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Abstract: We propose a stubborn design paradigm for nonlinear high-gain observers, resulting
in enforcing a saturation nonlinearity with variable limits on the output injection term. We
analyze the input-to-state stability properties of the estimation error dynamics, and we show
that the stubborn extension does not lead to a worse bound than the original high-gain design
in terms of both peaking and sensitivity to disturbances and measurement noise. We illustrate
by simulation that the proposed “stubborn” modification is actually effective at improving the
transient response of the observer and the rejection of measurement outliers.

1. INTRODUCTION

The high-gain observer is the most popular tool for esti-
mation in the area of nonlinear control. Such an observer
was proposed by Bornard and Hammouri (1991) (see also
Gauthier and Kupka (2001)), and it is based on the idea of
dominating the effect of uncertainties or nonlinear terms in
the dynamics of the estimation error by using a sufficiently
large gain. The main drawback of this approach is the
occurrence of a strong peaking in the transient, which
may cause the destabilization of the control loop if the
high-gain observer is used in cascade with a feedback
regulator (Khalil and Praly, 2014). Another consequence
of the adoption of a large gain is the increased sensitivity
to measurement noise. Concerning these issues, Astolfi and
Marconi (2015) have recently proposed a “low-power” evo-
lution of the high-gain observer. Here, we will investigate a
new high-gain observer for nonlinear systems with the goal
of reducing the effect of the measurement noise, especially
in case of outliers, by taking advantage of the construction
presented in (Alessandri and Zaccarian, 2015, 2016).

In the research area of high-gain observers, various gain
adaptation methods have been proposed to account for
the presence of disturbances acting on the system. For
example, a switching-gain tuning is proposed by Ahrens
and Khalil (2009); in (Boizot et al., 2010; Oueder et al.,
2012) moving-horizon schemes are suggested to set the
gain; nonlinear adaptation laws are described in (Ibrir,
2009) and (Sanfelice and Praly, 2011); resetting rules have
been investigated by Prieur et al. (2012).

The stability of the estimation error of observers for sys-
tems without noise is treated by using Lyapunov functions.
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However, input-to-state stability (ISS) turns out to be
really helpful for this task, because the effects of both
system disturbances and measurement noise are easily
taken into account, together with stable behaviors in the
absence of external signals. As a consequence, the use
of ISS analysis has been considered in various works on
estimation for nonlinear systems (see, e.g., Arcak and
Kokotovic (2001); Chaves and Sontag (2002); Karafyllis
and Kravaris (2009); Alessandri et al. (2010); Postoyan
and Nesic (2012); Alessandri (2013)). Concerning observer
design for nonlinear systems, the connection between ISS
and passivity with respect to measurement noise has been
addressed by Shim et al. (2003).

In this paper, we will present a new high-gain observer
structure as compared with the standard high-gain ob-
server reported in the literature. The novelty consists in
using a saturated output error, which allows to reduce the
effect of the measurement noise thanks to the “stubborn”
adaptation of the saturation threshold according to the
approach proposed by Alessandri and Zaccarian (2016).
Such an adaptation is called “stubborn” because in light
of a persistent zero output error, the observer shrinks
to zero the saturation threshold regulating the trimming
action (performed by the saturation nonlinearity) on the
output injection term, thereby making the observer in-
creasingly “stubborn” about its current estimate. Thus,
the role played by the saturation is different from the
one addressed in (Astolfi et al., 2016b), where the use of
a nested-saturation low-power high-gain observer is ana-
lyzed as to stability and sensitivity to measurement noise.
For the proposed stubborn high-gain observer, here we will
investigate the ISS stability first only with the presence of
a system disturbance and later with in addition a mea-
surement noise. It is suitable to verify ISS when dealing



with estimation for nonlinear systems and especially with
measurements affected by impulsive disturbances since ISS
may not hold even if the estimation error is asymptotically
stable in the absence of noises (see (Shim et al., 2003,
Section 5, p. 890)).

The paper is organized as follows. In Section 2, we present
the system framework and the essential results about
standard high-gain observers. The proposed observer and
its ISS property on the estimation error are described in
Sections 3 and 4. A simulation comparison between the
standard high-gain observer and our stubborn high-gain
observer is shown in Section 5. Some conclusions are drawn
in Section 6.

2. PROBLEM DESCRIPTION AND PRELIMINARIES

We consider systems of the form

ẋi = xi+1 + ϕi(x1, . . . , xi, u(t)) , i = 1, . . . , n− 1

ẋn = ϕn(x1, . . . , xn, u(t), d(t)) ,

y = x1 + ν(t)

(1)

where the state x := (x1, . . . , xn) ∈ Rn evolves in a given
compact subset X of Rn, the input t 7→ u(t) is any function
assumed to be known evolving in a compact subset U
of Rm, and y ∈ R is the measured output. We suppose
that functions ϕi, i = 1, . . . , n are locally Lipschitz. The
function t 7→ d(t) is an unknown, bounded disturbance
representing exogenous signals or model uncertainties. The
function t 7→ ν(t) represents a measurement noise and it is
assumed to be bounded for all t ≥ 0. For any mapping t 7→
s(t), let |s|∞ := supt≥0 |s(t)|, where |s(t)| :=

√
s(t)>s(t).

For this class of systems we can design a high-gain observer
as follows:

˙̂xi = x̂i+1 + ϕ̂i(x̂1, . . . , x̂i, u(t)) + ki`
i(y − x̂1) ,

i = 1, . . . , n− 1

˙̂xn = ϕ̂n(x̂1, . . . , x̂n, u(t)) + `nkn(y − x̂1) ,

(2)

where x̂ := (x̂1, . . . , x̂n) ∈ Rn; k1, . . . , kn are coefficients
to be chosen such that

sn + k1s
n−1 + . . .+ kn−1s+ kn

is a Hurwitz polynomial and where ` ≥ 1 is a positive
scalar usually denoted as “high-gain parameter.” Func-
tions ϕ̂i are continuous, bounded outside X×U and satisfy
the following conditions:

ϕ̂i(x1, . . . , xi, u) = ϕi(x1, . . . , xi, u), i = 1, . . . , n− 1,

ϕ̂n(x1, . . . , xn, u) = ϕn(x1, . . . , xn, u, 0),

for all (x, u) ∈ X × U and

|ϕ̂i(x̂1, . . . , x̂i, u)−ϕi(x1, . . . , xn, u)| ≤ Li
i∑

j=1

|x̂j−xj | (3)

for i = 1, . . . , n− 1 and

|ϕ̂n(x̂1, . . . , x̂n, u)− ϕn(x1, . . . , xn, u, d)| ≤

Ln

n∑
j=1

|x̂j − xj |+R|d|∞
(4)

for all (x, u, x̂) ∈ X × U × Rn and t 7→ d(t) with
|d|∞ bounded. Standard results show that if the high-
gain parameter ` is chosen large enough then observer (2)
satisfies the following bound (see, for instance, Khalil and
Praly (2014)):

|x̂i(t)− xi(t)| ≤ a1`
i−1 exp(−a2 ` t)|x̂(0)− x(0)|

+
a3

`n−(i−1)
|d|∞ + a4`

i−1|ν|∞
(5)

for all t ≥ 0 and for some constants a1 > 0, a2 > 0, a3 > 0,
a4 > 0 independent of ` and for any initial condition
(x(0), x̂(0)) ∈ X × Rn.

As pretty well-known and evident in (5), the growth of `
makes the estimation error more robust to system noise
but it increases also the sensitivity to measurement noise.
This motivates the investigation of more effective “high-
gain like” observers, as will be shown in the next sections.

3. STUBBORN REDESIGN FOR HIGH-GAIN
OBSERVERS

In order to improve the performances of high-gain observer
(2) in presence of impulsive measurement noise (outliers),
we follow the stubborn construction proposed by Alessan-
dri and Zaccarian (2016), namely we saturate the output
injection term with a dynamical saturation level σ as
follows:

˙̂xi = x̂i+1 + ϕ̂i(x̂1, . . . , x̂i, u(t)) + ki`
isatσ̄(y − x̂1) ,

i = 1, . . . , n− 1

˙̂xn = ϕ̂n(x̂1, . . . , x̂n, u(t)) + kn`
nsatσ̄(y − x̂1) ,

σ̇ = −` λ σ + ` (λ+ ε)(y − x̂1)2, σ ≥ 0

(6)
where λ > 0, ε > 0, σ ∈ R≥0 and σ̄ :=

√
σ, which is

well defined from σ ≥ 0. We want to prove that observer
(6) is still an exponentially convergent observer. In the
rest of this section we will consider the case in which the
measurement noise is not present, namely ν(t) = 0 for all
t ≥ 0. Comments about the behaviour of the observer (6)
in presence of measurement noise are given in Section 4.
The larger λ, the slower the reaction to the occurrence of
an outlier in the measurements. In practice, λ should be
taken to make `λ small enough to keep the threshold σ̄
small before the next outlier’s rise.

Proposition 1. Consider system (1) and observer (6) when
there is no measurement noise, namely ν(t) = 0 for all
t ≥ 0. Let k1, . . . , kn be fixed such that the all the roots of

sn + k1s
n−1 + . . .+ kn−1s+ kn

have (strictly) negative real part, and let λ > 0. There
exist ε? > 0 and `? ≥ 1 such that for each ε > ε? there
exist αi > 0, i = 1, 2, 3, and the following bound

|x̂i(t)− xi(t)| ≤ α1`
i−1 exp(−α2 ` t) |x̂(0)− x(0)|

+
α3

`n−(i−1)
|d|∞

(7)
holds for any ` ≥ `?, for all i = 1, . . . , n, for any t ≥ 0 and
for all initial conditions (x(0), x̂(0), σ(0)) ∈ X ×Rn×{0}.



Proof. First of all, note that, by picking any initial
condition σ(0) ≥ 0, we get σ(t) ≥ 0 for all t ≥ 0 so that
the observer dynamics generates complete solutions. Now
consider the following (standard) change of coordinates

ei :=
x̂i − xi
`i−1

, (8)

by which system (6) is transformed into

ė = `(A−KC)e+ `Kq + ∆

σ̇ = −` λσ + ` (λ+ ε) e>C>Ce, σ ≥ 0

q = Ce− satσ̄(Ce)

(9)

where we used the compact notation K := col(k1, . . . , kn),

A :=

(
0(n−1)×1 I(n−1)×(n−1)

0 01×(n−1)

)
, C :=

(
1 01×(n−1)

)
and ∆ := col(∆1, . . . ,∆n) with

∆i :=
1

`i−1

[
ϕ̂i(e1 + x1, `e2 + x2, . . . , `

i−1ei + xi, u)

−ϕi(x1, x2, . . . , xi, u)
]

for i = 1, . . . , n− 1 and

∆n :=
1

`n−1

[
ϕ̂n(e1 + x1, . . . , `

n−1en + xn, u)

−ϕn(x1, . . . , xi, u, d)
]
.

Note that, using (3) and (4), it is not hard to see that

|∆| ≤ L|e|+ `−(n−1)R d̄ , (10)

with d̄ = |d|∞ for some L > 0 (independent of `) and for
all x ∈ X, e ∈ Rn. By using the time-rescaling

t 7→ τ := ` t , (11)

system (9) reads

e′ = (A−KC)e+Kq + `−1∆

σ′ = −λσ + (λ+ ε)e>C>Ce, σ ≥ 0

q = Ce− satσ̄(Ce)

(12)

where e′ := de/dτ and σ′ := dσ/dτ . Now consider the
following Lyapunov function

V = e>Pe+ ζ σ + η max{e>C>Ce− σ, 0} , (13)

with P solution of

P (A−KC) + (A−KC)TP = −I ,
and η > ζ > 0 parameters to be chosen. Such a Lyapunov
function is locally Lipschitz and thus treatable by using
Clarke’s generalized gradient (Clarke, 1990) that, among
other things, enjoys useful and well-established properties
(see Clarke (1990, Theorem 2.5.1, p. 63 and corollary, p.
64) and also Teel and Praly (2000, p. 99)). Note that the
following inequality

λmin(P )|e|2 + ζσ ≤ V ≤ (λmax(P ) + η)|e|2 + ζσ (14)

holds for any e, σ. The function V is positive definite
with respect to the origin in the set Rn × R≥0 where the
dynamics is constrained. Indeed, the first term is positive
definite and the second term is non-negative. As mentioned
above, function V is non-differentiable in the zero measure
set where e>C>Ce−σ = 0. Below, we prove the results of
the proposition by establishing decrease of V wherever it

is differentiable. In particular, we split the analysis in two
cases.

Case 1: e>C>Ce < σ. In this case q = 0 and the dynamics
(12) reduces to

e′ = (A−KC)e+ `−1∆

σ′ = −λσ + (σ + ε)e>C>Ce, σ ≥ 0
(15)

and (13) specializes to V = e>Pe+ ζσ. As a consequence
its derivative is given by

V̇ = 2e>P ((A−KC)e+ `−1∆)

+ζ
(
−λσ + (λ+ ε) (Ce)2

)
≤ −|e|2 + 2`−1e>P∆− ζλσ + ζ(λ+ ε)|e|2 .

Furthermore, by using inequality (10) and standard
Young’s inequality we can write

2`−1e>P∆ ≤ 2`−1|e| |P | (L|e|+ `−(n−1)Rd̄)

≤ (1− a0)|e|2 +
c0
`2n

d̄2

with a0 and c0 defined as

a0 :=
3

4
− 2`−1|P |L , c0 := 4(|P |R)2 . (16)

As a consequence, we obtain

V̇ ≤ −(1− (1− a0)− ζ(λ+ ε))|e|2 − ζλσ +
c0
`2n

d̄2 ,

and therefore

V̇ ≤ −a1|e|2 − ζλ σ +
c0
`2n

d̄2 (17)

with a1 := a0 − ζ(λ + ε). It is easily seen that a1 > 0 by
choosing ζ small enough and ` large enough. For example,
let ζ be any positive real number satisfying

ζ <
1

8(λ+ ε)
. (18)

Then, for any ` ≥ `? with

`? := max{4|P |L, 1} , (19)

we get a0 > 1/4 and a1 > 1/8.

Case 2: e>C>Ce > σ. In this case q 6= 0 and V is com-
puted as V = V1 + V2 + V3 with

V1 = e>Pe, V2 = −(η − ζ)σ, V3 = η e>C>Ce,

with derivatives along dynamics (12) given by

V̇1 = 2e>P ((A−KC)e+ `−1∆ +Kq)

≤ −a0|e|2 + 2e>PKq +
c0
`2n

d̄2

with a0 and c0 defined as in (16). For the other two parts
of V , by recalling that ζ > η, we obtain

V̇2 = (η − ζ)[λσ − (λ+ ε)e>C>Ce]

≤ −(η − ζ)ε e>C>Ce

≤ −1

2
(η − ζ) ε e>C>Ce− 1

2
(η − ζ) ε σ ,

and finally

V̇3 = 2η e>C>Ce′

= 2η e>C>[C(A−KC)e+ `−1∆1 + k1 q]

≤ 2η |C(A−KC)||e|2 + 2η(L1`
−1 + k1)|Ce|2



where we used the following inequalities derived from the
sector properties of the saturations, from bound (3) with
i = 1, and from CK = k1:

|q| = |Ce− satσ̄(Ce)| ≤ |Ce| (20a)

|∆1| ≤ L1|Ce| (20b)

for all (x, e) ∈ X × Rn. By combining the above derived
bounds on V̇1, V̇2, and V̇3, and by using

2e>PKq ≤ η |e|2 + η−1|PK|2|Ce|2 ,
issued from (20), we finally get

V̇ = −a2|e|2 − a3 σ − (a3 − a4)|Ce|2 +
c0
`2n

d̄2 (21)

where
a2 := a0 − 2η(|C(A−KC)|+ 1)

a3 :=
1

2
(η − ζ)ε

a4 := η−1|PK|2 + 2η(L1`
−1 + k1) .

By imposing a2 > 1/8, a3 ≥ a4 and recalling that ` ≥ `?

with `? defined in (19), we obtain that η, ε, and ζ must be
chosen in order to satisfy the following set of inequalities

η <
1

8(2|C(A−KC)|+ 1)
, (22)

ε >
4|PK|2

η2
+ 8(L1 + k1) , (23)

ζ < min

{
η

2
,

1

8(λ+ ε)

}
. (24)

Combining the bounds. By combining (17) and (21) with
(22), (23), (24), we get that the bound

V̇ ≤ −1

8
(|e|2+8ρ0 σ)+

c0
`2n

d̄2 for almost all (e, σ) (25)

holds for any ` > `?, with

ρ0 < min

{
ζλ,

1

2
(η − ζ)ε

}
. (26)

By using (14) we also get

V̇ ≤ −ρ1V +
c0
`2n

d̄2 for almost all (e, σ) ,

for some ρ1 > 0 independent of `. As a consequence,
following the same derivations as in (Teel and Praly, 2000,
pp. 99), we get along any solution

V (τ) ≤ exp(−ρ1τ)V (0) +
c0

ρ1`2n
d̄2 .

Therefore, using again (14), recalling that σ(0) = 0 and
τ = ` t, we obtain

|e(t)| ≤ α1 exp(−α2`t)|e(0)|+ α3

`n
d̄

with α2 = ρ1/2, and for some α1 > 0, α3 > 0 independent
of `. Finally bounds |x̂i− xi| ≤ `i−1 |ei| and |e| ≤ |x| can
be used to get (7). �

4. EFFECT OF THE MEASUREMENT NOISE

In this section we consider the effect of the measurement
noise ν on the stubborn high-gain observer (6). The pro-
posed analysis follows standard Lyapunov approaches and
it is able to capture the L∞ gain between the measurement
noise ν and the error estimate. It is well known that this

analysis is in general too conservative. For instance, in
(Astolfi et al. (2016a)) it has been shown that this type of
analysis fails in capturing the low-pass filtering properties
of the high-gain observer. Even if the recent tool proposed
by Astolfi et al. (2016a) could be held to analyse the
sensitivity properties of observer (6) with respect to high
frequency measurement noise, this analysis would fail in
catching the effects of impulsive disturbances. For this
reason in this work we limit ourselves to study the L∞

gain and in particular we want to show that the bounds
for observer (6) are comparable with the bounds (5) one
can find for standard high-gain observers (2), showing that
the i-th error estimate x̂i−xi, is proportional to `i−1. More
details about how the stubborn high-gain observer behaves
in presence of measurement noise are shown in Section 5
through a simulation.

Proposition 2. Consider system (1) and observer (6) and
let k1, . . . , kn, `?, λ, ε be fixed according to Proposition 1.
Then there exists αi > 0, i = 1, 2, 3, 4, such that for any
` ≥ `? the following bound

|x̂i(t)− xi(t)| ≤ α1`
i−1 exp(−α2 ` t) |x̂(0)− x(0)|

+
α3

`n−(i−1)
|d|∞ + α4`

i−1|ν|∞
(27)

holds for all i = 1, . . . , n, for any t ≥ 0 and for all initial
conditions (x(0), x̂(0), σ(0)) ∈ X × Rn × {0}.

Proof. In the sequel we will follow the main steps of the
proof of Proposition 1. To begin with, consider the change
of coordinates (8), by which system (6) reads as

ė = `(A−KC)e+ `Kq + ∆ + `Kdq

σ̇ = −` λσ + ` (λ+ ε) (Ce)2 + ` (λ+ ε)[ν2 + 2νCe]

q := Ce− satσ̄(Ce)

dq := satσ̄(Ce)− satσ̄(Ce+ ν) .

(28)
Then, by applying the time rescaling (11), we get

e′ = (A−KC)e+Kq + `−1∆ +Kdq

σ′ = −λσ + (λ+ ε) (Ce)2 + (λ+ ε)[ν2 + 2νCe]
(29)

where as before we denoted e′ = de/dτ , σ′ = dσ/dτ . By
using the sector properties of the saturations we also have

|dq| = |satσ̄(Ce)− satσ̄(Ce+ ν)| ≤ |ν| ≤ ν̄ (30)

for all t ≥ 0 with ν̄ := |ν|∞. Finally, consider the Lyapunov
function V introduced in (13). Recall that the bound (25)
holds as long as ` ≥ `? and dq = 0. Moreover, it is not hard
to see that the term dq is introducing additional terms in
the derivative of V . As in the proof of Proposition 1, we
split the analysis in two parts.

Case 1: e>C>Ce < σ. In this case q = 0 and the dynamics
(29) reduces to

e′ = (A−KC)e+ `−1∆ +Kdq

σ′ = −λσ + (σ + ε)e>C>Ce+ (λ+ ε)[ν2 + 2νCe] .

(31)
Note that the second term of (13) is zero. As a conse-
quence, by using the bound (30) and the inequality (25),
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Fig. 1. Behaviour of the norm of the error dynamics |x̂(t) − x(t)| of the standard high-gain observer (red line) and of
the stubborn high-gain observer (blue line)

we get that the derivative of V along the solutions of (31)
is given by

V̇ ≤ − 1
8 |e|

2 − ρ0σ +
c0
`2n

d̄2
0 + 2e>PKdq

+ζ(λ+ ε)[ν2 + 2νCe]

≤ − 1
8 |e|

2 − ρ0σ +
c0
`2n

d̄2
0 + 2b1|e||ν|+ b2|ν|2

≤ − 1
16 |e|

2 − ρ0σ +
c0
`2n

d̄2
0 + b3ν̄

2

with

b1 := |P ||K|+ ζ(λ+ ε) , b2 := ζ(λ+ ε) ,

b3 := 16b21 + b2 ,

and a choice of ρ0 like in (26).

Case 2: e>C>Ce > σ. In this case q 6= 0 and V is given
by V = V1 + V2 + V3 as in the proof of Proposition 1. By
using the bound (30) and the inequality (25), we get that
the derivative of V along the solutions of (29) is given by

V̇ ≤ − 1
8 |e|

2 − ρ0σ +
c0
`2n

d̄2
0 + 2e>PKdq

−(η − ζ)(λ+ ε)[ν2 + 2νCe] + 2ηe>C>CKdq

≤ − 1
8 |e|

2 − ρ0σ +
c0
`2n

d̄2
0 + 2b4|e||ν|+ b5|ν|2

≤ − 1
16 |e|

2 − ρ0σ +
c0
`2n

d̄2
0 + b6ν̄

2

with
b4 := |P ||K|+ (η − ζ)(λ+ ε) + ηk1 ,

b5 := (η − ζ)(λ+ ε) ,

b6 := 16b24 + b5 .

Combining the bounds. Let b0 := max{b3, b6}. Using the

two previous inequalities on V̇ , we obtain that the follow-
ing inequality

V̇ ≤ − 1

16
|e|2 − ρ0σ +

c0
`2n

d̄2
0 + b0ν̄

2

holds for almost all (e, σ). By following the same argu-
ments used in the proof of Proposition 1, we also get

V (τ) ≤ exp(−ρ2τ)V (0) +
c0

ρ1`2n
d̄2 +

b0
ρ1
ν̄2

for some ρ2 > 0 independent of `. It is not hard to see that
we have also

|e(t)| ≤ α1 exp(−α2`t)|e(0)|+ α3

`n
d̄+ α4ν̄ ,

for some αi > 0, i = 1, 2, 3, 4 independent of `. Finally, the
bounds |x̂i − xi| ≤ `i−1 |ei| and |e| ≤ |x| can be used to
get (27). �

5. SIMULATION RESULTS

In the simulation we consider a forced Duffing oscillator
described by

ẅ = αw3 − βw + sin(ωt+ φ),

or alternatively, in the state space representation, by

ẋ1 = x2

ẋ2 = x3 − αx3
1 − βx1

ẋ3 = x4

ẋ4 = −ωx3

y = x1 + ν .

(32)

In the simulations, the parameters have been chosen as

α = 0.5 , β = 1.3 , ω = 3 ,

and the initial conditions x(0) = (1, 0, 0,−1)>. The pa-
rameters of the standard high-gain observer (2) have been
selected as follows:

k1 = 10 , k2 = 35 , k3 = 50 , k4 = 24 , ` = 4 .

The same choice is made for the stubborn high-gain
observer (6) where we have chosen λ = 0.1 and ε = 0.05.
In both observers the initial conditions coincide with the
origin.

The measurement noise ν(t) is zero until t = 2. Then at
t = 2 an impulsive disturbance of amplitude 1 occurs (thus



simulating an outlier). Finally, from time t = 5 we inject
a high-frequency measurement noise simulated by filtering
some white-noise with a high-pass filter.

Figure 1 shows the evolution of the norm of the estimation
error |x̂(t) − x(t)| for both observers. It is worth notic-
ing the remarkable feature that, while the transients are
slightly slowed down by the effect of the dynamics of the
saturations, the stubborn observer has better properties
in terms of rejection of outliers and in terms of peaking
phenomenon. The responses to high-frequency measure-
ment noise are comparable and do not show any significant
improvement/deterioration.

6. CONCLUSIONS

The stubborn design paradigm recently proposed by
Alessandri and Zaccarian (2016) in the context of linear
Luenberger observers to handle measurement outliers has
been extended to the case of nonlinear high-gain observers.
The special structure of the high-gain dynamics allows for
a natural selection of the “stubborn” parameters. More-
over, we show that the ISS properties of the estimation
error dynamics from disturbances and measurement noise
are not deteriorated as compared with the classical high-
gain observer case. Simulation results show desirable fea-
tures of the proposed construction in terms of rejection to
outliers and peaking reduction.

Finally, we remark that the proposed technique can be
applied without loss of generality also to other classes of
nonlinear observers, such as the ones proposed by Gauthier
and Kupka (2001) for systems in non-strict feedback form
(see pp. 95, Luenberger style observers) or the novel class
of low-power high-gain observers recently introduced by
Astolfi and Marconi (2015).
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