
HAL Id: hal-01568068
https://hal.science/hal-01568068

Preprint submitted on 24 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Disturbing Combination of Geometrical and Modular
Rotations in the World of Arithmetic

Khaled Ben Letaïef

To cite this version:
Khaled Ben Letaïef. A Disturbing Combination of Geometrical and Modular Rotations in the World
of Arithmetic. 2017. �hal-01568068�

https://hal.science/hal-01568068
https://hal.archives-ouvertes.fr


Notes on Number Theory and Discrete Mathematics
ISSN 1310–5132
Vol. XX, XXXX, No. X, XX–XX

A Disturbing Combination of Geometrical and
Modular Rotations in the World of Arithmetic

Khaled Ben Letaïef1

1 Aeronautics and aerospace high graduate engineer
16 Bd du Maréchal de Lattre, apt. 095, 21300 Chenove, France

e-mail : letaiev@gmail.com

Abstract : In previous papers [1] [2], we have examined two types of ’rotations’ in associated
Stirling numbers of first and second kind at any order r, respectively :

1. Geometrical rotations, which helped to compact all those Stirling numbers in an arithmeti-
cal triangle’s structure.

2. Modular rotations which determined their arithmetical properties using angles depending
on r.

Those different types of rotations could be used independently from each other : each paper
was devoted to one of them. In this article, we are going to use both rotations in order to ob-
tain new results directly applicable to associated Stirling numbers as we find them written in the
scientific literature, i.e. in "elastic stair steps", not in arithmetical triangles.
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1 Transfer of modular properties to higher orders

Here, we want to show that some modular properties of Stirling numbers s1(n, k) can be
generalized to associated Stirling numbers sr(n, k) of both kind at any order r [3], and conversely
from the latter to the first. For this, we need the following recurrence relation on r :

Relation 1. ∀n, k ∈ N,

sr(n, k) = sr+1(n, k) +

(
n

r

)
sr+1(n− r, k − 1) +

(
2r

r, r

)(
n

2r

)
sr+1(n− 2r, k − 2)+(

3r

r, r, r

)(
n

3r

)
sr+1(n− 3r, k − 3) + . . .+

(
kr

r, r, . . . , r︸ ︷︷ ︸
k

)(
n

kr

)
sr+1(n− kr, 0)

= sr+1(n, k) +
k∑
i=1

(
ir

r, . . . , r︸ ︷︷ ︸
i

)(
n

ir

)
sr+1(n− ir, k − i)

Proof. We will reason by enumeration. Let’s remember that sr(n, k) is the number of partitions
of a set of n elements in k subsets of size at least equal to r. We want now to enumerate sr(n, k)

from the reunion of complementary partitions of a set of n elements in k subsets, with successi-
vely 0 subset of r elements (partitions noted P0), only 1 subset of r elements (P1), only 2 subsets
of r elements (P2), . . . , only k subsets of r elements (Pk).

- As for the set of partitions P0, its cardinal is simply sr+1(n, k) : indeed, it contains no parti-
tion of r elements, thus every subset has at least r + 1 elements.

- As for P1 : we must first choose one subset of r elements among n. There is
(
n
r

)
possibilities.

The k− 1 other subsets, chosen from a reduced set of n− r elements, are necessarily each of size
at least equal to r + 1. Then, Card(P1) =

(
n
r

)
sr+1(n− r, k − 1).

- As for P2 : those partitions have exactly two subsets of r elements, so we first have to
choose 2r elements from n : the number of choices is

(
n
2r

)
. Then, each subset of 2r elements

should be partitioned into two sub-subsets of r elements each : there is
(
2r
r,r

)
=
(
2r
r

)
choices. For

each of those couple of subsets of r elements, we must partition the other n − 2r elements in
k − 2 subsets of at least r + 1 elements, which makes sr+1(n − 2r, k − 2) possibilities. Then,
Card(P2) =

(
2r
r,r

)(
n
2r

)
sr+1(n− 2r, k − 2).

- · · ·

- As for the general case Pi : we choose i subsets of r elements each one from n elements,
which amounts first to choosing ir elements among n : it makes

(
n
ir

)
possibilities. From those ir

elements, we can choose
(

ir
r, r, . . . , r︸ ︷︷ ︸

i

)
subsets of r elements each. The k− i other subsets, chosen
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from a reduced set of n−ir elements, are each of size at least equal to r+1, which is by definition
sr+1(n− ir, k − i). Then, Card(Pi) =

(
ir

r,r,...,r

)(
n
ir

)
sr+1(n− ir, k − i).

- · · ·

- As for Pk : it consists in exactly k subsets of r elements each chosen from n elements. As
sr(n, k) enumerates the partitions of k subsets of at least r elements, then Pk is not zero only for
n = kr.

It does not matter if some terms are null : our reasoning applies to all cases n, k ∈ N. Then,
the total number of partitions of a set of n elements in k subsets of size at least equal to r, is :

sr(n, k) =
k∑
i=0

Card(Pi) = sr+1(n, k) +

(
n

r

)
sr+1(n− r, k − 1) +

(
2r

r, r

)(
n

2r

)
sr+1(n− 2r, k − 2)+(

3r

r, r, r

)(
n

3r

)
sr+1(n− 3r, k − 3) + . . .+

(
kr

r, r, . . . , r︸ ︷︷ ︸
k

)(
n

kr

)
sr+1(n− kr, 0)

Note : relation 1 can also be written as follows for suitable n, k :

Relation 2.

sr(n, k) = sr+1(n, k) +
k∑
i=1

i−1∏
j=0

(
n− rj
r

)
sr+1(n− ir, k − i)

Indeed, we can easily verify that :(
ir

r, . . . , r︸ ︷︷ ︸
i

)(
n

ir

)
=

i−1∏
j=0

(
n− rj
r

)

This formula allows us to inverse a theorem we proved in [2]. Let’s remind that πr is the
arithmetical triangle’s structure of the associated Stirling numbers of second kind at any order
r [1]. Our method involves using the recurrence relation 1 above to transfer modular properties
from any order r to the well-known case r = 1.

Theorem 1. We set r ≥ 1. Let the arithmetical triangle πr be, with ρ0r(n) the line in πr associated
with a natural integer n, η0r(n) the horizontal line of πr sharing its non-zero first term with ρ0r(n)

and δ0r(n) the line which forms an angle of −π
4

with η0r(n). Let finally A0
r(n) be the whole of the

elements of πr ranging in the area between δ0r(n) and ρ0r(n), except δ0r(n).

There is then for all prime numbers n ≥ 2 and for all r ≥ 1 :
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A0
r(n) ≡ 0 [n]

Inversely, if an integer n is such that n ∧ (r − 1)! = 1 and :

A0
r(n) ≡ 0 [n]

then n is a prime number.

Note : The condition n∧ (r−1)! = 1 in theorem 1 is equivalent to saying that n has no prime
factor p ≤ r − 1.

Proof. - sense⇒ : The proof is in [2] (section 3). Yet, thanks to relation 1 and 2, we can avoid
using the formula :

sr(n, k) =
1

k!

∑
α1≥r...αk≥r

α1+α2...+αk=n

n!

α1!α2! . . . αk!

in order to prove the property (∗) :

∀n prime number, ∀k, ∀r, sr(n, k) ≡ 0[n].

Indeed, let n be a prime number. We will reason by recurrence on r.

1. For r = 1 : (∗) is verified, since s1(n, k) are the Stirling numbers of second kind [2].

2. We suppose (∗) for r ≥ 1.

3. As n is prime, it divides
(
n
r

)
, and a fortiori ∀n, k, each term :

i−1∏
j=0

(
n− rj
r

)
sr+1(n− ir, k − i)

in relation 2. So, by recurrence, n divides sr+1(n, k).

- sense⇐ : Let’s set r ≥ 2 and let n ≥ 2 be an integer such that n ∧ (r − 1)! and A0
r(n) ≡

0 [n]. In particular, n divides ρ0r(n), the line associated with n in πr. By definition of ρ0r(n), n
divides all the sr(n, k) for k > 1. Moreover, as n is prime relatively to (r − 1)!, it divides

(
n
r−1

)
and a fortiori all the terms

i−1∏
j=0

(
n− (r − 1)j

r − 1

)
sr(n− i(r − 1), k − i)

Now, as n divides all the right member of relation 2 for r − 1 :

sr−1(n, k) = sr(n, k) +
k∑
i=1

i−1∏
j=0

(
n− (r − 1)j

r − 1

)
sr(n− i(r − 1), k − i)

4



it divides all sr−1(n, k) for k > 1. By recurrence on r, n divides s1(n, k), ∀k > 1.

Then, from the same properties used above of Stirling numbers of the second kind, n is a
prime number.

Remark : the same reasoning may be applied to the associated Stirling numbers of the first
kind at any order. We just need to use in their case a similar recurrence relation as 1.

2 Extensions to other elastic structures

Now, let us generalize theorem 1 for all the structures Πh
r as defined in [1] (definition 4) :

For all positive integer r and all integer h, one will call respectively Σh
r and Πh

r the
arithmetical structures obtained after h iterations of R applied to the arithmetical
triangles σr and πr.

We have :

Theorem 2. One will preserve the notations of theorem 1 by adapting them to the Πh
r , for any

integer h and positive integer r fixed. Let ρhr (n) be the half-line associated to an integer n in Πh
r

and δhr (n) the line starting from the origin of ρhr (n) and forming an angle θ with ρhr (n) such as :

tan θ =
r

1 + (h− 1)(r + h− 1)
(1)

We note down then Ahr (n) the set of the elements of Πh
r included between ρhr (n) and δhr (n)

excluded (the latter thus plays the role of an ’asymptote’ of the surface Ahr (n)).

In this case, if n is a prime number, then :

Ahr (n) ≡ 0 [n]

Inversely, if n is such that n∧ (r− 1)! = 1 (or, in other words, n has no prime factor≤ r− 1)
and, with the same notations :

Ahr (n) ≡ 0 [n]

then n is a prime number.

Proof. According to the results above, the application of the geometrical rotation Rh to the lines
ρ0r(n) and δ0r(n) adds a quantity h to their respective slopes r − 1 et −1 and transforms them
respectively into lines of angles θ′ et θ” such as tan θ′ = h− 1 + r et tan θ” = h− 1.

The difference θ between these angles is such as :

tan θ = tan(θ′ − θ”) =
tan θ′ − tan θ”

1 + tan θ′ tan θ”
=

r

1 + (h− 1)(r + h− 1)
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By definition, there is thus :

Rh[ρ0r(n)] = ρhr (n)

Rh[δ0r(n)] = δhr (n)

Thus, thanks to the classical property of composition of angles in geometrical rotations, the
application of Rh to the surface A0

r(n) delimited by the lines ρ0r(n) and δ0r(n) returns us another
surface delimited by the new lines ρhr (n) and δhr (n) : by definition, this surface is not other than
Ahr (n). Then, Theorem 1 simply applies to the latter.

In figure 2 below, one gives an idea of the set Ahr (n) for h = 1 and r = 5 : then, θ = 5.
Besides, figure 3 shows different positions of the diagonal side of an arithmetical triangle like πr
(h = 0) after h iterations of rotation R.

We deduce from Theorem 2 the following result :

Corollary 1. If p is prime, then it divides the set Ar(p) of the terms of Sr located between
the p-nth horizontal non-zero line Dr(p) and a half-line Tr(p) which forms with it an angle of
θr = − arctan(r), except the terms located in the point Nr(p) and on Tr(p) (see figure 1).

Inversely, if n is an integer such that n ∧ (r − 1)! = 1 (equivalently, n has no prime factor
≤ r − 1) and :

Ar(n) ≡ 0 [n]

then n is a prime number.
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figure 1

θr

Ar(p)

Nr(p)

Tr(p)

Dr(p)

n ↓

k →

Proof. One obtains this corollary by setting h = 1 − r in Theorem 2 : the latter applies then to
Π1−r
r which is not other than the structure of the Sr(n, k)n,k∈Nwhich is so much widespread in the

literature. The line ρ1−rr (p) becomes indeed the p-nth line of Π1−r
r of angle :

arctan(1− r + r − 1) = 0

that is to say Dr(p), and δ1−rr (p) becomes the asymptote of angle arctan(1 − r − 1) =

arctan(r).

As for us, Corollary 1 is amazing in that it results from the composition of two "rotations" of
a priori very different nature, namely a geometrical rotation and a modular one.

Moreover, the terms bound by a relation of recurrence in Π1−r
r not being adjacent, it would

have been very difficult to show directly Corollary 1 starting from this latter structure. One can
indeed show that Π1−r

r = Sr(n, k)n,k∈N has a contour in "stairs", such as one "descends" a walk
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all the r lines (cf. figure 1). Then, the "edge effects" would have been terrible to manage, espe-
cially the asymptotic terms. Yet, the interesting point is that the proof of Corollary 1 does not
depend at all on the kind of final structure Π1−r

r obtained after r − 1 iterations of −R.

figure 2 : r=5,h=1

ρ1r(n)

θ

A1
r(n)

D1
r(n)

δ1r(n)
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figure 3

h = 1− r
h = −r
h = −r − 1

h = 0

h = 1

h = 2h = 5

h = −∞

3 Conclusion

Our future work will be devoted to interesting results and simulations, using Python code, of
modular rotations in associated Stirling numbers. New confusing arithmetical phenomena will be
explored and conjectures proposed.
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