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Abstract : Unsupervised iterative reconstruction algorithms based on a Bayesian approach for piecewise constant images are presented. Such images can be expressed via a sparse

representation and the reconstruction problem can be addressed using sparsity enforcing priors. We focus on sparsity enforcing priors expressed as Normal variance mixture, considering

three mixing distributions : Inverse Gamma distribution, corresponding to Student-t prior, general inverse Gaussian distribution with the real parameter fixed, corresponding to Normal-inverse

Gaussian prior and Gamma distribution corresponding to Variance-Gamma prior. We present and discuss the corresponding iterative algorithms considering the Joint Maximum A Posteriori

estimation showing simulations results for 3D X-ray Computed Tomography.

Data Typical discretized linear forward model for image re-

construction :

g = Hf + ǫ, (1)

Piecewise continuous images f can be expressed as a trans-

formation applied on a sparse structure z accounting for the

uncertainties,

f = Dz + ξ. (2)

inversion based on a Bayesian approach, building an hierar-

chical prior model accounting for the sparse structure of z,

using sparsity enforcing priors.

Hierarchical prior model
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Student-t prior expressed as a Normal variance mix-

ture, with the mixing distribution an IG distribution. The

Student-t Prior Model (StPM), considers a zero-mean N dis-

tribution for zj|vzj and an IG distribution for the variance

vzj|αz, βz, with the corresponding shape and scale parame-

ters, αz and βz :

StPM :




p(zj|0, vzj) = N (zj|0, vzj)
p(vzj|αz, βz) = IG(vzj|αz, βz)

(3)

The marginal of the joint probability distribution p(zj|αz, βz)
is a two parameters Student-t distribution with the probability

density :

p(zj|αz, βz) =
Γ(αz +

1
2)√

2πβzΓ(αz)

(
1 +

zj
2

2βz

)−(αz+
1

2
)
. (4)
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FIGURE 1 – Comparison between N and St distribution.

Normal Inverse Gaussian expressed as a Nor-

mal variance mixture with the mixing distribution a GIG
distribution with the real parameter fixed p = −1/2. The

Normal-Inverse Gaussian Prior Model (NIGPM), considers

zero-mean N distributions for zj|vzj, and generalized inverse

Gaussian distributions for the variances vzj|γ2
z, δ

2
z, with the

corresponding parameters γ2
z, δ

2
z and pz = −1/2 :

NIGPM :




p(zj|0, vzj) = N (zj|0, vzj)
p(vzj|γ2

z, δ
2
z) = GIG(vzj|γ2

z, δ
2
z, pz = −1

2)
(5)

The marginal of the joint probability distribution p(zj, |γz, δz)
is a NIG distribution with zero location and asymmetry β
parameters :

p(zj|γz, δz) =
γzδzK1

(
γz
√
δ2z + zj2

)

π
√
δ2z + zj2

exp {γzδz} , (6)

.
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FIGURE 2 – Comparison between N and NIG distribution.

Variance Gamma prior Gamma distribution consi-

dered as the mixing distribution for a Normal variance mix-

ture, leads to the Variance-Gamma distribution as prior. The

Variance-Gamma Prior Model (VGPM), Equation (7), consi-

ders zero-mean Normal distributions for zj|vzj, and Gamma

distributions with the corresponding shape and scale parame-

ters αz and βz for the variances vzj|αz, βz :

VGPM :




p(zj|0, vzj) = N (zj|0, vzj)
p(vzj|αz, βz) = G(vzj|αz, βz)

(7)

The marginal of the joint probability distribution p(zj|αz, βz)
is a VG distribution with the zero location and asymmetry pa-

rameters :

VG(x|α, β) =
β2α|x|α−1

2Kα−1

2

(α|x|)
√
πΓ (α) (2β)α−

1

2

. (8)
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FIGURE 3 – Comparison between the N and VG distribution.

JMAP iterative algorithm Unknowns estimated by

minimizing the criterion L :
(
f̂ , ẑ, v̂ξ, v̂ǫ, v̂z

)
= argmin
(f , z, vξ, vǫ, vz)

L (f , z, vξ, vǫ, vz) ,

(9)

where the criterion L is defined as :

L (f , z, vξ, vǫ, vz) = − ln p (f , z, vξ, vǫ, vz|g) (10)

Alternate optimization of the criterion L with respect to the

each unknown :

f̂ =
(
HT V̂ ǫ

−1H + V̂ ξ
−1
)−1 (

HT V̂ ǫ
−1g + V̂ ξ

−1Dẑ
)

ẑ =
(
DT V̂ ξ

−1D + V̂ z
−1
)−1

DT V̂ ξ
−1f̂

Update variances v̂ξj,v̂ǫi,v̂zj
St, NIG or VG prior

form
̂
V ǫ,

̂
V ξ,

̂
V z

FIGURE 4 – Joint MAP iterative algorithm
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Simulations results

FIGURE 5 – The Shepp Logan phantom (643) is used as the original

image. 128 projections are simulated uniformly between 0◦ and 180◦. For

the sparse representation of the image the multilevel Haar transform is

used. Slice comparison between the original volume (top left) and JMAP

reconstructed volumes St (top right), NIG (bottom left), VG (bottom

right). SNR=30dB.
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FIGURE 6 – Comparison of the normalized mean squared error (NMSE)

during iterations for the three prior models : St, NIG and VG.
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FIGURE 7 – Influence of the prior hyperparameters : NMSE vs. iterations

for St (top) NIG (middle) VG (bottom) priors

Conclusions Heavy tailed distributions expressed as

Normal variance mixtures were considered in order to ob-

tain analytical expressions for the unknowns of the model.

The prior models and their corresponding JMAP iterative al-

gorithms were developed and compared : the reconstruction

accuracy is similar for the three prior models considered, but

the rate of convergence is different and the sensibility to the

prior hyperparameters is different. This results are encoura-

ging. However we are now investigating methods to compute

the Posterior mean via Variational Bayesian Approximation

(VBA). The structure of the algorithms is the same but the

computations need the diagonal elements of the covariance

matrices which are too costly for 3D applications.


