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Unsupervised sparsity enforcing iterative algorithms

for 3D image reconstruction in X-ray Computed

Tomography
Mircea Dumitru, Nicolas Gac, Li Wang and Ali Mohammad-Djafari

Abstract—Unsupervised iterative reconstruction algorithms
based on a Bayesian approach for piecewise constant images are
presented in this paper. Such images can be expressed via a sparse
representation and the reconstruction problem can be addressed
using sparsity enforcing priors. We focus on sparsity enforcing
priors expressed as Normal variance mixture, considering three
mixing distributions: Inverse Gamma distribution, corresponding
to Student-t prior, general inverse Gaussian distribution with
the real parameter fixed, corresponding to Normal-inverse Gaus-
sian prior and Gamma distribution corresponding to Variance-
Gamma prior. We present and discuss the corresponding iter-
ative algorithms considering the Joint Maximum A Posteriori
estimation showing simulations results for 3D X-ray Computed
Tomography.

Keywords—sparsity, Normal variance mixtures, Bayesian infer-
ence, Computed Tomography

I. INTRODUCTION

A widely used discretized linear forward model in the
inverse problem approach for image reconstruction is given
by

g = Hf + ǫ, (1)

where g represents the N × 1 observed data, H represents
the N ×M linear projection operator, f represents the M × 1
image to be reconstructed and ǫ accounts for measurement
errors and model uncertainties. Piecewise continuous images
f can be expressed as a transformation applied on a sparse
structure z accounting for the uncertainties,

f = Dz + ξ. (2)

Equations (1) and (2) represent the linear forward model
considered during this paper. For Equation (2) different sparse
representations can be considered. In the sparsity context, two
main approaches have been successfully used for estimat-
ing the unknowns from Equations (1) and (2): deterministic
methods [5], [3] and the Bayesian approach [1]. For the
deterministic methods, an important issue is the choice of the
regularization parameter.
We consider an inversion based on a Bayesian approach,
building an hierarchical model, Subsection (II-A) accounting
for the sparse structure of z, using sparsity enforcing priors.
Sparsity enforcing priors expressed via conjugate distributions
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laws lead to analytical expressions for the unknowns of the
hierarchical model therefore we focus on heavy tailed Normal
(N ) variance mixtures: Student-t (St) prior, corresponding
to Inverse Gamma (IG) mixing distribution, Normal-inverse
Gaussian (NIG) distribution, corresponding to generalized in-
verse Gaussian (GIG) mixing distribution with real parameter
fixed, p = −1/2 and Variance-Gamma (VG) distribution corre-
sponding to Gamma mixing distribution (with particular case
Laplace (L) prior corresponding to Exponential (E) mixing
distribution), Subsection (II-B). The likelihood is obtained via
the considered linear forward model and the distributions cho-
sen to model the uncertainties ǫ and ξ. The hyperparameters
(i.e. the parameters of the assigned variance distributions, θǫ,
θξ and θz) are estimated along with the unknowns of the
forward model f and z and the corresponding variances vǫ,
vξ and vz from the posterior distribution obtained via the
proportionality given by the Bayes rule

p(f , z,vǫ,vξ,vz |g) ∝p(g|f ,vǫ)p(f |z,vξ)p(z|vz)p(vǫ|θǫ)

p(vξ|θξ)p(vz|θz).
(3)

The corresponding JAMP iterative algorithms are derived
and compared in Section (III). Details of the computations
can be found in [2] Simulation results for X-ray Computed
Tomography (CT) reconstruction are presented in Section (IV)
and conclusions are drawn in Section (V).

II. HIERARCHICAL MODEL AND NORMAL VARIANCE

MIXTURES

First, we briefly introduce the construction of the hier-
archical model corresponding to the linear forward model
Equations (1) and (2), in the context of Normal variance
mixtures priors, Subsection (II-A).Then we introduce the spar-
sity enforcing priors discussed, both corresponding to Normal
variance mixtures, Subsection (II-B).

A. Hierarchical model

The construction of the hierarchical model, Figure (1),
corresponding to the linear forward model, Equations (1)
and (2) is done using the assigned distributions. As mentioned,
we consider two Normal variance mixtures: therefore, in
both cases f , z are modelled as zero mean multivariate N
distribution, deriving the likelihoods via the linear forward
model. For the variances corresponding to the uncertainties
we consider the IG and the GIG distributions.
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Fig. 1: Hierarchical model corresponding to the linear forward
model, Eq. (1) and Eq. (2)

B. Normal variance mixtures

a) Student-t: The St distribution is a sparsity enforc-
ing distribution because of its heavy-tailed form. It can be
expressed as a Normal variance mixture, with the mixing
distribution an IG distribution. The comparison between the
standard N distribution N (x|0, 1) and the St distribution
St − t (x|0, 1) with one degree of freedom is presented in
Figure (2). The Student-t Prior Model (StPM), Equation (4),
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Fig. 2: Comparison between N and St distribution.

considers a zero-mean N distribution for zj |vzj
and an IG

distribution for the variance vzj
|αz, βz , with the corresponding

shape and scale parameters, αz and βz :

StPM:

{
p(zj |0, vzj

) = N (zj |0, vzj
)

p(vzj
|αz, βz) = IG(vzj

|αz , βz)
(4)

The marginal of the joint probability distribution p(zj |αz, βz)
is a two parameters Student-t distribution with the probability
density:

p(zj |αz, βz) =
Γ(αz +

1

2
)√

2πβzΓ(αz)

(
1 +

zj
2

2βz

)
−(αz+

1

2 )
. (5)

Observation: The standard St probability density function is
obtained by imposing the equality between the shape and scale

parameters αz = βz = νz/2 for the IG mixing distribution.
The form presented in Equation (5) allows the corresponding
variance to take any positive values, which is important in the
sparsity context.

b) Normal-inverse Gaussian: The NIG distribution is
expressed as a Normal variance mixture with the mixing
distribution a GIG distribution with the real parameter fixed
p = −1/2. The comparison between the standard N distri-
bution N (x|0, 1) and the NIG distribution NIG (x|0.1, 1) is
presented in Figure (3). The Normal-Inverse Gaussian Prior
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Fig. 3: Comparison between N and NIG distribution.

Model (NIGPM), Equation (6), considers zero-mean N dis-
tributions for zj |vzj

, and generalized inverse Gaussian distri-

butions for the variances vzj
|γ2

z , δ
2
z , with the corresponding

parameters γ2
z , δ2z and pz = −1/2:

NIGPM:

{
p(zj |0, vzj

) = N (zj |0, vzj
)

p(vzj
|γ2

z , δ
2
z) = GIG(vzj

|γ2
z , δ

2
z , pz = − 1

2
)

(6)
The marginal of the joint probability distribution p(zj , |γz, δz)
is a NIG distribution with zero location and asymmetry β
parameters:

p(zj |γz, δz) =
γzδzK1

(
γz
√
δ2z + zj2

)

π
√
δ2z + zj2

exp {γzδz} , (7)

where Kp denotes the modified Bessel function of the second
kind.
Observation: A great interest in the use of the Normal-inverse
Gaussian in the sparsity context is the possibility to control
the tail heaviness via the parameter γz .

c) Variance Gamma: Considering the Gamma distribu-
tion as the mixing distribution for a Normal variance mixture,
leads to the Variance-Gamma distribution as prior. The com-
parison between the standard Normal distribution N (x|0, 1)
and the Variance-Gamma distribution VG (x|0, 1) is presented
in Figure (4). The Variance-Gamma Prior Model (VGPM),
Equation (8), considers zero-mean Normal distributions for
zj |vzj

, and Gamma distributions with the corresponding shape
and scale parameters αz and βz for the variances vzj

|αz , βz:

VGPM:

{
p(zj |0, vzj

) = N (zj |0, vzj
)

p(vzj
|αz, βz) = G(vzj

|αz , βz)
(8)

The marginal of the joint probability distribution p(zj |αz , βz)
is a VG distribution with the zero location and asymmetry
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Fig. 4: Comparison between the N and VG distribution.

parameters:

VG(x|α, β) =
β2α|x|α− 1

2Kα− 1

2

(α|x|)
√
πΓ (α) (2β)

α− 1

2

. (9)

Observation: Evidently, GIG(x|2β, δ ց 0, α) = G(x|α, β) so
the VG prior can also be viewed as a Normal variance mixture
with GIG mixing distribution. Also, we mention that the a
particular case of the VG obtained via G mixing distribution
is L distribution, obtained via E mixing distribution.

III. ITERATIVE ALGORITHMS

In order the favour a sparse solution for z, Equation (2), we
consider the following sparsity enforcing priors, expressed as
Normal variance mixtures:

1) St via StPM, Equation (4), IG mixing distribution
2) NIG via NIGPM, Equation (6), GIG mixing distribution

(with fixed real parameter, pz = 1/2)
3) VG via VGPM, Equation (8), G mixing distribution

For JMAP estimation, the posterior distribution, Equation (3),
is used. Because of the use of the sparsity enforcing priors
expressed as Normal variance mixtures, for all prior models
considered the first part of the posterior distribution is the
same (i.e. p(g|f ,vǫ), p(f |z,vξ), p(z|vz)). The differences
between the resulting algorithms corresponds to the choice
of the mixing distribution: IG, GIG or G. Consequently, the
analytical expressions corresponding to f and z are the same.
Numerically, the differences are induced during the iterations
because of different expressions corresponding to variance es-
timates. Furthermore, different behaviours are associated with
each prior model in terms of sensibility to the hyperparameters
or rate of convergence. For JMAP, the unknowns are estimated
by maximizing the posterior distribution, or minimizing the
criterion L:(
f̂ , ẑ, v̂ξ, v̂ǫ, v̂z

)
= argmin

(f , z, vξ, vǫ, vz)
L (f , z, vξ, vǫ, vz) ,

(10)

where the criterion L is defined as:

L (f , z, vξ, vǫ, vz) = − ln p (f , z, vξ, vǫ, vz|g) (11)

The optimisation algorithm considered is an alternate opti-
mization of the criterion L (f , z, vξ, vǫ, vz) with respect
to the each unknown, leading to an interative algorithm,

f̂ =

(
HT V̂ ǫ

−1H + V̂ ξ
−1
)−1 (

HT V̂ ǫ
−1g + V̂ ξ

−1Dẑ
)

ẑ =

(
DT V̂ ξ

−1D + V̂ z
−1
)−1

DT V̂ ξ
−1f̂

Update variances v̂ξj ,v̂ǫi,v̂zj
St (12), NIG (13) or VG (14) prior

form V̂ ǫ,V̂ ξ,V̂ z

Fig. 5: Joint MAP iterative algorithm

Figure (5). Depending on the mixing distribution, the update
of the variances is done as it follows:

1) For IG mixing distribution (St prior)





v̂ξj =
βξ+

1

2 (f̂j−Djẑ)
2

αξ+
3

2

v̂ǫi =
βǫ+

1

2

(
gi−Hif̂

)
2

αǫ+
3

2

v̂zj
=

βz+
1

2
zj

2

αz+
3

2

(12)

2) For GIG mixing distribution (NIG prior)





v̂ξj =
2+

√
4+γ2

ξ
δ2
ξ(f̂j−Djẑ)

2

γ2

ξ

v̂ǫi =
2+

√

4+γ2
ǫ δ

2
ǫ

(
gi−Hif̂

)
2

γ2
ǫ

v̂zj
=

2+
√

4+γ2
zδ

2
zzj

2

γ2
z

(13)

3) For G mixing distribution (VG prior)





v̂ξj =
(αǫ−

3

2 )+
√
(αǫ−

3

2 )
2
+2βǫ(f̂j−Djẑ)

2

βǫ

v̂ǫi =
(αξ−

3

2 )+

√

(αξ−
3

2 )
2

+2βξ

(
gi−Hif̂

)
2

βξ

v̂zj
=

(αz−
3

2 )+
√
(αz−

3

2 )
2

+2βzzj
2

βz

(14)

f̂ j denotes the element i of vector f̂ , gi denotes the element
j of vector g, Hi denotes the line i of matrix H , Dj denotes
the line j of matrix D. For all three prior models, the variance
matrices are given by:

v̂ξ =
[
. . . v̂ξj . . .

]
; v̂ǫ = [. . . v̂ǫi . . .] ; v̂z =

[
. . . v̂zj

. . .
]

V̂ ξ = diag [v̂ξ] ; V̂ ǫ = diag [v̂ǫ] ; V̂ z = diag [v̂z]
(15)
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IV. SIMULATION RESULTS

For simulations the reconstruction of X-ray CT piecewise
constant images problem is considered. The Shepp Logan
phantom (2563) is used as the original image. 128 projec-
tions are simulated uniformly between 0◦ and 180◦. For
the sparse representation of the image the multilevel Haar
transform is used as in [4]. Figure (6) presents a typical
example result with the slice comparison between the original
volume and the reconstructed volumes corresponding to the
three prior models. Figure (7) presents the comparison of

Fig. 6: Slice comparison between the original volume (top left)
and JMAP reconstructed volumes St (top right), NIG (bottom
left), VG (bottom right). 643 phantom size, 128 projections,
SNR=30dB

the corresponding normalized mean squared error (NMSE)
during iterations for the three prior models: The JMAP iterative
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Fig. 7: NMSE during iterations: St, NIG and VG

algorithms corresponding to the three prior models have similar
performances in terms of reconstruction accuracy. However,
different rates of convergence correspond to the three prior
models. Figure (8) shows how the NMSE depends on the prior
hyperparameters for the three models. Very interestingly we
see that the two last prior models are less sensitive to their
corresponding hyperparameters.
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Fig. 8: Influence of the prior hyperparameters: NMSE vs.
iterations for St (top) NIG (middle) VG (bottom) priors

V. CONCLUSION

Sparsity enforcing iterative algorithms via a Bayesian ap-
proach were considered in this paper. Heavy tailed distributions
expressed as Normal variance mixtures were considered in
order to obtain analytical expressions for the unknowns of
the model. The prior models and their corresponding JMAP
iterative algorithms were developed and compared: the re-
construction accuracy is similar for the three prior models
considered, but the rate of convergence is different and the
sensibility to the prior hyperparameters is different. This results
are encouraging. However we are now investigating methods to
compute the Posterior mean via Variational Bayesian Approxi-
mation (VBA). The structure of the algorithms is the same but
the computations need the diagonal elements of the covariance
matrices which are too costly for 3D applications.
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