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ABSTRACT

The piecewise constant or homogeneous image reconstruc-

tion in the context of X-ray Computed Tomography is con-

sidered within a Bayesian approach. More precisely, the

sparse transformation of such images is modelled with heavy

tailed distributions expressed as Normal variance mixtures

marginals. The derived iterative algorithms (via Joint Max-

imum A Posteriori) have identical updating expressions, ex-

cept for the estimated variances. We show that the behaviour

of the each algorithm is different in terms of sensibility to

the model selection and reconstruction performances when

applied in Computed Tomography.

Index Terms— Normal variance mixtures, Bayesian in-

ference, sparsity enforcing priors, image reconstruction.

1. INTRODUCTION

The linear forward model considered in this paper is given by

{
g = Hf + ǫ

f = Dz + ξ
, (1)

where g represents the observed data, H represents the lin-

ear projection operator, f represents the image to be recon-

structed, ǫ accounts for errors and model uncertainties [15].

The piecewise continuous image f is expressed via a transfor-

mation D (such as Haar wavelet transform) of a sparse struc-

ture z accounting for the uncertainties ξ. The prior distribu-

tion of the sparse structure z is modelled by using heavy tailed

distributions expressed as marginals of Normal (N ) variance

mixtures [8], [2]. Conjugate priors are considered as the mix-

ing (M) distributions. Three categories of distributions are

considered: a) Inverse Gamma (IG) distribution, (Student-t

(St) prior) [9], [14], [7], [4], b) a particular case of the gener-

alized inverse Gaussian (GIG) distribution (Normal inverse

Gaussian (NIG) prior) [12], [10], [11] and c) Gamma (G)
distribution (Variance-Gamma (VG) prior) [1], [13].

Non-stationary independent Gaussian uncertainties model

is assumed with conjugate priors modelling their correspond-

ing variances. Figure (1) shows the structure of the hierarchi-

cal model and the likelihood and main prior laws proposed. In

this context, regardless of the prior, the corresponding hierar-

chical model has the same multivariate Normal distributions

assigned for (g|f ,vǫ), (f |z,vξ) and (z|vz). Consequently,

the posterior distribution

p(f , z,vǫ,vξ,vz|g) ∝p(g|f ,vǫ)p(f |z,vξ)p(z|vz)p(vǫ|θǫ)

p(vξ|θξ)p(vz|θz). (2)

will have a common part (formed by the product of the three

multivariate Normal distributions) regardless of the prior cho-

sen to enforce sparsity. This leads to identical analytical ex-

pressions for the estimates of f (respectively z) when Joint

Maximum A Posterior (JMAP) estimation is considered. De-

pending on the mixing distribution, different estimates corre-

spond to vǫ, vξ and vz . In this paper, first the theoretical sim-
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Fig. 1: Hierarchical model for forward model, Eq. (1).

ilarities and differences between the JMAP algorithms corre-

sponding to different M distributions are presented. Then, a

practical study of the JMAP estimation performances in the

context of X-ray Computed Tomography reconstruction for

different number of projections and different levels of noise.

Also, we investigate the behaviour of the algorithms in terms

of stability (relative to prior hyperparameters values, i.e. the

mixing distribution parameters) and convergency rate.

The rest of the paper is organized as follows. Sec. (2) provides

a brief presentations of the M distributions considered and

their corresponding (heavy tailed) priors. Sec. (3) presents



and compares the JMAP iterative algorithms corresponding

the M distributions considered. Simulations results and em-

pirical evaluations are presented in Sec. (4). Conclusions are

drawn in Sec. (5).

2. MIXING DISTRIBUTIONS AND PRIOR MODELS

The sparse structure of z is accounted by a prior model using

heavy-tailed distributions for each pixel zj . We focus on such

distributions that can be expressed as marginals of Normal

variance mixtures. In this context, the general prior model is

given by Eq. (3):

Prior Model:

{
p(zj |0, vzj ) = N (zj |0, vzj )
p(vzj |θz) = M(vzj |θz)

. (3)

Depending on the choice of the M distribution, a different

prior corresponds to p(zj|0, θz). In the following, a brief pre-

sentation of the M distributions considered and their corre-

sponding heavy-tailed prior distribution is given.

2.1. IG mixing distribution – St prior

Inverse Gamma is considered as the mixing distribution in

Eq. (3), M(vzj |θz) = IG
(
vzj |αz , βz

)
. The correspond-

ing hyperparameters are in this case θz = (αz, βz) and the

corresponding marginal of the joint probability distribution(
vzj |αz, βz

)
is a two-parameter St distribution:

p(zj|αz , βz) =
Γ(αz +

1

2
)√

2πβzΓ(αz)

(
1 +

z2j
2βz

)−(αz+
1

2
)

. (4)

Observation: Imposing αz = βz = νz/2 in the IG mixing

distribution leads to the standard St form with one parame-

ter [5].

2.2. GIG mixing distribution – NIG prior

In Eq. (3) the generalized inverse Gaussian is considered as

the mixing distribution,M(vzj |θz) = GIG
(
vzj |γ2

z , δ
2
z ,−1/2

)
.

The hyperparameters are θz =
(
γ2
z , δ

2
z

)
and the correspond-

ing marginal of the joint probability distribution
(
vzj |γ2

z , δ
2
z

)

is a zero location and asymmetry parameter NIG distribu-

tion:

p(zj|γz , δz) =
γzδzK1

(
γz
√
δ2z + z2j

)

π
√

δ2z + z2j

exp {γzδz} , (5)

where K1 denotes the modified Bessel function of the second

kind.

2.3. G mixing distribution – VG prior

In Eq. (3) Gamma is considered as the mixing distribution,

M(vzj |θz) = G
(
vzj |kz , θz

)
. In this case θz = (kz, θz) and

the joint probability distribution marginal is a zero location

and asymmetry parameter Variance-Gamma distribution:

p(zj |kz, θz) =
θ2kz
z |zj|kz−

1

2Kkz−
1

2

(kz |zj|)
√
πΓ (kz) (2θz)

kz−
1

2

. (6)

Observation: A particular case of the VG prior is the Laplace

prior, corresponding to Exponential mixing distribution [6].

Observation: GIG(x|2θ, δ ց 0, k) = G(x|k, θ); VG prior

can also be viewed as a Normal variance mixture with GIG
mixing distribution.

3. JMAP ESTIMATION

JMAP estimates the unknowns of the hierarchical model by

maximizing the posterior distribution, Eq. (??) or minimizing

the criterion L, defined by

L (f , z, vξ, vǫ, vz) = − ln p (f , z, vξ, vǫ, vz |g) (7)

For Normal variance mixture priors, the structure of the hier-

archical model, Fig. (1) is the same for p(g|f ,vǫ), p(f |z,vξ)
and p(z|vz) so the first part of the posterior distribution (and

the criterion L) is the same, regardless of the choice of the

M. Consequently, the estimates f̂ and ẑ have the same an-

alytical expressions. The minimization of the criterion L by

alternate optimization with respect to each unknown gives the

analytical expression:

f̂ =
(
HT V̂

−1

ǫ H + V̂
−1

ξ

)−1 (
HT V̂

−1

ǫ g + V̂
−1

ξ Dẑ
)

ẑ =
(
DT V̂

−1

ξ D + V̂
−1

z

)−1

DT V̂
−1

ξ f̂ , (8)

where

v̂ξ =
[
. . . v̂ξj . . .

]
; v̂ǫ = [. . . v̂ǫi . . .] ; v̂z =

[
. . . v̂zj . . .

]

V̂ ξ = diag [v̂ξ] ; V̂ ǫ = diag [v̂ǫ] ; V̂ z = diag [v̂z ] (9)

Introducing the notations

d(ξj) = f̂j −Djz ; d(ǫi) = gi −Hif ; d(zj) = zj, (10)

where fj denotes the jth element of f , Dj denotes the jth

line of D, gi denotes the ith element of g and H i denotes the

ith line of H , the analytical expressions of variance estimates



depending on mixing distribution are:

St: v̂ζk =
βζ +

1

2
d2(ζk)

αζ +
3

2

(11)

NIG: v̂ζk =

√
4 + γ2

ζ

(
δ2ζ + d2(ζk)

)
− 2

γ2
ζ

(12)

VG: v̂ζk =

√(
3

2
− kζ

)2
+ 2 1

θζ
d2(ζk)−

(
3

2
− kζ

)

2 1

θζ

(13)

where ζ = {ξ, ǫ, z} The JMAP iterative algorithms are pre-

sented in Fig (2).

f̂ , ẑ via (8)

v̂ξj ,v̂ǫi,v̂zj
via (11), (12) or (13) (St,NIG or VG prior)

V̂ ǫ,V̂ ξ,V̂ z via (9)

Fig. 2: Joint MAP iterative algorithm

4. SIMULATION RESULTS

X-ray CT piecewise constant images reconstruction problem

is addressed in this section. Results are reported for 2D and

3D simulations. The Shepp Logan phantom (2562 respec-

tively 2563) is used as the original image. The projections are

simulated uniformly between 0◦ and 180◦. The sparse rep-

resentation of the image is obtained via the multilevel Haar

transform. For 3D simulations, GPU is used. The normalised

mean square error (NMSE) is used for estimating the recon-

struction deviations. The results correspond for 50 iteration.

In the context of X-ray CT, the matrix H is not considered

explicitly but via the forward projection Hf and the back-

projection Htg operators. The estimations corresponding to

f and z Eq. (8) are computed using the gradient descent al-

gorithm, and the descent step length is obtained using an op-

timized step length strategy [3].

We report simulations results for 128, 64, 32 projections

and noise levels corresponding to SNR={40, 30, 20, 10}dB,

for which the normalized mean reconstruction error (NME)

‖f−
̂f‖2

‖f‖
is computed (Table (1) and (2)). For the 2D case, the

sensibility of the algorithms to the hyperparameters is inves-

tigated for all cases of levels of noise and numbers of projec-

tions by considering for each hyperparameter { 0.001, 0.01,

0.1, 1, 2.1, 10, 100 }.

Figure (3) presents the evolution of the NME during the

iterations for the three JMAP algorithms depending on the

hyperparameters, for 40dB (left column) and 30dB (right

column). The St prior presents a strong sensibility with
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Fig. 3: 2D study: JMAP algorithms reconstruction error

(NME) (y axis) during iterations (x axis) depending on the

hyperparameters.

respect to the hyperparameters, Figure (3a) and (3b), with

very different reconstruction performances. For the VG prior,

the influence of the hyperparameters is week, Figure (3c)

and (3d). For the NIG prior the reconstruction performances

depending on the hyperparameters are almost superposed,

Figure (3e) and (3f). A comparison between the three pri-

ors reconstruction NMEs during iterations, corresponding

to the experimental optimal hyperparameters is presented in

Figure (4) for 40dB (left) and 30dB (right) for 64 and 32
projections.
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Fig. 4: 2D study: JMAP algorithms NME (y axis) for the

optimal hyperparameters duiring iterations (x axis), 40dB and

30dB.



2D phantom size: 256*256

SNR 40dB 30dB 20dB

Prior St NIG VG St NIG VG St NIG VG
128proj 0.0124 0.0118 0.0127 0.0271 0.0311 0.0279 0.0833 0.1923 0.1561

64proj 0.0247 0.0227 0.0231 0.0373 0.0375 0.0343 0.1099 0.1724 0.1368

32proj 0.0396 0.0351 0.0358 0.0472 0.0454 0.0469 0.1163 0.1415 0.1186

Table 1: 2D case: NMSE of reconstructed phantom with 50 iterations corresponding to the three priors.

3D phantom size: 256*256*256

SNR 40dB 30dB 20dB

Prior St NIG VG St NIG VG St NIG VG
128proj 0.0744 0.0112 0.0326 0.0330 0.0309 0.0580 0.1031 0.1618 0.1451

64proj 0.0783 0.0175 0.0379 0.0552 0.0352 0.0623 0.1086 0.1517 0.1424

32proj 0.1283 0.0275 0.0357 0.1059 0.0406 0.0575 0.1219 0.1274 0.1258

Table 2: 3D case: NMSE of reconstructed phantom with 50 iterations and computation time (s) per iteration.

The 2D reconstruction performances for all levels of noise

and number of projections considered, corresponding to the

optimal hyperparameters are presented in Table (1). A differ-

ent behaviour of the priors is reported depending on the level

of noise. For 40dB and 30dB the reconstruction performances

are very similar. In particular, the NIG seems to give slightly

better performances for 40dB, for all cases of number of pro-

jections considered. However, for important levels of noise,

20dB, the reconstruction performances seems to be signifi-

cantly better for the St prior. The reconstructed 2D Shepp

Logan phantom corresponding to the three priors is presented

in Figure (5): 64 proj and 40dB in Figure (5a) and 32 proj and

20dB in Figure (5b).

(a) 2D: Original, St, NIG, VG (64 proj, 40dB)

(b) 2D: Original, St, NIG, VG (32 proj, 20dB)

Fig. 5: 2D reconstructions corresponding to St, NIG and VG

The 3D reconstruction performances for all levels of noise

and number of projections considered, corresponding to the

optimal hyperparameters are presented in Table (2). In the

3D case, the NIG seems to give better reconstruction perfor-

mances for 40dB and 30dB while the St prior seems to be

more appropriate for 20dB. The middle slice of reconstructed

3D Shepp Logan phantom corresponding to the three priors is

presented in Figure (6): 64 proj and 40dB in Figure (6a) and

32 proj and 20dB in Figure (6b).

(a) 3D middle slice: Original, St, NIG, VG (64 proj, 40dB)

(b) 3D middle slice: Original, St, NIG, VG (32 proj, 20dB)

Fig. 6: 3D reconstructions corresponding to St, NIG and VG

5. CONCLUSION

In this paper we have presented the JMAP algorithms corre-

sponding to three different prior models in the sparsity en-

forcing context. We have considered heavy tailed distribution

expressed as Normal variance mixture, showing that essen-

tially the updating equations have the same analytical expres-

sion, except for the variances appearing in the hierarchical

model. First we have showed different behaviours of the pri-

ors in terms of sensibility to the hyperparameters. Then we

have examined the reconstruction performances for 2D and

3D, Table (1) and (2) reporting that for different levels of

noise different priors seem to give better performances. A

study considering simulations results corresponding to other

phantoms and real tomographic data is currently in progress.

A more detailed study considering the sparsity rate associ-

ated with each prior depending on the hyperparameters needs



to be developed in order to investigate the reconstruction re-

sults corresponding to such hyperparameters. Also, the very

similar posterior mean estimation via Variational Bayesian

Approximation (VBA) are to be investigated and compared.

The main conclusion of this study is that for high SNR values

the NIG prior is very stable and gives slightly better perfor-

mances while for lower SNR values the St model has better

performances in terms of reconstruction.
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