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Velocity-curvature patterns limit human-robot
physical interaction

Pauline Maurice1, Meghan E. Huber2, Neville Hogan2, and Dagmar Sternad3

Abstract—Physical human-robot collaboration is becoming
more common, both in industrial and service robotics. Co-
operative execution of a task requires intuitive and efficient
interaction between both actors. For humans, this means being
able to predict and adapt to robot movements. Given that
natural human movement exhibits several robust features, we
examined whether human-robot physical interaction is facilitated
when these features are considered in robot control. The present
study investigated how humans adapt to biological and non-
biological velocity patterns in robot movements. Participants
held the end-effector of a robot that traced an elliptic path
with either biological (two-thirds power law) or non-biological
velocity profiles. Participants were instructed to minimize the
force applied on the robot end-effector. Results showed that the
applied force was significantly lower when the robot moved with a
biological velocity pattern. With extensive practice and enhanced
feedback, participants were able to decrease their force when
following a non-biological velocity pattern, but never reached
forces below those obtained with the 2/3 power law profile.
These results suggest that some robust features observed in
natural human movements are also a strong preference in guided
movements. Therefore, such features should be considered in
human-robot physical collaboration.

Index Terms—Physical Human-Robot Interaction; Human
Factors and Human-in-the-Loop; Human-Centered Robotics

I. INTRODUCTION

THE physical separation between humans and robots is
starting to disappear, as robots move from a purely

secluded industrial context into the human world. Not only is
the workspace shared, but direct physical interaction — where
a human and a robot cooperatively work on a common task,
e.g. transporting a bulky or heavy object — is also becoming
more common. In the workplace, collaborative robots are
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used to extend human abilities by providing movement guid-
ance, weight compensation or strength enhancement, thereby
improving the accuracy of the gesture and/or reducing the
physical load on the worker [1]. Robots acting as human
partners also receive a lot of attention, both in industrial
robotics, e.g. coworkers such as the Baxter robot (Rethink
Robotics, Boston, MA, USA), and in service robotics, e.g.
robotic caregivers for elderly persons.

In human-robot co-manipulation tasks, physical interaction
is crucial both for task achievement and for the comfort of
the human. This raises the question of how to control the
robot to make the interaction efficient and intuitive. Lynch et
al. presented a framework to design passive guides for joint
load manipulation that optimize the human-robot cooperation
[2]. However, the optimality criterion was an assumption
and was not itself evaluated. For instance, when designing
a robotic guide for an arm movement, they used a principle
of unconstrained human movement to evaluate the optimality
of the interaction. While they were successful in proving the
optimality of their guide with respect to the chosen criterion,
the validity of the criterion per-se in the context of constrained
movement was left unaddressed.

In unconstrained situations, human arm movements show
several features that have remarkable robustness, such as a
speed-accuracy trade-off (Fitts’ law) [3] and a speed-curvature
relation, the so-called two-thirds power law [4], [5], [6]. Sev-
eral optimality principles have been proposed to generate these
features [7], such as minimum jerk [8], minimum endpoint
variance [9], and minimum torque change [10]. Some of these
features have also been observed in visual perception tasks
[11]. In human-human co-manipulation, Noohi et al. showed
that the minimum jerk principle also applied [12]. However, it
is not clear whether these principles in unconstrained move-
ments still hold when humans interact with a robot. Indeed,
Reed and Peshkin demonstrated that humans behaved differ-
ently in human-robot and human-human physical interaction,
even if the robot moved in human-like patterns [13]. This
raises the question whether programming robots according to
biological principles of movement can make the human-robot
interaction more successful.

Several studies have investigated how humans interpret
robot motion when observing a robot moving. Huber et al.
compared biological (minimum jerk of the end-effector) and
non-biological (trapezoidal profile in joint space) velocity pro-
files for a robot handing over objects to a human. They showed
that the reaction time of the human was significantly shorter
when the biological velocity profile was used [14]. Further,
participants felt safer with the biological velocity profile. De
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Momi et al. conducted a similar experiment and showed that
humans were able to distinguish between biological and non-
biological profiles in robot motion [15]. Bisio et al. demon-
strated that humans understood robot intentions as long as the
robot moves according to biological movement patterns [16].
Kupferberg et al. showed that human-like velocity profiles
facilitated the perception of a humanoid robot as an inter-
action partner [17]. Dragan and Srinivasa reported that, even
after familiarization, humans could not interpret “unnatural”
movements of a robot as easily as “natural” ones [18]. While
these studies suggest that using biological movement patterns
increases the efficiency of the human-robot cooperation, they
examined only visually-mediated interaction; there was no —
or very limited — physical interaction. When information is
provided continuously through haptic contact, consequences
might arise because sensory-motor delays are significantly
shorter (∼ 30ms) than delays in visuo-motor coordination
(∼ 250ms).

In physical human-robot cooperation, many studies have
focused on humans leading — or at least deciding — the
movement. In such cases, detection of human intention is
the primary concern so that the robot can select the best
assistance (e.g. [19], [20], [21]). However, there are other
situations that also require the robot to lead the movement.
Thus, it is important to understand how humans interpret
and adapt to robot movements when in physical contact with
the robot. Evrard and Kheddar observed that, in human-robot
shared object manipulation with obstacle avoidance, humans
did not trust the robot when it was leading the movement
[22]. They suggested that this could be caused by the non-
biological trajectories of the robot. To address this issue,
Corteville et al. compared three velocity profiles (minimum
jerk, triangular and rectangular) for the movement of a robot
assisting fast point-to-point movements [21]. They reported
that participants were able to move along with the minimum
jerk and triangular profiles, but that only the minimum jerk
profile felt natural. While interesting, this study was rather
qualitative, and participants could deviate from the robot’s
velocity profile.

This paper investigates quantitatively whether humans can
adapt to non-biological patterns in robot movements. We focus
on the case where the robot alone leads the movement, and
the human has to move along with the robot to the best of
his/her ability. We evaluate the physical interaction through the
human-robot interaction force. Specifically, we examine the
effect of different velocity patterns along a curved path traced
by a robot. In unconstrained movements the hand velocity is
related to the curvature of the path by the 2/3 power law.
If humans are unable to adapt to non-biological, velocity
patterns when the human only has to follow the robot, it will
demonstrate an important limitation to human adaptation in
human-robot physical interaction.

II. METHOD

A. Two-thirds Power Law

In natural drawing movements, numerous studies have
shown a systematic relation between the kinematics of the

hand motion and the geometric properties of the path [4], [5],
[6]. This principle of human movement, referred to as the two-
thirds power law, is described by the equation

v(t) = K

(
r(t)

1 + α r(t)

)β
(1)

where v is the tangential hand velocity, r the radius of
curvature of the path, K the velocity gain factor which depends
on the general tempo of the movement and on the length of
the segment, α a parameter ranging from 0 to 1, and β = 1/3.
When the trajectory has no inflection points, α = 0, the
relation can be simplified to

v(t) = K r(t)β (2)

This power law describes the observation that the hand ve-
locity along the path decreases when the path becomes more
curved, and increases when the path becomes straighter.

The initial formulation of the 2/3 power law used curvature
instead of radius of curvature, and angular velocity instead of
tangential velocity, with an exponent 2/3. Formulations with
the radius of curvature and tangential velocity are identical
but the exponent changes to 1/3. Even though the latter
formulation is more commonly used, the name 2/3 power law
persisted. To avoid confusion, we refer to this principle only
as the power law in the remaining paper.

B. Experimental Set-up

The study comprised two sets of experiments: Experiment 1
examined whether non-biological vs. biological velocity pat-
terns affected the human-robot interaction in a movement exe-
cuted jointly by a human and a robot; Experiment 2 examined
whether humans were able to learn non-biological velocity
patterns with extensive practice when executing a movement
jointly with a robot. The two experiments only differed in
their design while the task and apparatus were identical. Both
experiments were divided into 2 sub-experiments with slightly
different experimental conditions described hereafter (Exp. 1.A
and 1.B; Exp. 2.A and 2B).

1) Task: Participants were asked to trace a planar ellipse in
a horizontal plane jointly with a robotic arm which moved with
an imposed velocity profile. The elliptic path with its variable
curvature is a suitable test-bed since the power law robustly
describes velocity changes in natural human movement along
such a path by Eq. 2. Importantly, the movements of the
participants had no effect on the robot trajectory. Participants
held the end-effector of the robot, and were instructed to move
along with the robot in order to exert as little force as possible
on it. They were explicitly told to actively move with the
robot and not to passively let it drag their arm. With active
movement, participants had to compensate for their own arm
inertia. No visual display of the path was provided for tracking,
although participants saw the robot moving. Hence, they had
to rely on their proprioceptive and haptic sensation of the robot
motion.
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Fig. 1. Experimental set-up. Left: Top-down schematic view. The elliptic path
is displayed on the figure for clarity, but participants did not see any visual
display. Center: Participant performing the task. Right: Handle used in Exp.
1.B to decouple wrist and end-effector orientations.

2) Apparatus (Fig. 1): The robot was the HapticMaster R©,
a 3 DoFs robotic manipulandum (Moog, Nieuw-Vennep, The
Netherlands) [23] (the horizontal planar motion only used 2
DoFs). Participants stood and held the robot with a power
grip, through a knob-shaped user handle mounted on the end-
effector (Experiments 1.A, 2.A and 2.B). In Experiment 1.B,
participants held the robot through a vertical handle which
had a pivot joint around its vertical axis; thereby the robot
end-effector orientation and the participant’s wrist orientation
were decoupled. For each participant, the height of the robot
was adapted such that their forearm was approximately hor-
izontal when holding the handle at rest. Participants chose a
comfortable distance to the robot and were instructed not to
move their feet during a trial.

The robot traced out an elliptic path (major axis = 30 cm,
minor axis = 10 cm) in the horizontal plane. Each trial lasted
12 s where the robot drew the ellipse in counter-clockwise
direction, 4 times without stopping. 4 consecutive cycles
rendered sufficient data to afford elimination of initial and
terminal transients, while being short enough to limit fatigue
within a trial. The beginning of each trial was signaled by 3
short sounds, after which the robot started to move. The end
of the trial was marked by one short sound.

The force applied by participants on the user handle was
measured with a 3 DoFs force sensor mounted at the tip of
the robot arm. The participants’ force and the trajectory of the
robot end-effector were recorded at 700Hz. The robot was
controlled in position with a function of the Haptic Master
API equivalent to a Cartesian PD controller [23]. The desired
position of the robot was updated at 700Hz, and an internal
control loop ran at 2 kHz.

3) Participants: 10 young healthy adults participated in
Exp. 1.A, and 6 others participated in Exp. 1.B. 5 young
healthy adults participated in Exp. 2.A and 4 others partici-
pated in Exp. 2.B. All participants performed the task with
their right dominant hand. Participants (10 females and 8
males, aged 19–33) were biology and engineering college
students with no background in human-robot interaction. Par-
ticipants were naive to the purpose of the study and signed an
informed consent form approved by Northeastern University
Institutional Review Board prior to the experiment.

4) Design of Experiment 1: Each subject performed 8
different movement conditions, defined by 2 parameters: the

Fig. 2. Magnitude of the tangential velocity along the elliptic path for the
four velocity patterns. β is the exponent in the velocity-curvature relation in
Eq. 2. The color scale is based on the minimum and maximum values of the
velocity across all four conditions.

velocity pattern (4 levels) and the orientation of the ellipse (2
levels).

The velocity pattern defined the velocity profile of the robot
along the elliptic path, based on the relation between tangential
velocity and curvature according to Eq. 2. Four different
conditions were created with different values of β (Fig. 2). In
the standard condition, β = 1/3, the robot moved according
to the power law observed in voluntary human movements
(biological condition). In the exaggerated condition, β = 2/3,
the robot moved even faster — compared to the standard
condition — when the curvature was small (the path was
almost straight), and even slower when the curvature was high.
In the reverse condition, β = −1/3, the robot moved faster
when the path was curved and slower when the path was
almost straight. The constant condition corresponded to β = 0,
i.e. a constant tangential velocity along the whole path. In these
4 conditions, only one varying parameter β created biological
(standard), weakly non-biological (constant, exaggerated) and
strongly non-biological (reverse) patterns. The velocity gain
factor K (Eq. 2) was modified for each velocity pattern
condition to keep the ellipse period constant across conditions
and avoid confounding with overall movement speed (when
the length of the path is fixed, K determines the duration
of the full trajectory). Details of the calculation of K can
be found in [11]. The duration of a single ellipse cycle was
3 s, which corresponded to an average velocity close to the
preferred velocity of humans determined in pilot tests.

The orientation of the ellipse was defined by the direction
of the major axis: it was either aligned with the participant’s
frontal axis (X) or with his/her sagittal axis (Y) (Fig. 1).

Each participant performed 10 successive trials per con-
dition, for all 8 conditions. Each condition started with an
example trial in which the participant only observed the robot
to familiarize him/herself with the specific movement pattern.
Trials within a block of the same condition were separated
by a 5 s break; blocks were separated by a several-minute
break to avoid physical or mental fatigue. The order of the
8 conditions was counterbalanced across participants. The
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Fig. 3. Online visual feedback of the force applied on the robot provided
to participants of Exp. 2.B. The red bar moved vertically. F is the current
magnitude of the applied force, averaged over 80ms. F standard

RMS is the
average RMS force applied by the participant over 10 trials of the standard
(biological) condition. The success zone (white rectangle) was smaller than
F standard
RMS so that participants would not be tempted to plateau when they

reached the level of F standard
RMS .

experiment lasted about 1 hour per participant.
In Exp. 1.A, participants held the robot with the knob-

shaped handle. Exp. 1.B was a control experiment to test the
effect of the constrained wrist orientation imposed by the
knob-shaped handle. As the robot had only 2 DoFs in the
horizontal plane, the orientation of its end-effector, and of
the knob, changed with the position along the path. This
imposed a varying wrist orientation that might have affected
participants’ performance. Therefore, in Exp. 1.B, participants
held the robot with the vertical rotating handle that permitted
free rotation of their wrist (Fig. 1 right).

5) Design of Experiment 2: The two learning experiments
(Exp. 2.A and 2.B) tested only one condition where the ve-
locity along the path was constant and the major axis of the
ellipse was aligned with the X (frontal) axis. The constant
velocity condition was chosen because it is non-biological
and a plausible scenario for a robot control law. At the same
time, this pattern was not too challenging and biomechanical
limitations during high accelerations were less likely than in
the reverse case.

In both experiments, each participant performed a total of
200 trials, presented in blocks of 20 trials, separated by short
breaks. The entire session lasted about 1.5 hour per participant.

In Exp. 2.A, participants received no feedback on their
performance, as in Exp. 1.A and 1.B. In Exp. 2.B, participants
received online visual feedback of the force applied on the
robot (Fig. 3). A red bar moving vertically on a black screen
represented the magnitude of the force in the horizontal plane
(averaged over 80ms); participants were instructed to keep
the bar as low as possible on the screen. To encourage
participants, a success zone was indicated by a white rectangle.
The rectangle height was scaled for each participant based
on his/her average RMS force in the standard condition.
This baseline force level was measured in 10 standard trials
performed at the beginning of the practice session, without
any visual feedback.

C. Data Analysis

1) Dependent Variable: The efficiency of the human-robot
interaction was assessed by the force applied by participants
on the user handle of the robot in the horizontal plane
F =

√
f2x + f2y , where fx and fy are the components of the

force along the X and Y axes (see Fig. 1 for the definition
of the axes). Higher forces meant that the participant did not

anticipate or was unable to follow the robot movement. Thus
higher forces indicated a less intuitive interaction that entailed
more effort from the participant.

Performance in each trial was quantified by the root mean
square force over the trial FRMS . The first half of the first
ellipse and last half of the last ellipse were excluded from the
computation of FRMS to eliminate transients.

2) Statistical Analysis Experiment 1: A three-way repeated-
measures analysis of variance (within-subject ANOVA) was
conducted on the data of Exp. 1.A, with 3 fixed factors:
velocity pattern, orientation of the ellipse, and trial number.
Participants were entered as a random factor. Pairwise mul-
tiple comparison post-hoc tests with Bonferroni corrections
were also conducted between the different velocity patterns.
Exp. 1.B was analyzed with a four-way repeated-measures
ANOVA on the data of both Exp. 1.A and 1.B, with the same
3 fixed factors, plus handle as between-subject factor.

3) Statistical Analysis Experiment 2: In order to assess
whether performance improved with practice in Exp. 2, a linear
regression was fitted over the 200 trials of each participant, and
the slopes of the linear function were estimated. To assess
the level of performance at the end of the practice session
in Exp. 2.B, a pairwise-t-test was performed to compare the
last 10 constant (non-biological) trials of all participants with
their 10 standard (biological) trials executed at the beginning
of the experiment. Note that visual feedback of the force was
provided in the constant trials but not in the standard trials.

III. RESULTS

A. Experiment 1

1) Force Profiles Exp. 1.A: Fig. 4 shows the within-trial
evolution of the force applied by participants on the robot, in
both X and Y direction, for the 4 different velocity patterns.
Despite small variations, especially in magnitude, the force
pattern within each of the 4 velocity conditions was consistent
across participants1. In contrast, the force patterns across
velocity conditions were very different, indicating that the
velocity modulations of the robot along the path had a non-
negligible effect on human-robot interaction. The force profile
appeared smoothest and least variable across the cycle in the
standard (biological) condition, which suggests that partici-
pants better anticipated and followed the robot’s movement
in this condition. Sharp peaks in the force profile of the
three other conditions happened when the robot accelerated
or decelerated rapidly.

2) Statistical Results Exp. 1.A: Submitting the RMS force
to the ANOVA revealed a significant effect of velocity pattern
(F (3, 27) = 65.99, p < 0.001). This supports that the modula-
tion of the robot velocity affected the human-robot interaction,
independently from any other factors. The difference between
participants was also significant (F (1, 9) = 76.24, p < 0.001)
due to different baseline levels of force, as shown by each
participant’s average force profile in Fig. 4. One participant’s
force profile clearly lay outside the standard deviation area,

1The figure only displays the frontal axis ellipse orientation, but a similar
consistency is observed for the sagittal axis orientation, although with different
force profiles.
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Fig. 4. Within-trial evolution of the force applied by participants on the robot in Exp. 1.A for the four velocity patterns and for frontal axis (X) ellipse
orientation. Left column: Time-series of the force component along the frontal (X) axis. Middle column: Force component along the sagittal (Y ) axis. The
blue line and pink shaded zone represent the average force and standard deviation across all 10 trials and all participants. The gray lines represent individual
participant averages across all 10 trials. Only the second and third ellipse traversals are displayed since the first and last ellipses were affected by transients
(one trial consists of four continuous ellipses). Note that, for the sake of legibility, the force scale is different in the reverse condition. Right column: Force
vector along the elliptic path. Blue lines represent the across-trials and across-participants average force vectors during the third ellipse (sampling rate: 5ms).
The red line represents the elliptic path of the robot. The green dot marks the starting point on the ellipse (t = 6 s). The black arrow indicates the direction
of counter-clockwise motion. For legibility, the length of the displayed force vector is divided by 20 in all conditions.

both in the biological and non-biological conditions. The
ANOVA did not detect effects of orientation or trial number,
nor any interactions. If the pattern differences were only
due to biomechanical constraints, the two ellipse orientations
might have revealed differences (though this does not rule
out all biomechanical constraints). Finally, the absence of
differences across trials suggests that there was no learning
of the movement over the course of the 10 trials.

Post-hoc pairwise comparisons revealed that the RMS force
of the standard velocity pattern differed significantly from the
3 other velocity patterns (adjusted p-values: p = 0.014 for
standard vs. exaggerated, p = 0.003 for standard vs. constant,
p < 0.001 for standard vs. reverse). More specifically, Table I
shows that the force applied in the standard condition was
smaller than in any other conditions. The force magnitude in
the standard condition was 26% (SD = 14%) than in the
constant condition, 25% (SD = 15%) smaller that in the
exaggerated condition and 57% (SD = 12%) smaller than

TABLE I
RMS FORCE APPLIED BY PARTICIPANTS ON THE ROBOT FOR THE FOUR

VELOCITY PATTERNS OF EXPERIMENT 1.

Exp. 1.A Exp. 1.B
FRMS(N) FRMS(N)

Condition Mean Std Mean Std

standard 1.42 0.70 1.55 0.80

constant 1.96 0.89 2.07 0.93

exaggerated 1.94 0.91 1.96 1.10

reverse 3.29 1.03 3.28 1.14

in the reverse condition (average values computed across all
trials/participants/orientations).

3) Statistical Results Exp. 1.A and 1.B: To assess the effect
of the handle in Exp. 1.B, the RMS force of both experi-
ments (1.A and 1.B) was submitted to a four-way ANOVA
including handle as between-subject factor. The analysis did
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TABLE II
PER-PARTICIPANT SLOPE AND ITS 95 % CONFIDENCE INTERVAL OF THE
LINEAR FUNCTION FITTED ACROSS ALL 200 TRIALS OF EXP. 2.A AND B

N
o

vi
su

al
fe

ed
ba

ck

(E
xp

.2
.A

)

Participant 1 2 3 4 5

Slope 3.0 0.6 -2.4 2.4 0.3
(10−3 N/trial)

CI upper bound 4.1 0.8 -1.8 3.0 1.0
(10−3 N/trial)

CI lower bound 1.9 0.3 -2.9 1.8 -0.3
(10−3 N/trial)

W
ith

vi
su

al
fe

ed
ba

ck

(E
xp

.2
.B

)

Participant 6 7 8 9

Slope -2.1 -1.4 -8.6 -5.8
(10−3 N/trial)

CI upper bound -1.7 -0.8 -4.5 -4.9
(10−3 N/trial)

CI lower bound -2.4 -2.1 -10.0 -6.7
(10−3 N/trial)

not detect any effect between the two handle conditions.
The level of force applied by participants with the different
velocity patterns was similar with both handles (Table I). This
suggests that the results of Exp. 1.A were not a consequence
of the participant’s wrist constrained by the robot end-effector
orientation. All other results were similar to those of Exp. 1.A.
Specifically, the significant effect of velocity pattern was still
observed (F (3, 42) = 86.90, p < 0.001), and the p-values in
post-hoc pairwise comparisons were smaller than in Exp.1.A
given the larger number of participants.

B. Experiment 2

1) Performance Improvements: Fig. 5 displays the evolu-
tion of the RMS force across the 200 trials for each participant,
both with and without visual feedback, together with the fitted
regression lines. Table II summarizes the regression slopes, as
well as the 95 % confidence interval for the slope. Among
the five participants who did not receive visual feedback
(Exp. 2.A), only one showed a decrease in RMS force across
trials (Participant 3). The four other participants showed an
increase (not significant for Participant 5 since the 95 % CI
included the zero slope). Conversely, the four participants who
received visual feedback (Exp. 2.B) did show a significant
decrease in RMS force across trials (zero slope not included in
the 95 % CI). These results suggest that participants were able
to learn the non-biological movement, but only when visual
feedback about their force applied on the robot was provided.

2) Performance of the Non-Biological Profile after Prac-
tice: In Exp. 2.B (with visual feedback), pairwise t-test com-
parisons between the RMS force of the standard condition
before practice and the constant condition after practice did
not render any significant difference (p = 0.54). This suggests
that although participants improved their performance in the
non-biological profile with practice when guided with visual
feedback, they did not surpass their performance with the
biological profile, even without practice or feedback.

IV. DISCUSSION

The results of this study suggest that humans are better at
moving along with a robot that follows a biological velocity
pattern, compared to a non-biological one. The experiments
also show that humans are able to learn a non-biological
velocity pattern, but only with extensive practice and addi-
tional visual feedback. In addition, the observed improvement
is limited as the performance never surpasses that obtained
with a biological velocity pattern. This preference for biolog-
ical movement patterns in human-robot interaction had only
been demonstrated previously in visual interaction [14], [15],
[16], [17], [18]. Physical interaction was only investigated by
Corteville et al. but with a less quantitative approach and
without examining changes with practice [21]. Our results
nevertheless raise some questions that are discussed hereafter.

Effects of Arm Inertia: It may be argued that similar
differences in applied forces between the different velocity
patterns may have been obtained if participants had been
completely passive and only dragged by the robot. The RMS
force would be smallest with the biological profile because it
resulted in smoother movements and, hence, smaller inertial
force. To avoid this confound from passive movements, par-
ticipants were explicitly told to actively move along with the
robot. To verify whether participants followed this instruction,
3 participants were asked after the end of Exp. 1 to perform
5 trials of each condition in a totally passive manner. For
each condition, we performed pairwise correlations between
the continuous force profiles of active and passive trials.
As expected, the correlations between 2 active trials or 2
passive trials were very good (0.83 ± 0.09 for active trials
and 0.82±0.14 for passive trials). In contrast, the correlations
between active and passive trials were low (0.15 ± 0.35).
This finding shows that at least these 3 participants adopted
different strategies when they were instructed to actively move
along vs. to be passive and compliant. This suggests that in our
experimental trials, participants were not completely passive
and the observed results were produced by active movements.

Practice, Learning and Retention: The difference in the
evolution of the applied force with practice in Exp. 2.A vs.
2.B suggests that the haptic and proprioceptive sensation of
the applied force was not sufficient, or not sufficiently salient
given the low level of force, to induce learning. Participants
needed visual feedback to assess and guide their performance.
This is consistent with earlier findings on motor learning
which showed that when intrinsic feedback or knowledge of
results did not suffice to assess performance, failure to provide
augmented feedback led to degraded motor learning [24].

The improvement with practice observed in Exp. 2.B is
consistent with the general ability of humans to adapt to a wide
range of scenarios [25]. In human-robot interaction specifi-
cally, Dragan and Srinivasa observed a similar adaptation with
visual interaction (i.e. observation of the robot movement)
[18]. In their study, participants significantly improved their
ability to interpret unnatural movement patterns in a robot
after familiarization. Hence, the superior performance with
biological velocity patterns in Exp. 1 does not imply that less
biological patterns present a hard limit to human performance.
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Fig. 5. Evolution across trials of the RMS force for each participant in Exp. 2.A (upper row) and 2.B (lower row). The blue dots represent the individual
trials, and the red line is the fitted linear regression. Participants 1 to 5 did not receive visual feedback (Exp. 2.A) whereas Participants 6 to 9 received online
visual feedback of the force they applied on the robot (Exp. 2.B).

However, improvement in Exp. 2.B required extensive prac-
tice and performance also did not reach a plateau in the
1.5 hour-long practice. In addition, the same level of perfor-
mance was reached without any practice with a biological
velocity pattern. Given the long duration of Exp. 2, physio-
logical and/or psychological fatigue might have limited the
improvement. Fatigue could also explain the increase in RMS
force observed in Participant 1, 2 and 4 of Exp. 2.A. Yet, as
improvement required long practice, fatigue, both mental and
physical, was an inevitable confound. An additional critical
issue is retention, i.e. does improvement persist and transfer
to other scenarios after practice? In order to be used and
useful, robots interacting with humans should be controlled
in a way that makes the interaction intuitive and immediately
successful, without requiring any practice. Therefore, biolog-
ical movement patterns should be given preference.

Predictability and Effort: The forces at play in the
experiment presented are small and one may argue that the
differences in force between the non-biological and biological
conditions are not physically meaningful. However, there are
important arenas of robotic applications where sensitivity
to small forces is of high importance, such as in surgical
applications. Furthermore, the current measure only includes
the net external force applied by participants on the robot.
Yet, it is likely that non-biological movements also cause an
increase in antagonist muscle co-contraction, as the human
prepares him/herself for expected perturbations. Hence, fu-
ture work should also measure muscle activation to evaluate
joint stiffness or impedance under different velocity patterns.
Finally, even if not physically tiring, the incompatible and
possibly unpredictable changes in velocities lead to discomfort
and cognitive fatigue. A recent study showed that in complex
object control, predictability of the object dynamics was
a major determinant for human movement generation that
outweighed the minimization of force [26]. Hence, complex
interactions may introduce additional costs that are absent in
unconstrained movements.

Generalization to Other Movements: The present evalua-
tion of biological movement features in their effect on human-
robot physical interaction has only considered one specific ex-

ample: the 2/3 power law in elliptical shapes. Future work will
be directed towards showing our results also in more complex
movements patterns, such as Lissajous figures or cloverleaf
patterns, both in 2D and in 3D [27], [28]. Further, other robust
features have described different aspects of movements, such
as minimum jerk or speed-accuracy trade-off [8], [3]. Similar
tests should be performed to assess whether violation of these
principles in human-robot interaction also present obstacles to
successful co-manipulation.

V. CONCLUSION
This study aimed to assess whether humans can adapt to

non-biological patterns in robot movements when physically
interacting with a robot. Specifically, we focused on the ability
of humans to move along with a robot that followed either the
2/3 power law (biological pattern) or non-biological velocity
profiles during an elliptic movement. Experiment 1 showed
that humans performed with significantly smaller force against
the robot when the robot’s trajectory followed the 2/3 power
law. Despite individual variations in baseline performance,
all participants exhibited the same trends across the different
velocity patterns. Importantly, this was observed for both
orientations of the ellipse and both types of robot handles.
Experiment 2 showed that with extensive practice humans
were able to lower the force applied when the robot moved
with a non-biological (constant) velocity pattern, but only
when visual feedback of the applied force was provided.
Importantly though, even after extensive practice, the per-
formance in the non-biological pattern did not surpass the
performance obtained without any practice with the biological
pattern. The results of these two sets of experiments suggest
that principles of unconstrained human movement can give
important insight for physically guided movements.

It needs to be kept in mind that this study examined human-
robot collaboration in a limit case, where the robot was in
full control of the movement. This differs from most robotics
applications where the human at least partially controls the
movement. Evidently, collaboration aims to capitalize on the
human’s perceptive and cognitive abilities to enhance the
combined action. Nevertheless, even when the human can
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influence the robot motion, robotic assistance often relies on a
pre-defined model of the movement [2], [21]. As movements
that are optimal for humans might not be optimal for robots
(due to differences in actuators and sensors), understanding the
limitations of human adaptive abilities is important to facilitate
human-robot physical interaction.
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[21] B. Corteville, E. Aertbeliën, H. Bruyninckx, J. De Schutter, and
H. Van Brussel, “Human-inspired robot assistant for fast point-to-point
movements,” in Robotics and Automation, 2007 IEEE International
Conference on, pp. 3639–3644.

[22] P. Evrard and A. Kheddar, “Homotopy switching model for dyad haptic
interaction in physical collaborative tasks,” in EuroHaptics conference,
2009. IEEE, pp. 45–50.

[23] R. Van der Linde and P. Lammertse, “Hapticmaster–a generic force con-
trolled robot for human interaction,” Industrial Robot: An International
Journal, vol. 30, no. 6, pp. 515–524, 2003.

[24] A. W. Salmoni, R. A. Schmidt, and C. B. Walter, “Knowledge of results
and motor learning: a review and critical reappraisal.” Psychological
bulletin, vol. 95, no. 3, p. 355, 1984.

[25] R. Shadmehr and F. A. Mussa-Ivaldi, “Adaptive representation of
dynamics during learning of a motor task,” Journal of Neuroscience,
vol. 14, no. 5, pp. 3208–3224, 1994.

[26] B. Nasseroleslami, C. J. Hasson, and D. Sternad, “Rhythmic manipula-
tion of objects with complex dynamics: predictability over chaos,” PLoS
Comput Biol, vol. 10, no. 10, 2014.

[27] U. Maoz, A. Berthoz, and T. Flash, “Complex unconstrained three-
dimensional hand movement and constant equi-affine speed,” Journal
of neurophysiology, vol. 101, no. 2, pp. 1002–1015, 2009.

[28] T. Flash and A. A. Handzel, “Affine differential geometry analysis of
human arm movements,” Biological cybernetics, vol. 96, no. 6, pp. 577–
601, 2007.


