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Model selection in the sparsity context for
inverse problems in Bayesian framework

Mircea Dumitru and Li Wang and Ali Mohammad-Djafari and Nicolas Gac

Abstract The Bayesian approach is considered for inverse problems with a typical
forward model accounting for errors and a priori sparse solutions. Solutions with
sparse structure are enforced using heavy tailed prior distributions. The particular
case of such prior expressed via normal variance mixtures with conjugate laws for
the mixing distribution is the main interest of this paper. Such a prior is considered
in this paper, namely the Student-t distribution. Iterative algorithms are derived via
posterior mean estimation. The mixing distribution parameters appear in updating
equations and are also used for the initialization. For the choice of mixing distri-
bution parameters, three model selection strategies are considered: i) parameters
approximating the mixing distribution with Jeffrey law, i.e. keeping the mixing dis-
tribution well defined but as close as possible to the Jeffreys priors, ii) based on
prior distribution form, fixing the parameters corresponding to the form inducing
the most sparse solution and iii) based on sparsity mechanism, fixing the hyperpa-
rameters using the statistical measures of the mixing and prior distribution. For each
strategy of model selection, the theoretical advantages and drawbacks are discussed
and the corresponding simulations are reported for a 1D direct sparsity application
in a biomedical context.

1 Introduction

In this paper, we compare three model selection strategies for a particular context
of the Bayesian approach for inverse problems. More precisely, we consider a lin-
ear model describing the forward problem and the available prior information the
sparse structure of the unknown. The sparse structure is modeled via heavy tailed
priors (P), well known in the literature for enforcing sparsity [7], [1], [3]. The
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particular class of priors considered in this article is the zero mean normal variance
mixtures. The unknowns are estimated using the Posterior Mean (PM) estimation
via Variational Bayesian Approximation (VBA), [10], [2]. Typically, the initializa-
tion of the derived iterative algorithm is done using the hyperparameters [4], i.e. the
mixing distributions (M ) parameters. Therefore, the model selection is a crucial
step in such algorithms. In this specific context, three different strategies for model
selection are considered and compared for the particular Student-t prior case.
We consider the linear forward model,

g = H f + ε, (1)

where g represents the N×1 observed data, H represents a N×M measurement ma-
trix, f represents the unknown sparse signal and ε accounts for measurement and
modeling errors. In this paper, the sparsity is accounted in the Bayesian hierarchical
prior models framework, using sparsity enforcing prior distributions to model f j,
j ∈ {1, . . . ,M}, [7], [8]. For computational reasons we consider heavy tailed distri-
butions expressed via zero mean normal variance mixtures with conjugate priors as
mixing distributions, {

p( f j | v f j) = N ( f j | 0, v f j)

p(v f j | ξ f ) = M (v f j | ξ f )
, (2)

where ξ f represents the parameters of the mixing distribution. In this article, the
Inverse Gamma distribution (I G ), corresponding respectively to the two parame-
ters Student–t (S t) distribution will be considered for simulations results and com-
parisons between the different model selection strategies considered. However, the
framework is general and can be used for other sparsity enforcing priors expressed
as normal variance mixture, e.g. the Normal–Inverse Gaussian (N I G ) distribu-
tion and the Variance–Gamma (V G ) distribution. The non-stationary independent
Gaussian uncertainties model is assumed with conjugate priors modeling the vari-
ances, {

p(ε i | vε i) = N (ε i | 0, vε i)

p(vε i | ξ ε) = M (vε i | ξ ε)
, (3)

where ξ ε represents the parameters of the mixing distribution. For the derived it-
erative algorithms, the parameters of the posterior mixing distributions ξ̂ f and ξ̂ ε

modeling variances v f j and vε i , have updating expressions depending on ξ f and ξ ε .
The model selection i.e. the choice of prior mixing parameters ξ f and ξ ε is there-
fore crucial in the context of non-supervised algorithms. In practice, such algorithms
can be obtained by considering non-informative prior mixing distributions, i.e. con-
sidering the Jeffreys prior as the mixing distribution (more exactly, conserving the
conjugate prior setting, using the conjugate prior with parameters values ξ f and ξ ε

such that the corresponding mixing prior is close to Jeffreys prior). This approach
was successfully used in [9].
Two other model selection approaches accounting for the sparsity particular context
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and the specific sparsity enforcing priors used are considered. The first one is based
on the form of the prior distribution, i.e. a model selection strategy considering the
parameters for which the prior distribution is as concentrated as possible around the
mean. For the second one, we first show that the variance of the posterior distribu-
tion Var[P], modeling f is linked with the expectation of the M distribution E[M ],
modeling the corresponding variance v f . More precisely

Var[P] ( f j) = E[M ]

(
v f j

)
. (4)

Secondly, we consider a small variance for the prior distribution, i.e. Var[P] ( f j) =
ε ↘ 0 in order to impose a model that is concentrating the points f j around the
zero mean. Clearly, doing this, via Eq. (4), the expectation of the mixture distribu-
tion has the same value and doing the same for the mixture distribution variance,
Var[M ]

(
v f j

)
= ω ↘ 0 will impose a sparse structure for v f , with small values v f j

corresponding to the small values f j and significant values v f j corresponding to the
significant values f j. A sparse structure is therefore enforced by:

1. considering a heavy tailed prior distribution.
2. setting a small variance for prior distribution, Var[P] ( f j) = ε ↘ 0.
3. enforcing a sparse structure for v f by setting a small variance also for the mixing

distribution Var[M ]

(
v f j

)
= ω ↘ 0.

The rest of the paper is organized as follows. Sec. (2) is introducing the general
hierarchical prior model, setting the context of the particular class of sparsity en-
forcing prior used, and presenting the normal variance mixtures considered during
paper and their behaviour depending on the parameters. The corresponding PM al-
gorithms are developed in Sec. (3). Empirical evaluations of performances and com-
parisons between the results corresponding to the two approaches for modeling the
hyperparameters are presented in Sec. (4). Conclusions are drawn in Sec. (5).

2 Hierarchical prior models based on normal variance mixtures

The framework of the hierarchical prior model discussed in this paper, Fig. (1), is
based on sparsity enforcing prior distributions expressed as marginals of normal
variance mixtures and non-stationary independent Gaussian uncertainties (noise)
model with conjugate priors modeling the variances. The posterior distribution
writes

p( f , vε , v f | g) ∝ N (g | H f ,vε) N
(

f | 0,v f
)

M (v f j | ξ f ) M (vε i | ξ ε). (5)

In this specific framework, the product of the two conditional distributions p(g | f ,vε)=
N (g | H f ,vε) and p

(
f | v f

)
= N

(
f | 0,v f

)
is common to the posterior distribu-

tion, while the differences are induced by the choice of the mixing distributions
p(v f j | ξ f ) = M (v f j | ξ f ) and p(vε i | ξ ε) = M (vε i | ξ ε). We consider in the fol-
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Fig. 1: Hierarchical prior model for forward model, Eq. (1).

lowing the particular case of the Student–t prior expressed as a normal variance
mixture.

2.1 Inverse Gamma mixing distribution

In Eq. (2), the Inverse Gamma is considered as the mixing distribution, M (v f j |
ξ f ) = I G

(
v f j | α f ,β f

)
, with the probability density function given by:

I G
(
v f j | α f ,β f

)
=

β
α f
f

Γ
(
α f
)v
−α f−1
f j

exp

(
−

β f

v f j

)
, α f > 0, β f > 0, (6)

where Γ (·) denotes the Gamma function. The corresponding hyperparameters are
ξ f =

(
α f ,β f

)
and the corresponding prior p

(
f j | α f ,β f

)
is a two-parameter S t

distribution:

p( f j | α f ,β f ) =
Γ (α f +

1
2 )√

2πβ f Γ (α f )

(
1+

f j
2

2β f

)−(α f +
1
2 )

= S t( f j | α f ,β f ). (7)

α f = β f = ν f /2 corresponds to the standard S t form, [4]. The expectation of mix-
ing distribution I G (equal to the variance of the S t distribution) and the variance
of the mixing distribution I G are given by

E[I G ]

(
v f j

)
= Var[S t] ( f j) =

β f

α f −1
;Var[I G ]

(
v f j

)
=

β 2
f(

α f −1
)2 (

α f −2
) , (8)

with α f > 1 for the first equality and α f > 2 for the second one. This model gives
the possibility to consider a heavy tailed distribution to model the sparse structure of
f . It is expressed via the Normal distribution and a conjugate prior, which has great
computational advantages, guaranteeing the same family distributions for the pos-
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terior distributions. The choice of the (prior) parameters α f and β f plays a crucial
role. Different approaches can be considered to chose the parameters.

1. An approach based on the prior distribution form, imposing a small value for β f
and a large value for α f . Establishing how small or how large the parameters
should be setted is difficult.

2. Close to Jeffreys prior, setting both parameters close to zero. As before, the same
difficulty of establishing how close to zero the parameters should be fixed is
encountered.

3. Using Eq. (8) to fix the parameters depending on the mixing and prior distribution
moments. The relation between α f and β f parameters and the moments ε and ω

is given by

α f = 2+
ε2

ω
; β f = ε

(
1+

ε2

ω

)
. (9)

This model selection is based on the data characteristics, i.e. the sparse structure.
However, the same difficulty appears for establishing how small should ε and ω

be.

Table (1) resumes the three strategies considered for model selection.

Parameters Mixing distribution Prior distribution Moments
α f ↘ 0; β f ↘ 0 I G

(
v f j | α f ,β f

)
S t
(

f j | α f ,β f
)

not defined
Simulates the Jeffreys prior and has the advantages of a conjugate prior distribution but
is difficult to measure how close to 0 should the two parameters should be chosen.

α f ↗ ∞; β f ↘ 0 I G
(
v f j | α f ,β f

)
S t
(

f j | α f ,β f
)

not defined
Advantages of a conjugate prior law, parameters chosen in accordance with their influence on
the distribution form but difficult to measure how close to ∞ (0) should α f (β f ) be fixed

α f = 2+ ε2

ω
; β f = ε

(
1+ ε2

ω

)
I G

(
v f j | α f ,β f

)
S t
(

f j | α f ,β f
)

defined

Advantages of a conjugate prior law, parameters chosen in accordance with data structure,
considers the moments of the I G and S t laws; same difficulties as above for ε and ω

Table 1: Student-t sparsity enforcing prior: model selection strategies

3 PM estimation via VBA

The PM estimation is considered via Variational Bayesian Approximation (VBA).
The posterior distribution is first approximated with a separable one,

p( f ,v f ,vε | g)≈ q( f ,v f ,vε | g) = q1( f )
M

∏
j=1

q2 j(v f j)
N

∏
i=1

q3i(vε i), (10)

by minimizing the Kullback-Leibler divergence. Proportionality relations for each
separable distribution are obtained. It can be shown that q1 ( f ) is a multivariate
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Normal distribution,

q1( f ) = N
(

f | f̂ , Σ̂
)

; f̂ =
(

HT Ṽ ε H +Ṽ f

)−1
HT Ṽ ε g, Σ̂ =

(
HT Ṽ ε H +Ṽ f

)−1
, (11)

using the notations

ṽε i =

〈
v−1

ε i

〉
q3i(vεi)

, i ∈ {1, . . . ,N} ; ṽε =
[
. . . ṽε i . . .

]T ;Ṽ ε = diag [̃vε ] ,

ṽ f j =

〈
v−1

f j

〉
q2 j

(
v f j

), j ∈ {1, . . . ,M} ; ṽ f =
[
. . . ṽ f j . . .

]T ;Ṽ f = diag
[
ṽ f
]
. (12)

In general, q2 j(v f j) and q3i(vε i) belong to the same family as the M distribution.

In particular, for the S t prior, q2 j(v f j) are I G (v f j | α f +
1
2 , β̂ f j) and q3i(vε i) are

I G (vε i | αε +
1
2 , β̂εi) distributions, with the analytical expressions of β parameters

given by:

β̂ f j = β f +
1
2

(
Σ̂ j j + f j

2
)

; β̂εi = βε +
1
2

[
H iΣ̂H i

T +
(

gi−H i f̂
)2
]

(13)

The parameters corresponding to the multivariate Normal distribution are expressed
via Ṽ f and Ṽ ε (and by extension all elements forming the two matrices ṽ f j , j ∈
{1,2, . . . ,M} and ṽε i , i ∈ {1,2, . . . ,N}, Eq. (12)). The following relation holds:〈

x−1〉
I G (x|α,β )

=
α

β
(14)

4 Simulation results

The forward model Eq. (1) is considered for a 1-D application in biology where a
short time series of gene expressions is modeled as

g(t) =
M

∑
j=1

f 1 j cos
(

2π

p j
t
)
+ f 2 j sin

(
2π

p j
t
)
+ ε(t), (15)

where p j ∈ [8, . . . ,32], t = 1, . . . ,N, and the objective is to find f 1 =
[

f 1 j, . . . , f 1M
]

and f 2 =
[

f 2 j, . . . , f 2M
]
. This relation can be written as:

g = H f + ε =
[
H1|H2

][ f 1
f 2

]
+ ε = H1 f 1 +H2 f 2 + ε. (16)

The objective is a precise estimation of the periodic component (PC) vectors ( f 1
and f 2, considered between 8 and 32 hours) corresponding to a short (relative to the
a priori dominant period) signal g (considered for four days, sampled every hour).
The biological prior information is the reduced number of non-zero periods, i.e. the
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sparse structure of the PC vector. More details about the application and limitations
of the classical methods can be found in [5] and [4].

The synthetic PC vectors f 1 and f 2 are presented in Fig. (2a) and Fig. (2b), the
corresponding biological signal in Fig. (2d) and the added noise (corresponding to
10dB) in Fig. (2c). We consider the PM iterative algorithm, corresponding to the

8 11 14 17 20 23 26 29 32
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3

(a) f 1

8 11 14 17 20 23 26 29 32
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(b) f 2

0 20 40 60 80
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(c) ε , SNR=10dB

0 20 40 60 80

-10

-5

0

5

10

(d) g

Fig. 2: Synthetic data: 4-days noisy signal g sampled every hour and corresponding
PC vectors f 1 and f 1.

Student-t prior model. The three different model selection strategies are considered.
The algorithm initialization is done via the hyperparameters, i.e. the M distribu-
tion parameters, modeling respectively v f and vε . In this paper we are interested in
testing which model selection strategy is most adequate in enforcing the sparsity,
for this specific prior model and this specific application. The results discussed in
this section are limited to this aspect. For this purpose, the simulations are done as-
suming E[M ](vε) and Var[M ](vε) to be known, and then the noise hyperparameters,
namely the M parameters modeling vε , are derived, depending on the noise model,
via Eq. (9).
The estimated PC vectors f̂ 1 and f̂ 2, corresponding to the S t prior, are compared
with synthetic data, in Fig. (3).

1. Results corresponding to the Jeffreys prior model selection are reported in
Fig. (3a) and (3b). The results correspond to α f = β f = 10−3. Clearly, the estima-
tion results are far from synthetic input. More important, for this model selection
the prior distribution does not enforce sparsity very well. Indeed, for the the first
periods of the PC vector the estimation is rather good with the zero values well
estimated, but for the second part of the PC vector the sparsity is not enforced.
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2. Results corresponding to the model selection based on the S t prior distribution
are reported in Fig. (3c) and (3d). The results correspond to α f = 103,β f = 10−3.
In this case, the result is too sparse: all PC vector values are estimated as zero
values. Those particular values correspond for a strong prior, which does not
account for data. We will see that this model selection strategy can lead to very
good estimation results. In particular, for α f = 101,β f = 10−1 both estimations
f̂ 1 and f̂ 2 are precise.

3. Finally, the results corresponding to the model selection based on the sparsity
mechanism are reported in Fig. (3e) and (3f). The results correspond to ε = ω =
10−3 (see Eq. (9)).

The reconstruction results corresponding to different hyperparmeters values, for
each of the three model selection strategies, are reported in Table (2). We consider
k ∈ {1,2,3,4,5} and the following values corresponding to each model selection
strategy:

1. for Jeffreys like model selection, we consider α f = β f = 10−k.
2. for model selection based on the S t form, we consider α f = 10k; β f = 10−k.
3. for model selection based on sparsity mechanism, α f and β f are defined via

Eq. (9), using ε = Var[S t] = E[I G ] and ω = Var[I G ]. We consider ε = ω = 10−k.

Table (2) reports the quality reconstruction not in the sense of some numerical mea-
sure, like L1 or L1 reconstruction errors but rather if the results are as sparse as the
synthetic inputs f 1 and f 2. We notice that the model selection strategy based on the

Jeffreys like S t form Sparsity mechanism
α f = β f = 10−k α f = 10k; β f = 10−k ε = ω = 10−k, Eq. (9)

k = 1 7 3 3
k = 2 7 7 3
k = 3 7 7 3
k = 4 7 7 7
k = 5 7 7 7

Table 2: m. s. for S t prior model: qualitative estimation depending on the numerical
values for α f and β f parameters.

sparsity mechanism, for the S t prior model is more flexible. Good results can be
achieved using the P distribution form. In this case, having to set a small value for
one hyperparameter (β f ) and a significant value for the other (α f ) is a difficult task,
since each of both hyperparameters are influencing the P distribution form, enforc-
ing sparsity to much. Model selection strategy based on the sparsity mechanism is
using the statistical measures of the unknown of the model and its corresponding
variance, which generally can be approximately inferred in each application. More-
over, some preliminary results are indicating a strong influence of ε and a week
influence of ω in the model selection, so reducing it to only one parameter.
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α f = 103,β f = 10−3
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α f = 103,β f = 10−3
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Fig. 3: Comparison between the data f 1, f 2 and f̂ 1S t , f̂ 2S t . Three model selection
strategies, S t prior model: Jeffreys like, ( α f = β f = 10−3, (3a) and (3b) ), based
on S t form, ( α f = 10−3,β f = 10−3, (3c) and (3d) ) and sparsity based, ( α f =

2+ ε2

ω
,β f = ε

(
1+ ε2

ω

)
,ε = ω = 10−3, (3e) and (3f) ).

5 Conclusion

In the Bayesian framework, using heavy-tailed distributions in order to enforce spar-
sity, we have compared the PM iterative algorithms reconstruction results corre-
sponding to a specific sparsity enforcing law (Student-t) corresponding to three dif-
ferent model selection strategies in terms of sparsity enforcing.
The model selection strategy based on the sparsity mechanism can lead to good re-
sults in terms of sparsity enforcing and seems to be more flexible then the other two
strategies considered. This model selection strategy is based on the assignment of
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the hyperparameters using the statistical measures of the prior and mixing distribu-
tions, ε and ω . The interval for selecting ε and ω is rather large in all three cases.
Some preliminary results indicate a week dependency between ω the reconstruction
results in terms of sparsity enforcing.
The sparsity is not enforce when the model selection strategy based on Jeffreys pri-
ors is used. The model selection strategy based on the prior distribution form can
give good reconstruction results in term of sparsity enforcing but in this case the
interval seems to be rather small.
Clearly, the results strongly depends on the application and on the specific prior law
(induced by the choice of the mixing distribution). For future work, those strategies
will be compared for other sparsity enforcing distributions and other applications,
[6]. Also, a key concept is the sparsity rate (SR). Another perspective of this work is
to study a possible relation between the SR and the model selection, more precisely
a link between the model selection and SR.
We mention that in this paper we have measured the reconstruction results in terms
of sparsity enforcing. Evidently, this is just the first the step in a much more de-
tailed analysis, accounting also for different reconstruction measures, like L1, L2
reconstruction errors, false positives, etc. This paper reports the preliminary results
corresponding to the best model selection strategies for the Student-t prior model in
terms of sparsity enforcing.
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10. Vàclav Šmı́dl and Anthony Quinn. The Variational Bayes Method in Signal Processing. Sig-
nals and Communication Technology. Springer–Verlag Berlin Heidelberg, 1st edition, 2006.


