consequently, rituximab (RTX) efficacy is optimum for lym-
phodepletion (Lymphodepletion +++). In contrast, CLL patients with high expression levels of miR-125b and miR-532-3p display low levels of MS4A1 mRNA and
CD20 surface receptor, and high levels of MS4A3 and MS4A7 mRNA (MS4A3 and MS4A7 protein expressions were unknown), which might form hetero-oligomers
with CD20 and impede optimal lymphodepletion (Lymphodepletion +) by rituximab. Interrogation marks indicate data that were not experimentally confirmed in the
present study.  
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