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Unsupervised iterative reconstruction algorithms based on a Bayesian approach for piecewise constant images are presented in this paper. Such images can be expressed via a sparse representation and the reconstruction problem can be addressed using sparsity enforcing priors. We focus on sparsity enforcing priors expressed as Normal variance mixture, considering three mixing distributions: Inverse Gamma distribution, corresponding to Student-t prior, general inverse Gaussian distribution with the real parameter fixed, corresponding to Normal-inverse Gaussian prior and Gamma distribution corresponding to Variance-Gamma prior. We present and discuss the corresponding iterative algorithms considering the Joint Maximum A Posteriori estimation showing simulations results for 3D X-ray Computed Tomography.

I. INTRODUCTION

A widely used discretized linear forward model in the inverse problem approach for image reconstruction is given by g = Hf + ǫ,

where g represents the N × 1 observed data, H represents the N × M linear projection operator, f represents the M × 1 image to be reconstructed and ǫ accounts for measurement errors and model uncertainties. Piecewise continuous images f can be expressed as a transformation applied on a sparse structure z accounting for the uncertainties,

f = Dz + ξ. (2) 
Equations ( 1) and [START_REF] Dumitru | Precise periodic components estimation for chronobiological signals through bayesian inference with sparsity enforcing prior[END_REF] represent the linear forward model considered during this paper. For Equation (2) different sparse representations can be considered. In the sparsity context, two main approaches have been successfully used for estimating the unknowns from Equations ( 1) and ( 2): deterministic methods [START_REF] Wipf | Iterative reweighted l 1 and l 2 methods for finding sparse solutions[END_REF], [START_REF] Hansen | The use of the l-curve in the regularization of discrete ill-posed problems[END_REF] and the Bayesian approach [START_REF] Dobigeon | Hierarchical bayesian sparse image reconstruction with application to mrfm[END_REF]. For the deterministic methods, an important issue is the choice of the regularization parameter.

We consider an inversion based on a Bayesian approach, building an hierarchical model, Subsection (II-A) accounting for the sparse structure of z, using sparsity enforcing priors. Sparsity enforcing priors expressed via conjugate distributions laws lead to analytical expressions for the unknowns of the hierarchical model therefore we focus on heavy tailed Normal (N ) variance mixtures: Student-t (St) prior, corresponding to Inverse Gamma (IG) mixing distribution, Normal-inverse Gaussian (N IG) distribution, corresponding to generalized inverse Gaussian (GIG) mixing distribution with real parameter fixed, p = -1/2 and Variance-Gamma (VG) distribution corresponding to Gamma mixing distribution (with particular case Laplace (L) prior corresponding to Exponential (E) mixing distribution), Subsection (II-B). The likelihood is obtained via the considered linear forward model and the distributions chosen to model the uncertainties ǫ and ξ. The hyperparameters (i.e. the parameters of the assigned variance distributions, θ ǫ , θ ξ and θ z ) are estimated along with the unknowns of the forward model f and z and the corresponding variances v ǫ , v ξ and v z from the posterior distribution obtained via the proportionality given by the Bayes rule

p(f , z, v ǫ , v ξ , v z |g) ∝p(g|f , v ǫ )p(f |z, v ξ )p(z|v z )p(v ǫ |θ ǫ ) p(v ξ |θ ξ )p(v z |θ z ). (3) 
The corresponding JAMP iterative algorithms are derived and compared in Section (III). Details of the computations can be found in [START_REF] Dumitru | Precise periodic components estimation for chronobiological signals through bayesian inference with sparsity enforcing prior[END_REF] Simulation results for X-ray Computed Tomography (CT) reconstruction are presented in Section (IV) and conclusions are drawn in Section (V).

II. HIERARCHICAL MODEL AND NORMAL VARIANCE

MIXTURES

First, we briefly introduce the construction of the hierarchical model corresponding to the linear forward model Equations ( 1) and (2), in the context of Normal variance mixtures priors, Subsection (II-A).Then we introduce the sparsity enforcing priors discussed, both corresponding to Normal variance mixtures, Subsection (II-B).

A. Hierarchical model

The construction of the hierarchical model, Figure [START_REF] Dobigeon | Hierarchical bayesian sparse image reconstruction with application to mrfm[END_REF], corresponding to the linear forward model, Equations (1) and ( 2) is done using the assigned distributions. As mentioned, we consider two Normal variance mixtures: therefore, in both cases f , z are modelled as zero mean multivariate N distribution, deriving the likelihoods via the linear forward model. For the variances corresponding to the uncertainties we consider the IG and the GIG distributions. considers a zero-mean N distribution for z j |v zj and an IG distribution for the variance v zj |α z , β z , with the corresponding shape and scale parameters, α z and β z :

✒✑ ✓✏ g ✒✑ ✓✏ f ✒✑ ✓✏ v ǫ p(g|f , v ǫ ) = N (g|Hf , v ǫ ) ❄ ✠ H p(f |z, v ξ ) = N (f |Dz, v ξ ) p(v ǫ |θ ǫ ) ✒ ❅ | IG(v ǫ |θ ǫ ) GIG(v ǫ |θ ǫ ) ✒✑ ✓✏ v ξ ✒✑ ✓✏ z θ ǫ ❅ ❅ ❅ |❄ ❄ D p(z|v z ) = N (z|0, v z ) p(v ξ |θ ξ ) ❅ ■ ✠ IG(v ξ |θ ξ ) GIG(v ξ |θ ξ ) θ ξ ✒✑ ✓✏ v z ❄ ❄ p(v z |θ z ) ✒ ❅ | IG(v z |θ z ) GIG(v z |θ z ) θ z ❄ g = Hf + ǫ f = Dz + ξ
StPM: p(z j |0, v zj ) = N (z j |0, v zj ) p(v zj |α z , β z ) = IG(v zj |α z , β z ) (4) 
The marginal of the joint probability distribution p(z j |α z , β z ) is a two parameters Student-t distribution with the probability density: 

p(z j |α z , β z ) = Γ(α z + 1 2 ) √ 2πβ z Γ(α z ) 1 + z j 2 2β z -(αz + 1 2 ) . (5 
NIGPM: p(z j |0, v zj ) = N (z j |0, v zj ) p(v zj |γ 2 z , δ 2 z ) = GIG(v zj |γ 2 z , δ 2 z , p z = -1 2 ) (6)
The marginal of the joint probability distribution p(z j , |γ z , δ z ) is a N IG distribution with zero location and asymmetry β parameters:

p(z j |γ z , δ z ) = γ z δ z K 1 γ z δ 2 z + z j 2 π δ 2 z + z j 2 exp {γ z δ z } , (7) 
where K p denotes the modified Bessel function of the second kind.

Observation: A great interest in the use of the Normal-inverse Gaussian in the sparsity context is the possibility to control the tail heaviness via the parameter γ z . c) Variance Gamma: Considering the Gamma distribution as the mixing distribution for a Normal variance mixture, leads to the Variance-Gamma distribution as prior. The comparison between the standard Normal distribution N (x|0, 1) and the Variance-Gamma distribution VG (x|0, 1) is presented in Figure [START_REF] Wang | Computed tomography reconstruction based on a hierarchical model and variational Bayesian method[END_REF]. The Variance-Gamma Prior Model (VGPM), Equation (8), considers zero-mean Normal distributions for z j |v zj , and Gamma distributions with the corresponding shape and scale parameters α z and β z for the variances v zj |α z , β z :

VGPM: p(z j |0, v zj ) = N (z j |0, v zj ) p(v zj |α z , β z ) = G(v zj |α z , β z ) (8) 
The marginal of the joint probability distribution p(z j |α z , β z ) is a VG distribution with the zero location and asymmetry parameters:

VG(x|α, β) = β 2α |x| α-1 2 K α-1 2 (α|x|) √ πΓ (α) (2β) α-1 2 . ( 9 
)
Observation: Evidently, GIG(x|2β, δ ց 0, α) = G(x|α, β) so the VG prior can also be viewed as a Normal variance mixture with GIG mixing distribution. Also, we mention that the a particular case of the VG obtained via G mixing distribution is L distribution, obtained via E mixing distribution.

III. ITERATIVE ALGORITHMS In order the favour a sparse solution for z, Equation ( 2), we consider the following sparsity enforcing priors, expressed as Normal variance mixtures:

1) St via StPM, Equation ( 4), IG mixing distribution 2) N IG via NIGPM, Equation ( 6), GIG mixing distribution (with fixed real parameter, p z = 1/2) 3) VG via VGPM, Equation (8), G mixing distribution For JMAP estimation, the posterior distribution, Equation (3), is used. Because of the use of the sparsity enforcing priors expressed as Normal variance mixtures, for all prior models considered the first part of the posterior distribution is the same (i.e. p(g|f , v ǫ ), p(f |z, v ξ ), p(z|v z )). The differences between the resulting algorithms corresponds to the choice of the mixing distribution: IG, GIG or G. Consequently, the analytical expressions corresponding to f and z are the same. Numerically, the differences are induced during the iterations because of different expressions corresponding to variance estimates. Furthermore, different behaviours are associated with each prior model in terms of sensibility to the hyperparameters or rate of convergence. For JMAP, the unknowns are estimated by maximizing the posterior distribution, or minimizing the criterion L:

f , z, v ξ , v ǫ , v z = arg min (f , z, v ξ , vǫ, vz) L (f , z, v ξ , v ǫ , v z ) , (10) 
where the criterion L is defined as:

L (f , z, v ξ , v ǫ , v z ) = -ln p (f , z, v ξ , v ǫ , v z |g) (11)
The optimisation algorithm considered is an alternate optimization of the criterion L (f , z, v ξ , v ǫ , v z ) with respect to the each unknown, leading to an interative algorithm,

f = H T V ǫ -1 H + V ξ -1 -1 H T V ǫ -1 g + V ξ -1 D z z = D T V ξ -1 D + V z -1 -1 D T V ξ -1 f Update variances v ξ j , v ǫ i , v z j St (12), N IG (13) or VG (14) prior form V ǫ , V ξ , V z
Fig. 5: Joint MAP iterative algorithm Figure [START_REF] Wipf | Iterative reweighted l 1 and l 2 methods for finding sparse solutions[END_REF]. Depending on the mixing distribution, the update of the variances is done as it follows: 1) For IG mixing distribution (St prior)

               v ξj = β ξ + 1 2 ( f j -Dj z) 2 α ξ + 3 2 v ǫi = βǫ+ 1 2 gi-H i f 2 αǫ+ 3 2 v zj = βz+ 1 2 zj 2 αz + 3 2 (12) 2) For GIG mixing distribution (N IG prior)                  v ξj = 2+ 4+γ 2 ξ δ 2 ξ ( f j -Dj z) 2 γ 2 ξ v ǫi = 2+ 4+γ 2 ǫ δ 2 ǫ gi-H i f 2 γ 2 ǫ v zj = 2+ √ 4+γ 2 z δ 2 z zj 2 γ 2 z (13) 3) For G mixing distribution (VG prior)                  v ξj = (αǫ-3 2 )+ (αǫ-3 2 ) 2 +2βǫ( f j -Dj z) 2 βǫ v ǫi = (αξ-3 2 )+ (αξ-3 2 ) 2 +2β ξ gi-H i f 2 β ξ v zj = (αz-3 2 )+ (αz-3 2 ) 2 +2βzzj 2 βz ( 14 
)
f j denotes the element i of vector f , g i denotes the element j of vector g, H i denotes the line i of matrix H, D j denotes the line j of matrix D. For all three prior models, the variance matrices are given by:

v ξ = . . . v ξj . . . ; v ǫ = [. . . v ǫi . . .] ; v z = . . . v zj . . . V ξ = diag [ v ξ ] ; V ǫ = diag [ v ǫ ] ; V z = diag [ v z ] (15) 
IV. SIMULATION RESULTS

For simulations the reconstruction of X-ray CT piecewise constant images problem is considered. The Shepp Logan phantom (256 3 ) is used as the original image. 128 projections are simulated uniformly between 0 • and 180 • . For the sparse representation of the image the multilevel Haar transform is used as in [START_REF] Wang | Computed tomography reconstruction based on a hierarchical model and variational Bayesian method[END_REF]. V. CONCLUSION Sparsity enforcing iterative algorithms via a Bayesian approach were considered in this paper. Heavy tailed distributions expressed as Normal variance mixtures were considered in order to obtain analytical expressions for the unknowns of the model. The prior models and their corresponding JMAP iterative algorithms were developed and compared: the reconstruction accuracy is similar for the three prior models considered, but the rate of convergence is different and the sensibility to the prior hyperparameters is different. This results are encouraging. However we are now investigating methods to compute the Posterior mean via Variational Bayesian Approximation (VBA). The structure of the algorithms is the same but the computations need the diagonal elements of the covariance matrices which are too costly for 3D applications.
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