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Abstract 

 
In asthma and COPD, some airways of the tracheo-bronchial tree can be constricted, from moderate 
narrowing up to closure. Those pathological patterns of obstructions affect the lung ventilation distribution. 
While some imaging techniques enable visualization and quantification of constrictions in proximal 
generations, no non-invasive technique exists to provide the airway morphology and obstruction 
distribution in distal areas. In this work, we propose a method that exploits lung ventilation measures to 
access positions of airways obstructions (restrictions and closures) in the tree. This identification approach 
combines a lung ventilation model, in which a 0𝐷 tree is strongly coupled to a 3𝐷 parenchyma description, 
along with a machine learning approach. Based on synthetic data generated with typical temporal and 
spatial resolutions as well as reconstruction errors, we obtain very encouraging results of the obstruction 
distribution, with a detection rate higher than 85%. 

1. Introduction 
 

Pathologies such as asthma or COPD can induce airway constriction [1], [2] that generate ventilation 
defects [3], [4].  However, in clinical practice the airway obstruction distribution is largely unknown.  As the 
response to Heliox treatment may depend on airway closure severity and position within the lung 
(generational and regional position) [5]; knowing the airway obstruction distribution could give predictive 
insights on the treatment efficiency. Another clinical application of the airway obstruction distribution 
could be to predict aerosol deposition, which can be greatly affected by bronchoconstrictions [6].  High 
resolution computed tomography (HRCT) can show the presence of constrictions in asthmatic patients [7], 
[8] but only proximal airways are easily accessible with current resolutions. However, given the fact that 
histological analysis demonstrates that more distal branches can be constricted [9], [10], greater resolution 
is needed.  There does exist dynamic imaging techniques such as 4𝐷 computed tomography (4D-CT) [11], 
[12] and 4𝐷 magnetic resonance imaging (4D-MRI) [13], [14] that can provide information on lung 
ventilation distribution during the breathing cycle. 
 
In this work, we propose an approach that exploits 4𝐷 dynamical ventilation data to identify which regions 
of the tracheo-bronchial tree are constricted or plugged; that is, the distribution of obstructions in the 
airways. The process combines a lung ventilation model presented in [15], in which a 0𝐷 model of the 
tracheo-bronchial tree is coupled to a 3𝐷 continuous elastic media representing the lung parenchyma, 
along with a plug identification step that includes a supervised machine learning technique. Approaches 
combining machine learning and modeling have been proposed to speed up calculations [16] or to improve 



 
 

diagnosis quality [17]. To the best of our knowledge, this study is the first attempt to use lung ventilation 
data in order to develop insight into the tree structure. 
 
In Section 2, the global methodology is presented. In Section 3 the ventilation model and the theoretical 
background of the plug identification approach are described. Section 4 gives results on synthetic data. 

2. Direct ventilation model and identification problem approaches 
 

2.1. Global methodology 
 
The tracheo-bronchial tree is a dyadic structure starting from large upper airways, referred to as proximal, 
down to smaller branches, referred to as distal. Some pathologies affect the tree structure; in asthma for 
instance, airways can be constricted. This goes from frequent moderate constrictions throughout the tree 
with airway radii reductions of 10 to 25% on average [18], [2] up to, in a low proportion of cases, complete 
closure [10], [8]. These latter severe constrictions will be designated as plugs. As observed experimentally 
through dynamic 4𝐷 images [11], [13], [14], obstructions affect the lung ventilation distribution. It takes 
more energy for the gas to flow through a constricted path, and thus downstream parenchyma regions are 
less irrigated.  
 
Simulation results presented in subsection 4.1 indicate that ventilation defects caused by constrictions are 
mainly due to plugs rather than moderate constrictions, although the former are less frequent. Thus, 
ventilation information provided by 4𝐷 scans may give insights on the plug distribution. While the 
ventilation model described in subsection 2.2 provides the flow distribution knowing the constriction 
repartition within the tree, we aim at using the ventilation data (as those provided by medical images for 
instance) in order to determine which airways are significantly constricted. This is an identification problem 
for which unknowns are the tree branch radii (see subsection 2.3). There is inter-variability in airway 
dimensions [19] and typical normal radii values are within a prescribed range. Here the healthy variability is 
neglected (see Remark 4) and each airway in the healthy state is assumed to have a known representative 
value. The difference between the pathological radius and the healthy one then reveals that constriction 
exists.  
 
Radii are accessed through the determination of airway resistances. As to be explained in subsection 2.2, 
flows at the tree exits and pressure drops from the tree entrance to the exits are linked through airway 
resistances by: 
 

 𝐴𝑄 = 𝑃 
 

(1)  

where 𝑄 = (𝑞+)+ with 𝑞+  the flow at the 𝑖./ exit. The 𝑖./ element of 𝑃 is the pressure drop from the tree 
entrance to the 𝑖./ exit. Matrix 𝐴 is defined by (6) and includes information on the tree resistance 
distribution. Knowing 𝑄 and 𝑃, one can get insights on airway resistances and hence on the constrictions 
through solution of an identification problem. The flux 𝑄 can be computed from imaging data. Indeed, from 
4𝐷 scans, registration techniques can provide the parenchyma displacement field and finally 𝑄 through 
equation (5) (see subsection 2.2). Regarding the pressure 𝑃, in this study, we propose to determine it 
through a minimization problem (see subsection 2.3) based on the ventilation model described in [15] and 
subsection 2.2. In subsection 2.3, it is shown that for the resistance identification problem to be well-posed 
the maximum number of unknowns is, at least, two times smaller than the number of airways within the 
tree. Thus only a sub-set of the branches can have an unknown radius. To select them, an a priori 
prediction process is proposed. Based on ventilation features extracted from 4𝐷 scans (see subsection 
2.4.1), a machine learning technique determines which airways are more likely to be constricted (see 



 
 

subsection 2.4.2). If the prediction process is good, non-selected airways are minimally constricted. Since 
their radii cannot be set among the unknowns, they are assumed to have known dimensions that are set in 
the normal physiological range. The a priori prediction step leads to a system that contains as many 
unknown resistances as equations. However, this system may not be invertible. Thus, an extra step called 
resistance removal, is proposed so as to get an invertible extraction. For reasons detailed in Remark 2, the 
resistance removal step is performed before the minimization problem. The identification problem can 
then be solved, outputting a constriction prediction for the unknown set (see subsection 2.3). This is the 
inversion step. From there, plugged airways i.e. these with severe constrictions, are identified. See Figure 1 
for a block flow diagram describing the whole process. Note that in this study, 4D ventilation data are 
synthetic and obtained by numerical simulation of the dynamical behavior of the tree-parenchyma coupled 
model presented in [15] (see subsection 2.2), to which some noise is added so as to reproduce realistic 
measurements. 
  
 

 
Figure 1: global process to determine the plug distribution in the tree based on dynamic ventilation data. 

 
In the next section, the ventilation model is described. 

2.2. Direct ventilation problem 
 
Models for both the parenchyma and tree used in this study as well as the coupling between them are 
precisely described in [15].  
Under tidal breathing, Mach numbers in the tree are low [20] and the flow is assumed to be 
incompressible, and it is reasonable to consider airways, the tree branches, as rigid cylindrical pipes [15].  
Each branch is defined by its length 𝐿 and radius 𝑟. Viscous and inertial effects induce energy dissipations. 
The pressure drop 𝛥𝑝 and the flow 𝑞 in an airway are linked through a non linear coefficient 𝑅(𝑞)	, called 
resistance, by 𝛥𝑝 = 𝑅(𝑞)𝑞. This coefficient is defined as in [21] by the Pedley model [22]:  
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(2) 

where	 𝛾 = 0.327, 𝑅𝑒 is the Reynolds number defined by 𝑅𝑒 = @J|L|
MNOP

 with 𝜌 the fluid density, 𝜇S  its dynamic 

viscosity and the laminar Poiseuille resistance is 𝑅AB+C =
TMNU
OPV

. The term 𝛾 W𝑅𝑒 @P
U
X
Y
Z is associated with 

inertial losses.  
 
Remark 1: note that equation (2) has been designed for inspiration and for one bifurcation angle only. 
Following [23] we use it independently of the angle and we choose to also use it during expiration.  
 
The parenchyma is a porous medium. Following [24], we treat it as a homogenized isotropic media 
occupying a domain Ω, which is the configuration at rest. In tidal breathing conditions, i.e. breathing at rest 
with normal lung expansion, displacements are slow and with limited amplitude. We thus assume it follows 
a linear elastic Hooke’s law. The related stress tensor is given by: 
 

𝜎]^.(𝒖) = 2𝜇𝜀(𝒖) + 𝜆𝑡𝑟d𝜀(𝒖)e𝐼, 
 
where 𝜆 and 𝜇 are the effective Lamé parameters, 𝒖 is the parenchyma displacement defined in the 
reference state domain Ω, and 𝜀 the linear strain tensor defined by 𝜀(𝒖) = ?

@
(𝛻𝒖 + 𝛻𝒖	

h ).  
If an airway collapses, its radius is decreased inducing a steep rise in resistance following equation (2). 
Whatever the elastic properties of the downstream region, it is more energy consuming and hence more 
difficult for the patient to push or pull flow through this branch. To take this phenomenon into account, the 
tree and parenchyma have to be coupled. In the following, to model the closure of an airway branch, we 
homogeneously reduce its radius. 
In [15] we strongly couple the tree and parenchyma. Assuming Ω = ⋃ Ω+

j
+k?  and ∀𝑖, 𝑗	Ω+⋂Ωo = ∅ where Ω+ 

is the sub-region of Ω irrigated by the 𝑖./ tree exit 𝑒𝑥+ (see Figure 2), and neglecting gravity, we obtain the 
following strong formulation: 
 

 𝑑𝑖𝑣(𝜎]^.) − 𝜵	𝑝.Pvv = 𝜌A^P
𝜕@𝒖
𝜕𝑡@ ,				𝑖𝑛	𝛺. 

 

(3)  

Here 𝜌A^P is the parenchyma density and 𝑝.Pvv is the piecewise constant function defined by: 
 

 𝑝.Pvv =z(𝑝.P^{/v^ − (𝐴𝑄)+)𝟙}~

j

+k?

 

 

(4)  

where 𝟙}~  is the characteristic function on 𝛺+, and 𝑝.P^{/v^ is pressure at the trachea entrance. Vector 𝑄 is 
defined by 𝑄 = (𝑞+)?�+�j with 𝑞+  the flow at the 𝑖./ exit. Note that under the assumption of small 
displacement around the reference state, we have  
 

 𝑞+ = 𝑞+(𝒖̇) = ∫ 𝒖̇	
�}~

∙ 𝒏	, (5)  

  
expressing that the volume variation of a given parenchyma region equals the volume of air entering or 
leaving that region. Thus, 𝑝.Pvv, and hence equation (3), can be written as functions of the displacement 
field only. 



 
 

Matrix 𝐴 includes information on airway resistances and thus on their dimensions. We denote 𝑇+  as the set 
of indices of airways going from the trachea down to the 𝑖./ exit ∀𝑖 ∈ ⟦1; 𝑁⟧. Set 𝑇+  is defined by: 
  

𝑇+ = {(𝑛, 𝑘) / branch (𝑛, 𝑘) ∈	path from the trachea down to exit 𝑖} 
 

and thus 𝑇+  defines a unique path. Index 𝑛 refers to the airway generation starting at zero for the trachea. 
Index 𝑘 orders the airways of a given generation. A tree is said to be complete if each path contains the 
same number of generations. On a complete tree, at a given generation 𝑛, the index 𝑘 runs through the set 
⟦0; 2� − 1⟧. From a complete tree one can extract a dyadic subtree as illustrated on Figure 2.  Denoting 𝑇+o  
the intersection set between 𝑇+  and 𝑇o  we have 𝐴 = �𝐴+o�?�+,o�j with 
 

 𝐴+o = ∑ 𝑅�,�(�,�)∈h~� , (6)  

with 𝑅�,� the resistance of branch (𝑛, 𝑘) (see Figure 2). These resistances are time dependent (see equation 
(2)). 
Finally, the tree induces on each terminal region Ω+  an apparent pressure 𝑝.Pvv/	Ω~ which opposes volume 
variations (see Figure 2). The greater the resistance on the path, going from the trachea down to exit 𝑖 
denoted 𝑒𝑥+, the greater the pressure drop along this path, and the greater the apparent pressure. In case 
of airway closure, the fed related region expands or contracts at the price of an increased energy cost [5]. 
In the following, without loss of generality, we assume the pressure at the trachea is equal to zero. Dirichlet 
boundary conditions are prescribed on the parenchyma surface 𝜕𝛺, the surface displacement being given 
by 𝒖 = 𝒖𝑫 on 𝜕𝛺. The variational formulation associated with equation (3) is: for any 𝒘 sufficiently smooth 
such that 𝒘 = 0 on 𝜕𝛺,  
 
 𝜌A^P	 ∫ 𝒖̈ ∙ 𝒘	

} + ∫ 𝜎]^.(𝒖): 𝜀(𝒘)
	
} − ∫ 𝑝.Pvv(𝒖̇)	𝐼: 𝜀(𝒘)

	
} = 0, (7)  

In the following (see subsection 2.3), 𝑝.Pvv will be determined from the knowledge of 𝒖. From there, we 
will develop insight on 𝐴 through equation (4). Note that, if the resistance distribution is known, 𝒖 can then 
be determined by solving the direct problem defined by equation (7): this is how the synthetic ventilation 
4𝐷 maps are generated (see subsection 2.4.2). 
 



 
 

 
Figure 2: Schematic of parenchyma subdivision in non-intersecting regions Ω𝒊, each one being irrigated by a tree path 𝑻𝒊. 
Representation on a non-complete dyadic tree. Each airway (𝒏,𝒌) has a resistance 𝑹𝒏,𝒌. Green arrows illustrate the apparent 
pressure ptree exerted by the tree through the coupling on region Ω𝟏when it expands. 

Equation (7) is discretized in time (see [15]) through the scheme:  
 

�
𝒖��? = 𝒖� + 𝛥𝑡𝒌𝒖��?

𝒖̇��? = 𝒖̇� + 𝛥𝑡𝒌𝒗��?

𝒌𝒖��? = 𝒖̇� + 𝛥𝑡𝒌𝒗��? = 𝒖̇��?
 

 
Space discretization is performed in the finite element (FE) framework, with Lagrangian P1 finite elements. 
We obtain the following linear system: 
 

 𝐸	𝑌]�?	 + 	𝐵h𝑃]�?
	 = 𝐹	]�? 

 
(8)  

with 𝑃]�? given by 
 

𝑃]�? = 𝐴]𝐵𝑌]�?. 
 
Vector 𝑌 is the discrete FE representation of the velocity field 𝒖̇, 𝐸 stands for the FE mass and elastic 
matrices and depends on the parenchyma mechanical properties. The right hand side 𝐹	 contains terms 
relative to surface displacement and velocity, thus depending on 𝒖𝑫 and 𝒖̇𝑫.  Details can be found in [15]. 
Matrix 𝐵 is defined by 𝐵 = ¥∫ 𝑑𝑖𝑣d𝒆𝒋e

	
}~

¨
?�+�j,?�o��©ªN

where  𝒆𝒋 is the 𝑗./ element of the finite element 

basis and 𝑛«BS  the number of finite element degrees of freedom of the problem; it links the discrete 
velocity field and the flow distribution 𝑄  through  
 

 𝐵𝑌]�? = 𝑄]�?. 
 

(9)  



 
 

As mentioned in subsection 2.1, some airways can be constricted in asthmatic lungs, from numerous 
moderate closures to a few severe constrictions. As in [5], based on a literature review, we propose to 
simulate asthma remodeling by including these two types of constrictions with stochastic laws. To simulate 
a broncho-constriction, the airway radius is homogeneously divided by a factor so-called constriction ratio. 
To model asthma, moderate constriction ratios are generated according to a log-normal law with average 
𝑙𝑜𝑔(1.2), standard deviation 0.3 and within bounds [1; 3]. In addition, 𝑛{±BC²Pv  severe constrictions are 
imposed, 𝑛{±BC²Pv	being a random integer. These plugs are applied at randomly chosen positions of the tree 
and have constriction ratios randomly selected with a uniform law in the interval [4; 10].  
Some lung regions irrigated by constricted paths may be poorly ventilated, as seen with 4D-CT [11] and 4D-
MRI [3] images. Knowing the tree structure with constrictions’ severity and position, which is information 
included in matrix 𝐴, the parenchyma mechanical properties 𝜌A^P, 𝜆, 𝜇, and the parenchyma surface 
displacement field over time 𝒖𝑫, one can compute the displacement field 𝒖 within the lung and deduce the 
flow distribution within the tree. Though, the positions and severity of closures in the tree as well as 
mechanical properties are not a priori known. Some high-resolution imaging techniques make it possible to 
identify constrictions in proximal airways, typically only through generation 5 or 6 [7]. In the frame of this 
study, we assume that the lung parenchyma mechanical properties are known. This is not the case in 
practice but some techniques such as magnetic resonance elastography [25] may give relevant estimations. 
As described in subsection 2.1, we propose to use dynamic ventilation data to obtain the constriction 
distribution and to identify plugged airways. This approach will be referred to as the identification problem. 
 

2.3. Identification problem 
 
The function 𝑝.Pvv  is linked to the flow distribution 𝑄 through the resistance matrix 𝐴 (see equation (4)). If 
both 𝑝.Pvv and 𝑄 were known, one could get insights on matrix 𝐴; thus yielding airway resistances (see 
equation (6)) and finally airway radii through equation (2). This identification step is done following a three-
step approach. Image analysis on 4𝐷 data gives access to the parenchyma displacement field 𝒖 (see 
subsection 2.4.1) from which 𝑄 can be computed given a parenchyma partition (5). Knowing the 
displacement field 𝒖 along the breathing cycle, and assuming that both the parenchyma mechanical 
properties and the tree topology are known, one can use the ventilation model described in the previous 
subsection to define a function 𝑝.Pvv∗  satisfying a minimization problem. This is the minimization step. 
Pressure drops from the tree entrance down to the tree exits are linked to the flows within the tree 
through airway resistances, and the related system contains as many resistances as there are airways 
within the tree. However, from the knowledge of 𝑄 and 𝑝.Pvv∗ , there is not enough information to recover 
every airway resistance. Based on the process described in this subsection, the number of unknowns is 
reduced so as to get an invertible system. This is the resistance removal step. In a last step, this system is 
inverted and airway radii are determined. This is the inversion step where plugged airways are identified. 
 
Minimization step: 
From the knowledge of the displacement field 𝒖 and assuming that the mechanical properties of the 
parenchyma are known, we define a tree pressure 𝑝.Pvv∗  that is piecewise constant on each terminal region 
𝛺+. The idea, based on the direct problem (3), is to minimize the distance between 𝜵	𝑝∗.Pvv and 𝔇 =

𝑑𝑖𝑣(𝜎]^.) − 𝜌A^P
µZ𝒖
µ.Z

  which is known by assumption. After time discretization, this minimization problem 
at each time step formally reads: 
  

¶
min

Aº»¼¼
∗ ∈½~¾	

	¿|𝜵	𝑝.Pvv∗ − 𝔇«
	|¿,

𝐾+¾ = Á𝑝.Pvv∗ =z 𝑝.Pvv/Ω~𝟙}~
	

+
	/		𝑝.Pvv∗

/Ω~¾
= 𝑝+¾Â

	

	 

 



 
 

where 𝑖Ã and 𝑝+¾ are a given region index and the corresponding pressure drop, 𝔇« is a time discretization 
of 𝔇. Note that we have prescribed the value of 𝑝.Pvv∗  on the region 	Ω+¾ to ensure the uniqueness of 𝑝.Pvv∗  
which is otherwise defined up to an additive constant. Note also that 𝔇 depends on the measurement of 𝒖 
as well as on the mechanical model that is chosen to describe the parenchyma behavior. The measures and 
the chosen model inaccuracies are two possible sources of error. After discretization, we get the discretized 
related minimization problem (𝒫«)	 defined at each time step 𝑚 by: 
 

 (𝒫«): �
min

Æ∗Ç∈𝕂~¾	
¿|𝐵h𝑃∗] − 𝑆]	|¿@

𝕂+¾ = {	𝑉 ∈ ℝj/	𝑉+¾ = 𝑝+¾}
	 (10)  

 
where 𝑃+¾

∗] is the 𝑖Ã./ component of 𝑃∗]	and 𝑆]	is defined following (8) by  
 

𝑆] = 𝐹	]�? − 𝐸	𝑌]�?	. 
 
Note that 𝐵h  is the FE operator corresponding to the gradient operator acting on piecewise constant 
functions on the partition (𝛺+)+. Since 𝑑𝑖𝑚(𝑘𝑒𝑟(𝐵h)) = 1 (see Appendix A.1), 𝑃∗] is defined up to a 
constant vector. This is the reason why a constraint on 𝑃+¾

∗] is added. For the sake of clarity, temporal 
indices are removed in the following equations. The pressure constraint is enforced as described in 
subsection 3.2 by penalization. 
To solve	(𝒫«), the pressure drop 𝑝+¾ along one path 𝑇+¾ has to be known. Which path to use is determined 
based on the a priori prediction process described in subsection 2.4. Along this path we suppose airway 
dimensions are known and thus airway resistance (see Remark 2). To get the pressure drops through each 
airway, flows shall also be known (see equation (2)). Since the gas is incompressible and because airways 
are assumed to be rigid, the flow in branch (𝑛, 𝑘) equals the sum of the flows in its daughters:  
 

 𝑞�,� = 𝑞��?,@� + 𝑞��?,@��?. (11)  

So the determination of exit flows (see subsection 2.4.1) enables by recursion to assess flows in every 
airway. Knowing airway dimensions and flows along 𝑇+¾, we can finally compute 𝑝+¾ as 𝑝+¾ =
−∑ 𝑅�,�(�,�)∈h~¾ 𝑞�,�.  
Note that the minimization problem (𝒫«) is solved at each time step. Knowing flows and pressures, we 
now can seek the resistance distribution. 
 
Resistance removal step: 
In the following, we look for a resistance distribution such that vectors 𝐴	𝑄	and 𝑃 are close (see equation 
(1)) where both 𝑃	and 𝑄	are known. This leads to a linear system for which resistances 𝑅�,�  are the 
unknowns. Once they are determined, since flows and airway lengths are supposed to be known, equation 
(2) gives the radii 𝑟�,� from which we can deduce the radii reduction ratios defined by  
 

 𝑟𝑒𝑑�,� =
𝑟�,�

𝑟/v^±./Ì�,�
, (12)  

 
and finally identify plugged airways. The smaller the reduction ratio, the more closed the airway. 
The pressure drop along any path 𝑇+  is given by: 
 

 z 𝑅�,�𝑞�,�
(�,�)∈h~

= −𝑝+. (13)  

 



 
 

The tree contains 2𝑁 − 1 airways with 𝑁 exits. Thus the system (13) has size 𝑁 and contains 2𝑁 − 1 
unknowns. It is not invertible, thus the number of unknowns has to be reduced. The a priori prediction 
process described in subsection 2.4 provides for each airway a prediction of the radius reduction ratio (12) 
seen as a “constriction likeliness”, based on which airways can be sorted. The lower the likeliness, the 
closer the airway is to its healthy configuration. From this ranking, the 𝑁 unknown resistances associated to 
the airways that are most likely to be plugged are kept, the 𝑁 − 1 airways associated to the remaining 
unknowns are assumed to have a healthy radius. At this stage, system (1) contains as many unknowns as 
equations. However, there is no guarantee that these equations will be independent. In practice, the 
system is invertible if the pressure at the nodes of unknown resistances are known, i.e. 𝑅�,� can be 
determined if 𝑝�,� and 𝑝�Í?,¥ÎZ¨

 are known. Notation [𝑘] refers to the integer part of 𝑘. 

Let 𝑈j be the set of indices of airways for which resistances are unknown. For each path 𝑇+  from the tree 
mother branch to its 𝑖./ exit, let us denote 𝑇+Ð

² = 𝑇+ ⋂𝑈j	.  Then,∀𝑖 ∈ ⟦1; 𝑁⟧, (13) writes: 
 

z 𝑅�,�𝑞�,�
(�,�)∈h~Ð

Ñ

= −𝑝+ − z 𝑅�,�𝑞�,�
(�,�)∈h~\h~Ð

Ñ

	. 

 
Let us set a new indexation for airways with an unknown radius. We denote 𝜁j a bijective function that 
maps elements of 𝑈j to the integer interval ⟦1;𝑁⟧ based on the ranking provided by the a priori prediction 
process described in subsection 2.4: index 1 is associated to the airway that is predicted with the highest 
radius reduction ratio, i.e. the least likely to be constricted, and so on till index 𝑁 associated to the airway 
predicted with lowest radius reduction ratio. By extension, ∀(𝑛, 𝑘) ∈ 𝑈j we note 𝑅�,� = 𝑅+  with 𝑖 =
𝜁j(𝑛, 𝑘) and 𝑞�,� = 𝑞+  (see Figure 3). 
Let 𝑍j be the matrix of ℳj(ℝ) defined by: 
 

 𝑍j+o = Á1 𝑖𝑓		𝜁jÍ?(𝑗) ∈ 𝑇+Ð
² ,

0 𝑒𝑙𝑠𝑒.
 

 

(14)  

A given line 𝑖 of 𝑍j contains 1 at position 𝑗 if the two following conditions are satisfied: 𝑅o  belongs to the 
set of unknown resistances, and the airway associated to 𝑅o  belongs to path 𝑇+; otherwise the line contains 
0 at position 𝑗. 
We also define the vectors  𝐺j = (𝑅+𝑞+)+k?,…	,j  and  𝐻j = W−𝑝+ − ∑ 𝑅�,�𝑞�,�(�,�)∈h~\h~Ð

Ñ X
+k?,… ,j

. With 

these notations system (13) is equivalent to: 
 

 𝑍j𝐺j = 𝐻j. (15)  

Information on airway resistances and hence on their radii is contained in 𝐺j. One has to solve system (15) 
to recover the resistances knowing the right hand side 𝐻j . However, matrix 𝑍j may not be invertible. The 
strategy is thus to extract from 𝑍j an invertible matrix, which will be of maximal rank. To decide which 
resistance shall be removed from the unknowns, we define an iterative process taking advantage of the a 
priori prediction made on the likeliness constriction of a branch. The higher the predicted reduction ratio 
for an airway, the less likely this airway is constricted. At iteration 1 the resistance 𝑅?	  of the airway with 
highest radius reduction ratio is removed with highest priority and the radius of the associated airway is set 
as “healthy”. This corresponds to removing the first column of 𝑍j. The resulting matrix is not squared and 
contains at least two collinear rows, otherwise 𝑍j would have been invertible (see demonstration in 
Appendix A.2); to keep a square system, one of these collinear rows is removed, defining matrix 𝑍jÍ?. 
Vectors 𝐺j and 𝐻j  are modified accordingly, defining 𝐺jÍ? and 𝐻jÍ?. If 𝑟𝑎𝑛𝑘(𝑍jÍ?) = 𝑁 − 1, 	𝑍jÍ? is 
invertible and unknown resistances can be determined. If 𝑟𝑎𝑛𝑘(𝑍jÍ?) = 𝑟𝑎𝑛𝑘(𝑍j) < 𝑁 − 1, 𝑍jÍ? is not 
invertible and we proceed to iteration 2. Otherwise, in case 𝑟𝑎𝑛𝑘(𝑍jÍ?) < 𝑟𝑎𝑛𝑘(𝑍j), 𝑅?	  is set back 
among the unknowns and the second airway resistance that is less likely to be plugged, 𝑅@	 , is removed; the 



 
 

process goes on till 𝑟𝑎𝑛𝑘(𝑍jÍ?) = 𝑟𝑎𝑛𝑘(𝑍j). Then the algorithm moves to iteration 2 and so on. Doing so, 
airways predicted as severely constricted by the a priori prediction process are less likely to be removed 
from the unknowns. Note that for reasons explained in Remark 2, we enforce the resistance of airway (0,0) 
among the unknown set and prevent it from being removed. The precise description of the algorithm is 
given in Appendix A.3. Figure 3 gives a schematic illustration of the process. 
 
 

 
Figure 3: illustration of the resistance removal algorithm on an eight-exit tree. Branches in red are the ones with unknown 
resistance. Matrix 𝒁𝟖 of the initial system is not invertible (top square). Following the process described in Figure 18, 𝑹𝟏 is first 
removed from the set of unknowns, a line and a column are removed from 𝒁𝟖 leading to 𝒁𝟕 (bottom left square); rank(𝒁𝟕)< 
rank(𝒁𝟖) so 𝑹𝟏 is set back among the unknowns (top square) and  𝑹𝟐 is removed instead (bottom right square). The resulting 
reduced matrix 𝒁𝟕 now has the same rank as 𝒁𝟖 so the removal is confirmed. At the end of the process the tree contains several 
paths with 𝑹𝟎,𝟎 (= 𝑹𝟑) as only unknown, so a pressure along a path can be computed so as to solve the minimization problem 
(10), see Remark 2. 
 
Inversion step: 
If 𝑍±  is invertible we have, from (15), 𝐺± = 𝑍±Í?𝐻±  and since the flows in all airways are known we can then 
determine the unknown resistances. We have ∀	𝑖 ∈ ⟦1; 𝑙⟧, 𝐺±+ = 𝑅+𝑞+. Then the radii can be determined 
from the Pedley formula (2), and 
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Recall that for each airway with a resistance in the unknown set, a radius is computed at each time step, 
and the final prediction is taken as the time average of these values. Note that the resistance removal step 
is performed only once; thus the resulting invertible matrix 𝑍±  does not depend on the time step. 
 
In practice, most of the airways are moderately constricted. Assuming they are healthy will therefore 
induce some errors in the right hand side 𝐻±  and thus some prediction errors on the unknowns since they 
will have to account for a higher pressure drop on their paths. 
 
Remark 2: To solve equation (10), the pressure drop along a path has to be imposed. To compute the 
pressure drop 𝑝+¾ along a path 𝑇+¾, radii of airways belonging to 𝑇+¾ must be known (recall that lengths and 
flows are supposed to be known). After the a priori detection process, to make sure that at least one path 
contains airways with known dimensions only, the resistance of airway (0,0) is enforced among the 
unknowns of system (13) and prevented to be removed during the resistance removal step (described in 
Figure 18). Doing so, one path 𝑇+¾ of the tree will contain no other unknown than airway (0,0). Indeed, if 
𝑅Ã,Ã is enforced among unknowns, one has to access 𝑝?,Ã to ensure invertibility. To that end, there needs to 
be a path with no unknown from node (1,0) to an exit. In practice, airway (0,0) would be the trachea. Its 
dimensions can be measured (with bronchoscopy for example) and enforcing 𝑅Ã,Ã among unknowns is a 
technique designed to enable 𝑝+¾ computation. Thus, dimensions of airways along 𝑇+¾ are all known and the 
pressure drop 𝑝+¾ along this path can be computed. Note that the minimization step is therefore performed 
after the resistance removal step. 
 
Remark 3: Note that by solving an extracted system from (15) we do not ensure system (13) is satisfied. To 
verify system (13) some compatibility conditions on the right hand side would be needed. The last 
invertible extracted system 𝑍±𝐺± = 𝐻±  could be enriched by adding unknown resistances while keeping the 
system invertible. But our first aim here is not to get a resistance distribution that allows for the recovery of 
the displacement field measured on the 4D data. The goal of this study is rather to identify plugged airways. 
Note however that if the resistance of an airway that is actually plugged is removed from the set of 
unknowns, it will not be identified as a plug. 
  
To summarize, the identification problem aims at determining which airways are severely constricted. It 
consists of three steps and is performed after the a priori detection process. Pressure drops are linked to 
the flows within the tree through airway resistances by system (13). This system contains more unknown 
resistances than independent equations. The unknown set has to be reduced, this is the resistance removal 
step, which is performed one time and is valid for every time step. The removal step ensures the existence 
of a path through which the pressure drop along the tree can be computed. The minimization problem 
(𝒫«) can then be solved to determine the pressure drops from the tree entrance to all its exits. Now that 
exit pressures are known, the system extracted from (13) is inverted at each time step. 
As mentioned before, a selection process is needed to determine which resistance to remove from the 
unknown set. This process shall keep, among others, the airways that are actually plugged and remove 
some healthy or moderately constricted airways, i.e. some that have negligible effect on ventilation 
distribution. Indeed, as mentioned in subsection 2.1, asthma affects the lung structure from many 
moderate radius constrictions to a limited number of airway closures. Using the ventilation distribution 
information provided by dynamic images, we propose a methodology to make an a priori prediction on 
airways constriction likeliness (see subsection 2.4).  



 
 

 
Remark 4: We aim to keep in the unknown set resistances associated to the most constricted airways. If 
the a priori prediction process provides an appropriate ranking, airways whose resistances do not belong to 
that set are moderately constricted at most. Their radius is supposed to have a typical “healthy” value 
known from morphometric studies (see subsection 3.1.3), although normal airway dimensions are 
submitted to an inter- and intra- variability [19]. However, possible radius variation within this “healthy” or 
“normal” range are much lower than these induced by severe bronchoconstrictions. The errors caused by 
considering an arbitrary “healthy” radius are thus expected to have little impact on the pressure drop 
distribution compared to plugs. 
 

2.4. A priori prediction process 
 
Following the process described in subsection 2.3, to get insights on plugs distribution, only a sub-set of 
airway resistances can be considered as unknowns. From the 2𝑁 − 1 airways, at most 𝑁 have their 
resistance initially set as unknown (see subsection 2.3). One could try all the combinations of 𝑁 airways 
such that system (15) is invertible, invert the system for each combination, and keep as a final result the 
one that minimizes the distance between vectors 𝐴𝑄 and 𝑃. However, it can be shown that there are more 
than 2jÍ? of these combinations: this makes this approach costly when the tree contains a few hundred 
exits as done in this study. Thus, before the identification problem step, an a priori prediction process is 
required to determine which branches are likely to be constricted and which ones rather have close to 
healthy dimensions. These latter are removed with highest priority. The prediction process described in this 
section is based on dynamical ventilation data analysis. It uses a machine learning technique to map the 
observed ventilation distribution with constrictions positions and strengths within the tree. 
 

2.4.1. Ventilation	information	extraction	
 
Ventilation distribution, i.e. flows within the tree, is related to the tree structure. In the following, some 
features characterizing the ventilation are set as inputs of a machine learning algorithm so as to determine 
which airways are likely to be plugged. The ventilation distribution can be determined from the 
parenchyma velocity field. Indeed, from (5) one can compute tree exit flows. Under the incompressibility 
assumption, the flow distribution within the tree is then obtained (11).  
 

2.4.2. Machine	learning	process	
 
The machine learning process proceeds in two steps (see Figure 4). First a correspondence is established 
between ventilation features extracted from 4𝐷 ventilation data and known airway radius reduction ratios 
(12) that are associated to these features. This mapping is built on a large synthetic database, called the 
learning base, so as to capture the diversity of ventilation distribution patterns. This is the learning step. In 
a second step, for a dynamical ventilation map associated to an unknown constriction distribution, 
ventilation features are extracted, and airway reduction ratios are determined. This is the target prediction 
step. 
 
Ventilation features: 
A key question to address is which ventilation features to consider in the machine learning process. 
Bronchoconstrictions influence the ventilation distribution. To quantify disease severity and to obtain 
insight on the geometrical distribution of constrictions, ventilation pathological patterns can be compared 
to the ones that would be obtained if there were no constrictions. In this study we assume that for a given 
asthmatic patient lung mechanical properties are known. Also known is the tree topology, i.e. nodes 
positions, and the typical dimensions of the airways if they were not constricted.  This is the “healthy” tree 



 
 

configuration. We finally assume we can access the lung geometry and the parenchyma surface 
displacement during breathing. These are the necessary input data to use the tree-parenchyma coupled 
model described in subsection 2.2. A reference “healthy” ventilation distribution can thus be simulated 
along with various synthetic “asthma” cases.  

 

The machine learning step aims at determining, given a ventilation distribution, which airways are likely to 
be constricted and with which severity. To do so, we need to define at the airway level some features that 
correlate with the ventilation distribution. These features are precisely defined in Appendix A.4. In 
particular, they enable to compare the “healthy” configuration to “asthmatic” ones (see the description of 
the database just below).  
Once these features are defined we use a random forest regressor algorithm to map for each airway (𝑛, 𝑘) 
its feature vector (as defined in Appendix A.4) and its radius reduction ratio Pî,Î

Pï¼ðñºïòî,Î
. Quality of the 

prediction results is shown in subsection 4.2. The random forest method was chosen because it is fast and 
insensitive to noise. 
 
Remark 5: Note that ventilation distribution is also influenced by factors that do not appear among the 
selected features. In particular, it is a function of the position within the lung: for instance, in tidal 
breathing regime, displacements are more important around the diaphragm than near the lung apex. To 
make the prediction more accurate, one could add as features the lobar position of the airway, or even its 
exact position within the lung. Though doing so would dramatically increase the problem dimensionality. 
Rather than providing a precise prediction of the constriction ratio, we aim at predicting a good ranking of 
potentially plugged airways (see results subsection 4.2). For that reason, the output of the machine 
learning algorithm may be referred to as “constriction likeliness” rather than radius reduction ratio. Airways 
could have been sorted based on other criteria. For instance, one could have enforced proximal airways in 
the unknown set (see subsection 2.3) by modulating the prediction with the airway generation. 
 
Database construction and constriction likeliness prediction: 
To build a learning base the following approach is adopted: first the parenchyma displacement field is 
extracted from the 4𝐷 dynamical map, so-called target map, associated to a tree whose plug distribution 
has to be determined. This would typically be the map obtained from an asthmatic patient, a so-called 
target patient. The extracted surface displacement is used as a set of Dirichlet boundary conditions (namely 
the surface displacement through time 𝒖𝑫). Knowing the tree structure, the lung mechanical properties, 
and assuming that the parenchyma behavior can be accurately described by a Hooke’s law model, a healthy 
ventilation simulation is performed based on the tree-parenchyma coupled model described in subsection 
2.2. Imposing stochastic constrictions distributions as described in subsection 2.2, synthetic pathological 
ventilations are simulated with the same given Dirichlet boundary conditions. Note that in practice, the 
parenchyma surface displacement may depend on the bronchoconstriction distribution. Here the database 
is built for the specific target patient. All synthetic patients breathe with the same surface displacement but 
various airway resistances. If the database is large enough, generated synthetic ventilation patterns allow 
the identification of the target patient plug distribution. From the synthetic data, airway ventilation 
features described in Appendix A.4 are computed. Note that the associated radius reduction ratios are 
known since the trees have been generated. The learning phase is performed on this synthetic database by 
mapping the features and the related known airway constrictions. If the tree contains 2𝑁 − 1 airways and 
if 𝑚A pathological cases are simulated, there are (2𝑁 − 1) ∗ 𝑚A couples (airway features; radius reduction 
ratio) in the learning base.  
This database is then the basis to predict airway radius reduction ratios associated to the target 4𝐷 
dynamical map. As mentioned in subsection 2.1, in this study the target map is synthetically generated with 
the tree-parenchyma coupled model. 
 



 
 

 
Figure 4: Schematic of the a priori prediction process. In the learning phase, a mapping is built between ventilation features 
extracted from synthetic 𝟒𝑫 ventilation data and airway constriction ratios in related asthmatic trees. Note that the Dirichlet 
boundary conditions and the tree geometry used to generate the synthetic data are those of the target ventilation map. Then, 
airway constriction likeliness is predicted for the tree associated to the target ventilation map. If the process is good, plugged 
airways (in red) have a high constriction likeliness. 

 

2.5. Global methodology summary 
 
In this section we summarize the overall process to go from a 4𝐷 dynamical map and tree topology to the 
tree plugs distribution, see Figure 5. For the identification problem (step 4, see subsection 2.3) to be well-
posed, not every airway resistance can be considered as an unknown. An a priori prediction process (step 3) 
is used to select a subset of airways that are more likely constricted and shall hence be put in the unknown 
set. Based on a machine learning technique (see subsection 2.4.2 and Appendix A.4) ventilation features 
extracted from the target ventilation map (step 1, see subsection 2.4.1) are used to predict constriction 
likeliness for each airway. To that end, a learning phase is necessary. To generate synthetic data for the 
learning phase, the tree-parenchyma ventilation model presented in [15] and subsection 2.2 is used. The 
extracted parenchyma surface displacement is used as a set of Dirichlet boundary conditions. Ventilation 
simulations are performed with a healthy tree model and various asthmatic configurations (step 2, see 
subsection 2.4.2). The healthy tree model is built following subsection 3.1.3; segmented branches are used 
along with the parenchyma envelope to generate complete tree geometry. Asthmatic configurations are 
obtained by imposing stochastic constrictions as described in subsection 3.1.3. Using the a priori 
constriction likeliness ranking, one can finally proceed to the identification problem step (step 4) which is 
done in three stages. The system linking flows and tree pressures through airway resistances is a priori not 
invertible. An invertible extraction is first obtained thanks to the resistance removal step. Then a 
minimization problem is solved to determine the exit tree pressures. The resulting system is inverted and 
the plug locations and severity are identified. 
 



 
 

 
Figure 5: schematic of the overall process, from 4D dynamical data to plugged airways identification. Detailed version of Figure 
1. 

3.  Numerical methods and patient-specific data exploitation 
 
In this section we describe patient-specific data construction, numerical strategies and systems resolution.  
 

3.1. Input data construction 
 
For the process described in Figure 5, the lung geometry, its displacement over the breathing cycle and the 
tree structure are needed.  
 
 
 



 
 

3.1.1. Lung	geometry	
 
From 4𝐷 scans the lung envelope can be segmented. We work on one human left lung geometry. 
Segmented HRCT data acquired in [26] are used to build a patient-specific tree and a parenchyma 
geometry. 
A surface mesh of the parenchyma is generated with Meshlab [27]. From there, a tetrahedral volume mesh 
is built with GMSH [28]. It is subdivided based on the tree structure in as many regions as there are 
terminal branches (see Figure 6) according to an algorithm described in [15]. The mesh contains 250 594 
tetrahedrons, which corresponds to achievable 4D-CT spatial resolution (see subsection 3.1.2). There are 
140 091 degrees of freedom. 
 

 
Figure 6: Left lung mesh subdivision based on a ten-generation tree structure. The domain is divided into 477 terminal regions. 
Each color corresponds to a different region. The average volume of each region at the reference state is 2.2 ml.  

 

3.1.2. Temporal	and	spatial	resolutions	
 
Synthetic 4𝐷 ventilation data generated from the tree-parenchyma coupled model described in subsection 
2.2 are used in this study. Spatial and temporal resolutions are chosen consistent with what currently 
available machines can provide. Simulations performed to generate these data are done with a small time 
step of 0.04 s to ensure precision but only a few time points are then kept to cope with experimental 
temporal resolutions. 
The parenchyma surface Dirichlet boundary condition is built based on two static inflation states 
segmented from [29]: mean lung volume (MLV), here considered as the reference state, and total lung 
capacity (TLC). A non-linear registration is performed with the software deformetrica [30] to map MLV and 
TLC parenchyma surfaces. In this study we consider tidal breathing conditions, i.e. for respiration at rest 
and with normal volume expansion. The MLV to TLC registered displacement field is thus bounded and 
sinusoidal dynamics with a time period of 4s are prescribed so as to impose a typical tidal volume 



 
 

evolution. This surface displacement is imposed as Dirichlet boundary conditions to the tree-parenchyma 
coupled model. Here we work on synthetic data: the displacement field 𝒖(𝑡) is the output of a simulation 
based on the mechanical model described in subsection 2.2. Note that, as mentioned in subsection 2.3, one 
could work on real 4𝐷 data from which a displacement field can be extracted through registration. 
Depending on the scanner and reconstruction techniques, 4D-CT and 4D-MRI lead to various spatial and 
temporal resolutions [31], [32], [33], [34]. We assume an isotropic spatial resolution of 4 mm3 and we use a 
mesh that is refined accordingly (see subsection 3.1.1). Temporal resolution is 0.4 s (i.e. ten images per 
breathing cycle in this study). Synthetic ventilation data are thus generated every 0.4 s to perform the 
machine learning step (see results in subsection 4.2). Data from the ten resulting time points are 
aggregated to proceed with the identification problem step (see results in subsection 4.3). 
Whatever the technique, registration is not exempt from errors. In the following we conduct the 
identification process both on noise-free and noisy data. Based on [31], [32], [33], noisy data are generated 
by multiplying at each time step 𝑚 each component 𝑖 of 𝑌], the FE approximation of the velocity field at 
time 𝑚∆𝑡, by a factor (1 + 𝜃+]) where 𝜃+]  is generated according to a uniform law in the interval 
[−0.3; 0.3]. This corresponds to an uncorrelated noise going up to ±30%. Note that in practice, 4D-CT data 
can exhibit strong artifacts leading to gross errors in the computed displacement [35]. The methodology 
described in this paper assumes synthetic data are free from such artifacts.    

3.1.3. Tree	structure	
 
From 4𝐷 scans, upper airways can be segmented and used along with the parenchyma surface to 
propagate a conductive tree model with a patient-specific space filling approach [36], see Figure 7.  
 

 
Figure 7: Space filling tree obtained based on the work presented in [36]. Segmented upper airways and lung envelope are used 
to propagate a patient-specific 𝟎𝑫 model of the conductive tree structure. Each color corresponds to a different lobe. Figure 
taken from [15]. 

The resulting structure contains a faithful representation for segmented upper branches, and a simulated 
tree representation model for the remaining airways. This model is built based on both general 
physiological knowledge and patient data; it generates nodes positions, airway lengths and radii. While 
constrictions may be seen on segmented upper airways [7], the propagated part of the tree does not 
account for any pathology. Indeed, there is no a priori knowledge on the distribution of constricted 
branches, which is specific to each patient. Node positions and airway lengths of the propagated part of the 
tree are thus from now on known. Airway radii 𝑟/v^±./Ìî,Î are in a healthy configuration range (see Remark 
4). Note that since the upper airway geometry is known from segmentation, their resistance would not 



 
 

need to be included among the unknowns of the identification problem described in subsection 2.3. 
Though, in this study, we work on synthetic pathological trees with stochastic constrictions generated by 
the process described in subsection 2.2; we consider all branches radii including proximal ones are a priori 
unknowns. 
In the following, we work on ten-generation space filling trees. Downstream sub-trees are treated as 
symmetric units and characterized by equivalent resistances. Each unit is irrigated by one airway referred 
to as a tree exit. Constrictions in such a subtree would be accounted for by a resistance increase of the 
related exit. The resulting left lung tree used herein contains 954 airways among which 477 are terminal 
branches. When simulating asthma, we generate 𝑛{±BC²Pv  plugs with 𝑛{±BC²Pv  randomly chosen in the 
interval ⟦1; 40⟧ (see subsection 2.1), this interval being set based on non-published data from [36]. 
 

3.1.4. Mechanical	properties	
 
In this study, the parenchyma mechanical properties are assumed to be homogeneous and are set within 
the ranges provided in [37]: Young’s modulus 𝐸 = 1256	𝑃𝑎 and Poisson ratio 𝜈 = 0.4 where 𝐸 and 𝜈 are 
linked to the Lamé parameters by 𝜆 = ùú

(?�ù)(?Í@ù)
 and 𝜇 = ú

@(?�ù)
. Parenchyma density is 𝜌A^P =

100	𝑘𝑔.𝑚Íì. Air density and viscosity at 37°C are respectively 1.125 kg.m-3 and 1.895 10-5 Pa.s. 
 

3.2. Numerical methods 
 
Direct problem: 
System (8) is solved through a conjugate gradient descent method with Jacobi preconditioning as described 
in [15]. 
 
Machine learning: 
The machine learning step is performed with a random forest regressor. The number of elements in the 
forest is chosen to be 50 and other parameters (as proposed by the scikit-learn library [38]) are set to their 
default values. In order to predict the airway radius reduction ratios of a patient, synthetic data are 
generated as described in subsection 2.4.2 and used for the learning phase. 
In this study, we work on one healthy tree and 49 asthmatic ones, the mechanical parameters and 
constitutive relation being the same in every cases. We adopt a leave-one-out strategy: iteratively, one of 
these pathological trees is considered as unknown in the sense that the aim is to predict the radius 
reduction ratios of its airways. The 48 other ones are used to build the learning base, which thus contains 
more than 45,000 airways. Prediction results are shown in subsection 4.2.  
Airways are ranked based on their predicted ratios, and this ranking is used for the unknown selection (see 
subsection 2.3). As mentioned in subsection 3.1.2, the identification problem is performed on both noise-
free and noisy synthetic ventilation data. 
 
Identification problem: 
The solution of the minimization problem (𝒫«) (see (10)) is approached by solving the penalization problem  
 

min
Æ∈ℝÐ	

¿|𝐵h𝑃 − 𝑆	|¿@ +
1
𝜀
d𝛱+¾(𝑃) − 𝑝+¾e

@
 

 
with 𝜀 > 0 and small and 𝛱+¾ the linear form that maps a vector of ℝj into its 𝑖Ã./ component. 
Numerically, we solve 
 

𝐵𝐵Av�^±+üv«	h 𝑃 = 𝐵𝑆Av�^±+üv«		  
 



 
 

where  
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�𝐼+¾�+o = Á1, 𝑖𝑓	𝑖 = 𝑗 = 𝑖Ã,
0, 𝑒𝑙𝑠𝑒.  

 
 
The penalized matrix 𝐵𝐵Av�^±+üv«	h is invertible. Matrix 𝐵𝑆Av�^±+üv«		 writes 
 

𝐵𝑆Av�^±+üv«		 = 𝐵𝑆 +
1
𝜀 𝑉+¾, 

 
with  
 

�𝑉+¾�+ = ý
1
𝜀 𝑝+¾, 𝑖𝑓	𝑖 = 𝑖Ã,
0, 𝑒𝑙𝑠𝑒.

 

 
We finally solve  𝐵𝐵Av�^±+üv«h 𝑃	 = 𝐵𝑆Av�^±+üv«	  with the conjugate gradient method. Then, as described in 
subsection 2.3, an extracted system of (15) is solved at ten time points during the breathing cycle (see 
temporal resolution in subsection 3.1.2). At each of these time points, radius reduction ratios of airways 
belonging to the unknown set are computed. If the average radius reduction ratio defined by (12) over the 
ten time points is below 0.3, the airway is classified as a plug. This bound is set based on the radius 
reduction ratio distributions (see subsection 2.2). Some airways that are actually more severely constricted 
are indeed predicted as plugged (they are true positives), some are missed (they are true negatives), and 
some that are only moderately constricted are classified as plugged (thus they are false positive).  

4.  Results 
 
In this section we present some results relative to the direct problem (see subsection 2.2), the machine 
learning step (see subsection 4.2) and the identification problem (see subsection 4.3) on a human left lung, 
which thus contains two lobes, the left upper lobe (LU) and the left lower lobe (LL). 

4.1. Results for the direct problem 
 
Here we present the results of two typical cases (for a more extensive description, see [15]): a healthy case 
and a configuration in which a plug with radius reduction ratio 1/7 is applied on the branch that feeds lobe 
LU. Results shown here are plotted after a few cycles so that the periodically converged regime has been 
reached. In Figure 8 the volume expansion from the reference state is plotted for both cases. Recall that a 
Dirichlet boundary condition with a sinusoidal breathing cycle is imposed (see subsection 3.1.2). This 
prescribes the total lung volume variation, which is thus also the same in the pathological case; though the 
air distribution between both lobes is affected. In the constricted case, lobe LU is less ventilated in favor of 
lobe LL. Note also that, along the breathing cycle, LU does not expel all the gas it contains: there is air 
trapping which is typical of asthma and COPD [39]. Finally, due to the resistance increase, ventilation of the 
diseased region is shifted in time. This has been reported in [40]. In Figure 9 we plot the scalar field 𝑑𝑖𝑣(𝒖) 
which represents the local relative volume expansion for the two cases. 
 



 
 

 
Figure 8: Left lung and LU lobe volume expansions from the reference state in a healthy configuration and when a 
bronchoconstriction, with constriction ratio 7, is applied to the branch that feeds lobe LU. Dirichlet boundary conditions with 
sinusoidal dynamics are applied to the system. 

 

 
Figure 9: Local relative volume expansion 3D map on a left lung geometry. Dirichlet boundary conditions with sinusoidal 
breathing cycle are imposed. On the left side a healthy configuration is simulated. On the right side a bronchoconstriction with 
constriction ratio 7 is applied on the branch that feeds lobe LU. Plot at time=1s. Figure taken from [15] 

Consistent with previous observations, lobe LU expands less in the pathological case. Note that 
diaphragmatic motion induces higher expansion in lower regions of the lung. 
As explained in subsection 2.1, an asthmatic tree contains both a few severe constrictions and numerous 
moderate constrictions. Here we will compare the influence of moderate and severe bronchoconstrictions 
on ventilation distribution. To do so, we first build 49 stochastic asthmatic trees following the process 
described in subsection 2.2. Then we generate “plugs only” trees built from the asthmatic trees by 
removing moderate constrictions, and “plugs free” trees built from asthmatic trees by removing the plugs. 
We compare first the ventilation distribution obtained in the asthma and the “plugs free” cases, and then 



 
 

the ventilation distribution obtained in the asthma and the “plugs only” cases. In Figure 10, we plot for 
each of the 49 trees the ratio 
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where index 𝑖 refers to tree exit 𝑖. The sum is over the 𝑁 tree exit airways, here 477, and notations 𝑉]^" 
and 𝑉]+� have been defined in subsection 2.4.2. Similarly we define 𝑑𝑖𝑓𝑓A±²þC#Pvv .  
 

 
Figure 10: Plot of 𝒅𝒊𝒇𝒇𝒑𝒍𝒖𝒈𝒔𝑶𝒏𝒍𝒚  (yellow) and 𝒅𝒊𝒇𝒇𝒑𝒍𝒖𝒈𝒔𝑭𝒓𝒆𝒆   (grey) for each of the 49 asthma trees. Note that these are relative 

differences with respect to the full asthma tree. 

We observe in Figure 11 that in all cases the ventilation distribution obtained with plugs only is close to the 
one obtained with both plugs and moderate constrictions (6% difference on average). In most cases there is 
a high discrepancy between the asthma and the “no plugs” ventilation (45% difference on average). As a 
conclusion, plugs are much more influential than moderate constrictions on ventilation distribution in this 
asthma model. In some cases (e.g., trees 14 or 22), plugs have little influence on the ventilation 
distribution. These are configurations in which the number of plugs is in fact low (see Figure 11). These data 
are the basis for determining the position and severity of constrictions based on 4𝐷  ventilation data. 
  

4.2. Results for the machine learning step 
 
In this section, we assess the quality of the machine learning step described in subsection 2.4.2. As 
explained in subsection 2.3, not all tree resistances can be considered as unknowns of the process. First, 
among the 954 airways, 𝑁=477 have to be selected. A radius reduction ratio (which is in range [0; 1], see 
equation (12)) is predicted for each airway and branches are sorted in increasing order. The smaller the 

 



 
 

ratio, the more likely the airway is constricted. In Figure 11, we plot, for each of the 49 synthetic asthma 
trees, the total number of plugs and among them the number for which the predicted radius reduction 
ratio is sorted among the first 477.  
 

 

Figure 11:  Machine learning classification success. The machine learning step predicts for each airway a radius reduction ratio. A 
low ratio corresponds to a severe constriction. Airways are sorted in increasing order with respect to their predicted ratio. Thus, 
each airway has a rank; the smaller the rank the smaller the predicted radius reduction ratio. For each asthmatic tree are plotted 
the total number of plugs (ground truth as they come from synthetic data), and among them the number of plugs that are 
classified with radius constriction ratio in the first half by the machine learning step. Trees contain 954 airways. 

At this stage, for all trees, a large majority of the plugged airways if not all have their resistances kept in the 
unknown set, 98.5% in average (see Table 1). Among these 𝑁 unknowns, some will be removed to get an 
invertible extraction of system (15) (see subsection 2.3) based on the constriction likeliness ranking 
provided by the machine learning step. For an airway with rank 𝑘, we call �

j
 its normalized rank. The smaller 

the normalized rank, the less likely the airway will be removed from the unknown set. The a priori 
prediction process is judged to be good when plugged airways have a low normalized rank and are thus 
likely to be kept in the final unknown set. Note that on average on the 49 trees, after the resistance 
removal process (see Figure 18), there are 250 kept unknowns over the 954 initial tree airways. 
In Figure 12 we plot, for each tree, the average normalized rank of plugged airways obtained when 
ventilation features are extracted from noise-free and noisy 4𝐷 ventilation data. Details on the noise 
structure can be found in subsection 3.1.2. Note that the average normalized rank depends on the number 
of plugs within the tree which goes from 1 to 40 (see subsection 3.1.3). If a tree contains one plug only, as 
for tree number 24, the best achievable average rank is obtained when the plug ranks first and its value is 
1/954≈0.1%. If a tree contains 40 plugs, as for tree number 1, the best achievable average rank is obtained 
when the plugs rank among the 40 first and its value is 20/954≈2%. 
 



 
 

 

Figure 12: Normalized average ranking of plugged airways by the machine learning step. The machine learning step predicts for 
each airway a radius reduction ratio. A low ratio corresponds to a severe constriction. Airways are sorted in increasing order 
according to their predicted ratio. Thus, each airway has a rank; the smaller the rank, the smaller the predicted constriction 
ratio. The average predicted rank of plugged airways divided by 954, the total number of airways, is plotted for each asthmatic 
tree. The lower this normalized average rank, the more likely resistances of plugged airways will be kept in the unknown set 
during the removal process (see subsection 2.3). In green (resp. yellow) results obtained when ventilation features are extracted 
from a noise-free (resp. noisy) 𝟒𝑫 ventilation data. 

The machine learning step is consistent when applied to the cases with noise. In about 90% of the cases 
plugged airways are ranked in the first decile, for both the noise-free and noisy case. The average rank is 
good, thus airways that are actually plugged are not likely to be removed during the selection process 
described in Figure 3. Although the machine learning step provides good rankings, it does not accurately 
predict airways constriction. The identification problem is needed to determine which branches are actually 
plugged. 
 

4.3. Results for the identification problem step 
 
In this section are presented the results of the identification problem step (see subsection 4.3) without and 
with noise added to the velocity field coming from 4D data. As mentioned in section 2.1 the inputs come 
from synthetic data generated by the tree-parenchyma coupled model (see subsection 2.2). Simulations are 
performed over one breathing cycle. The identification problem classification process is performed as 
described in subsection 2.3. 
In Figure 13, we plot for each asthmatic tree the number of plugged airways that are properly identified as 
plugged by the identification problem step divided by the total number of plugged airways, and the number 
of false positives divided by the total number of plugged airways. As explained in subsection 3.2, an airway 
is classified as plugged by the identification problem if its average computed radius reduction ratio is below 
0.3. Most of the plugs are detected. In some cases, airways radius reduction ratios are overestimated by 
the identification problem step and they are not classified as plugged although they should be. For a few 



 
 

airways, the ratio is under-estimated and they are classified as plugged although they should not be. Thus, 
they appear as false positives. The identification problem detection rate quantifies the proportion of 
plugged airways that are properly classified after the identification problem step. The false positive 
detection rate quantifies the proportion of airways classified as plugs while they are actually moderately 
constricted at most. 
 

 

Figure 13: Plug detection rate for the noise-free case. For each of the asthmatic trees are plotted: in blue the proportion of 
plugged airways that are indeed predicted as plugged by the identification problem step (true positive), and in red the 
proportion that are predicted as plugged by the identification problem step whereas in practice they are moderately constricted 
at most (false positive). 

Average detection rates are provided in Table 1. A more detailed analysis shows that some plugs have little 
influence on the ventilation distribution: they will logically not be detected by the process. This can occur 
because they are in regions where some other plugs have more impact or because they affect downstream 
generations where low flows result in low pressure drops even in cases where resistances are increased 
(see Figure 17). When analyzing the detection rate, one shall consider that if the tree contains only a few 
plugs, one missed airway notably depreciates the classification rate. In tree 37 for example, 4 plugs over 6 
are actually properly classified. 
Note that the space-filling tree is a model. Specifying which precise airway is plugged would require a 
perfect knowledge of the tree architecture even in downstream generations, which is not achievable. More 
reasonably, we can deduce from the analysis insights on which lung regions and tree generations are 
affected by plugs. This is useful information when predicting particle deposition [6] or response to Heliox 
treatments [5]. In Figure 14, we plot the true positive detection rate as a function of the false positive 
detection rate in two cases: assuming a false positive is actually properly classified if its mother or 
daughters airways are plugged, and the strict case from Figure 13. As summarized in Table 1 and Figure 16, 
the detection rate is slightly improved by 0.5% while the false positive rate is reduced by 29%. 



 
 

  

 
Figure 14: The true positive detection rate as a function of false positive detection rate plotted for each of the asthmatic trees. In 
blue, results obtained when including airway neighbors in the analysis:  it is considered that if a moderately constricted airway is 
predicted as plugged by the identification problem step and has a mother or daughter that is actually plugged, this airway is a 
true positive rather than a false positive. In blue, results obtained when the neighbors are not included in the analysis. In both 
cases, the identification problem is performed on noise-free data. 

In the following, we perform a similar analysis in the cases where the velocity field used as input of the 
identification problem step is noisy (see subsection 3.1.2).  As shown in Figure 15, as expected, detection 
rates are reduced compared to the case without noise. However a large majority (86.5%) of the plugs are 
detected and the rate of false positive remains low (see Table 1). 



 
 

 
Figure 15: Plug detection rate for noisy displacement data. For each of the asthmatic trees, plotted in blue is the proportion of 
plugged airways that are indeed predicted as plugged after the identification problem step, in red the proportion that are 
predicted as plugged by the identification problem step whereas in practice they are moderately constricted at most; these are 
false positive. If a moderately constricted airway is predicted as plugged and it has a mother or daughter that is actually plugged, 
classification is judged to be good and this airway is not considered as a false positive.  

 

 

 

 

 

 

 

 

 

 

 



 
 

In Figure 16, detection rates obtained in the noise-free and noisy cases are compared. 

 
Figure 16: The true positive detection rate as a function of false positive detection rate plotted for each of the asthmatic tree. In 
red, results obtained when the inverse problem step is performed on noise-free data, in blue results obtained when it is 
performed on noisy data. 

 

In the following, we analyze the detection rate by generation. Plugs in upper airways have a high influence 
on ventilation distribution [5] in contrast to constrictions that occur in distal generations. It is thus expected 
that dynamical ventilation data enables access to constriction information in proximal tree regions, which 
are critical, rather than in downstream areas which have less impact. In Figure 17 are plotted the 
identification problem detection rates per generation. Note that we work on a half lung, fed by an airway 
belonging to generation one. In simulated cases, there is no constriction on this airway since there needs to 
be an unknown-free path for the system to be invertible (see subsection 2.3). In practice, bronchoscopy can 
be used to determine if plugs exist in the most proximal airways [41], which can thus be removed from the 
unknown set. 
 



 
 

 

Figure 17: plugs detection rate per generation, for noisy displacement data. For each generation starting at two (one being the 
trachea), the identification problem plug detection rates are plotted in average over the 49 asthmatic trees. 

Plugs in proximal generations are all detected. The detection rate drops under 80% at generation 10. The 
tree has a dyadic structure, and thus there are about two times more airways at generation 𝑛 + 1 that at 
generation 𝑛. So a bad detection rate at a distal generation has a large influence on the overall detection 
rate result although plugs in these airways have less impact on ventilation distribution. In Table 1 detection 
rates are summarized. When not considering small airways (commonly defined as these with internal 
diameter inferior to 2mm [9], starting around generation 8 [19]) more than 90% of the plugs are detected 
by the process. 

5.  Limitations and conclusions 
 
Table 2 lists the key assumptions made on the model and on the data. 
 
Assumptions and related limitations of the ventilation model used in this study are pointed out in a 
previous paper [15]. Note that our aim is to present a new methodology to locate plugs within the tracheo-
bronchial tree towards the development of a diagnosis tool. Several limitations in the development are 
discussed below. 
First we assume a linear elastic behavior of the lung parenchyma, which is likely to be valid for low tidal 
breathing frequency and displacement regimes. Although there is no consensus on which constitutive 
relation shall be considered [42], [43], [44], the actual parenchyma law is much more complex. The 
identification problem approach proposed in this paper works assuming mechanical properties are known, 
which is not the case in practice, here representative values from the literature were assumed. Note that 
the presented methodology would cope with any other constitutive relation for which parameters are 
known. Future work could include an inverse problem to determine both the plugs distribution and 
mechanical properties based on 4D data image registration. Some in-vivo techniques aim at determining 
the parenchyma mechanical properties based on image analysis [45], though in cases where the ventilation 
is strongly affected by pathological patterns within the tree, the tree-parenchyma coupling shall be taken 
into account. Indeed, some regions with normal mechanical behavior may not inflate because they are 



 
 

irrigated by constricted paths. To that end identification problems for parenchyma mechanical properties 
and plugs distribution may be coupled.  
Moreover, as mentioned in subsection 3.1.3, we assume the generated space-filling tree is a proper 
approximation of the real one in terms of topology. Although it has good statistical properties [46], this 
remains a model. Validation of this topology and of the predicted constriction ratios on imaging data of 
high resolution is warranted. If tree bifurcations positions were not precisely known, one could consider 
using this methodology to develop greater global insight on which regions of the tree contain severe 
constrictions. 
Another limitation of our work is, as stated in subsection 2.2, the use of the Pedley resistance model during 
expiration. In addition, airways are assumed to be rigid which is not the case in practice. Their dimensions 
may evolve along the breathing cycle, though this has little impact in the tidal breathing regime (see [15]). 
Note that a quasi-static evolution of the airway radius would be compatible with the proposed framework. 
Note also that, as mentioned is subsection 3.1.2, the methodology proposed in this article uses 4D 
ventilation data that could be noisy. The noise here accounts for registration errors, but not for gross 
artifacts. The latter should be further investigated. Note that some registration methods specifically 
designed to reduce sensibility to artifacts have been proposed, with promising results [47].  
Finally, in this study, the 4𝐷 ventilation target map used was built in a synthetic way adding noise to the 
obtained simulation result, and the process was tested based on these data. Consequently the method 
should ideally be tested on real experimental data for the target map (the learning base still being a 
synthetic one. 
 
In conclusion, we proposed a plug detection approach that couples machine learning and ventilation 
modeling. Considering common 4D-CT/4D-MRI temporal and spatial resolutions we obtain very 
encouraging results. For noisy synthetic data more than 85% of the plugs are detected and when not 
considering severe constrictions in small airways, which have a lower impact on ventilation distribution, the 
detection rate reaches more than 90%.  
 

Appendix 

A.1 On the dimension of 𝒌𝒆𝒓(𝑩𝑻) 

Let us compute the kernel of 𝐵h  (see subsection 2.2 for the definition of matrix 𝐵). For a vector 𝑃 = /
𝑝?
⋮
𝑝j
1 

we have 
  

(𝐵h𝑃)o = 2z𝑝+ 3𝑑𝑖𝑣d𝒆𝒋e
	

Ω~

	

+

4

o

 

 
where d𝒆𝒋eoare the finite element basis functions. With the imposed Dirichlet boundary conditions, they 

are such that ∫ 𝑑𝑖𝑣d𝒆𝒋e
	
Ω	

= 0. Let 𝑃 be a non-null vector such that 𝐵h𝑃 = 0. Let us consider the 𝑘./ 
element of 𝐵h𝑃: 
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For 𝑒� with support included in Ω±, we have that (𝐵h𝑃)� is always equal to zero, indeed for 𝑖 ≠ 𝑙 
∫ 𝑑𝑖𝑣(𝒆𝒌)
	
Ω~

= ∫ 𝑑𝑖𝑣(𝒆𝒌)
	
Ω	

= ∫ 𝒆𝒌. 𝒏
	
µΩ	

= 0 since 𝒆𝒌 = 0 on 𝜕Ω. And ∫ 𝑑𝑖𝑣(𝒆𝒌)
	
Ωñ

= ∫ 𝑑𝑖𝑣(𝒆𝒌)
	
Ω = 0. If 𝒆𝒌 

has a support intersecting the border between regions Ω±  and Ωo  then ∫ 𝑑𝑖𝑣(𝒆𝒌)
	
Ω�∪Ωñ

= 0 and 
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So (𝐵h𝑃)� = 0	 ⇒ 𝑝± = 𝑝o .  As for any two neighboring regions Ωo  and Ω±  there exists at least one 𝒆𝒌 with 
support included in Ωo⋃Ω±, we conclude that ∃	𝑝Ã such that for any 𝑗, 𝑙 ∈ {1. . 𝑁}, 𝑝o =	 𝑝± = 𝑝Ã. Finally we 
have  

	𝐵h𝑃 = 0	 ⇒ ∃	𝑝Ã ∈ ℝ	/	𝑃 = 𝑝Ã /
1
⋮
1
1. 

The reverse is trivial. 

So ker(𝐵h) = 𝑠𝑝𝑎𝑛 ý/
1
⋮
1
1<  and 𝑑𝑖𝑚(𝑘𝑒𝑟(𝐵h)) = 1. 

 
 

A.2 On the reason why if 𝒁𝒃 is not invertible, it has some collinear lines. 
 
Let 𝑍ã  the matrix defined by (14) (see subsection 2.3). A given line 𝑖 of 𝑍ã  contains 1 at position 𝑗 if the two 
following conditions are satisfied: resistance 𝑅o  belongs to the set of unknown resistances, and the airway 
associated to 𝑅o  belongs to path 𝑇+; otherwise the line contains 0 at position 𝑗. 
Lemma: assume 𝑟𝑎𝑛𝑘(𝑍ã) < 𝑏, then any line of 𝑍ã  cannot be linear combination of several of the others 
and thus, necessarily, 𝑍ã  has some collinear lines. 
 
Proof of the lemma: we denote 𝒰	the set of airways (𝑎+)+k?…ãÍ? excluding the mother branch and which 
resistances are unknowns. A path 𝑇±  goes from the mother branch down to exit 𝑙. Along this path, only a 
subset 𝒜± 	 of airways belongs to 𝒰. Let us denote 𝑔±	the 𝑙./ line of 𝑍ã	 . 
Let us note, 𝑚± = ∑ [𝑍ã	 ]±�	

� = ∑ 𝑔±Î
	
� = 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙(𝒜±) and 𝒢 = {𝑔±	/	∀	𝑗	 ≠ 𝑙,𝑚± ≥ 𝑚o} the set of lines 

containing most ones. We randomly select a line 𝑔C	in 𝒢. We will show that 𝑔C	 cannot be a linear 
combination of several vectors 𝑔.DC	. Let 𝑎« be the most distal airway of 𝒜C. Path 𝑇C is the only one that 
contains 𝑎«. If another path 𝛤L  contained 𝑎«, because 𝑎« is the most distal branch of 𝑇C,	the tree structure 
would impose 𝒜C ⊂ 𝒜L	. If 𝒜C ≠ 𝒜L	then 𝑚L > 𝑚C which is contradiction with the fact 𝑔C	 ∈ 𝒢. Thus 
𝒜C = 𝒜L	. Finally we have that 𝑔C© = 1	and	∀	𝑗 ≠ 𝑠, 𝑔o© = 0,	 so 𝑔C cannot be a linear combination of 
several 𝑔.,∀.DC	. Repeating the same process 𝑏 − 1 times with vectors 𝑔.,.DC	 we conclude that any line of 
𝑍ã  cannot be linear combination of several the others.  
 

A.3 Resistance removal algorithm. 
 
Here we describe the algorithm used to perform the resistance removal step of the identification problem 
(see subsection 2.3). This step consists in reducing the linear system (15) to obtain an invertible one. 
Indeed, 𝑍j may not be invertible. The algorithm takes advantage of the a priori prediction made on the 
likeliness constriction of a branch and on the lemma proved in Appendix A.2 based on the particular 
structure of 𝑍j. Remember moreover that the resistance 𝑅Ã,Ã is kept as an unknown in this process (see 
Remark 4). 



 
 

In the following, for a vector 𝑉 of ℝA and an integer 𝑐 ≤ 𝑝, we denote by 𝑉{𝑐} the vector of ℝAÍ? obtained 
by removing the 𝑐./ element of 𝑉. For a matrix 𝑀 of ℳA(ℝ), we denote by 𝑀{𝑐?, 𝑐@} the matrix of 
ℳAÍ?(ℝ) obtained by removing the 𝑐?./ line and 𝑐@./ column of 𝑀. For a matrix 𝑀 we denote 𝑀(𝑐, : ) the 
𝑐./ row of 𝑀. Vector and matrix indexations start at one. 
Figure 18 summarizes the algorithm that reduces the system to an invertible one of maximal rank by 
removing some well chosen column and raw. 
 



 
 

 
Initialization: 

• Index exits in {1, … ,𝑁} 
• 𝑙 = 𝑁 
• 𝑍± = 𝑍j 
• 𝑘 = 0 

 
While 𝑟𝑎𝑛𝑘(𝑍±) ≠ 𝑙  
 

• step 1   𝑘 ← 𝑘 + 1 
     If  𝜁±Í?(𝑘) = (0,0)  

o 𝑘 ← 𝑘 + 1      
• step 2   𝑖 = 0, 𝑗 = 0, 𝑠 = 0 

     While 𝑠 = 0 
o 𝑖 = 𝑖 + 1 
o For 𝑗′ = 𝑖 + 1	𝑡𝑜	𝑙 

§ If 𝑍±(𝑗′, : ) collinear to 𝑍±(𝑖, : ) 
• 𝑠 = 1 
• 𝑗 = 𝑗’	
• 𝑍±Í?

o = 𝑍±{𝑗, 𝑘} 
• Exit for 

                     End while 
      If 𝑟𝑎𝑛𝑘d𝑍±Í?

o e = 𝑟𝑎𝑛𝑘(𝑍±)  
o If 𝑟𝑎𝑛𝑘d𝑍±Í?

o e = 𝑙 − 1  
§ Set 𝑅� as healthy	
§ 𝑍±Í? = 𝑍±Í?

o  
§ 𝐺±Í? = 𝐺±{𝑘} 
§ 𝐻±Í? = 𝐻±{𝑗}  
§ 𝑙 ← 𝑙 − 1 

o Else  
§ 𝑍±Í? = 𝑍±Í?

o  
§ 𝑈±Í? = 𝑈±{𝜁±Í?(𝑘)} 
§ Set  𝜁±Í? a function from 𝑈±Í? to ⟦1; 𝑙 − 1⟧  

based on the a priori prediction process* 
§ Reindex exits {1, … , 𝑗 − 1} ∪ {𝑗 + 1,… , 𝑙} in  

the interval {1, … , 𝑙 − 1}  
§ 𝑙 ← 𝑙 − 1 

      Else if 𝑟𝑎𝑛𝑘d𝑍±Í?
o e < 𝑟𝑎𝑛𝑘(𝑍±)  

o Proceed to step 1 
 

 
* 𝜻𝒍Í𝟏 is chosen such that unknown 𝑹𝟏 is the resistance associated with the airway that has highest predicted 
reduction ratio by the a priori prediction process, 𝑹𝟐 with the airway with second highest predicted reduction 
ratio,… and 𝑹𝒍Í𝟏 with the airway with lowest predicted reduction ratio. 

Figure 18: Resistance removal algorithm for unknown selection. Resistances are removed one by one according to the predicted 
radius reduction ratio in order to make the system (15) invertible. 

This algorithm converges: indeed if 𝑙 = 1 then 𝑍 = 𝑍? = [1] which is invertible. 

 

R0,0 is kept as 
unknown 

Sub-system 
extraction 

The sub-system is 
invertible. End 

The sub-system is 
not invertible. 

Continue 
extraction: step 1 

Wrong extraction 
go back to step 1  



 
 

A.4 Ventilation features for the machine learning process 
 
In the following, we define the ventilation features used in the machine learning process (see subsection 
2.4.2). Variables with subscript “asthma” refer to the ventilation in an asthmatic case while “healthy” refers 
to the one simulated when the tree has no bronchoconstriction. 
As noted in subsections 2.4.2, we know the flow rate evolution and hence the volume of gas transiting in 
every airway over a breathing cycle. For the airway (𝑛, 𝑘) we note respectively 𝑉�,�]^"  and 𝑉�,�]+� the 
maximum and minimum of 𝑉�,�(𝑡) = ∫ 𝑞�,�

.	
Ã	 .  

We define the following feature: 
 

𝑐�,� =
d𝑉�,�]^" − 𝑉�,�]+�e^C./]^ − d𝑉�,�

]^" − 𝑉�,�]+�e/v^±./Ì
d𝑉�,�]^" − 𝑉�,�]+�e/v^±./Ì

. 

 
If 𝑐�,� < 0, less flow goes through airway (𝑛, 𝑘) than in the healthy reference case. This may indicate there 
are constrictions in the paths going through (𝑛, 𝑘). They could be upstream, downstream or both. The 
value of 𝑐�,� correlates with the constriction severity. To get more insight on where constrictions could 
occur, we define: 

𝛼�,�	 = N
1, 𝑖𝑓	𝑐

�Í?,¥�@¨	
> 0,

0, 𝑒𝑙𝑠𝑒.
 

Note that airway W𝑛 − 1, ¥�
@
¨X is the mother of (𝑛, 𝑘). A value of 1 indicates that there is more flow going 

through the mother than in the healthy case. In this case the branch is not likely to be constricted and 
constriction may more likely be downstream. On the contrary, when the value is 0, the mother or 
ascending airway may more likely be constricted. In the same spirit we define: 
 

𝛽�,@�	 = Á
1, 𝑖𝑓	𝑐�,@��?	 > 0,
0, 𝑒𝑙𝑠𝑒,

 

𝛽�,@��?	 = Á
1, 𝑖𝑓	𝑐�,@�	 > 0,
0, 𝑒𝑙𝑠𝑒.

 

If 𝑐�,� < 0 and 𝛽�,� = 0, both airway (𝑛, 𝑘) and its sister have reduced flows compared to the healthy case, 
so some constrictions may exist upstream. To add information on the downstream environment we define: 
 

	𝛾�,�	 = �
2, 	𝑖𝑓	𝑐��?,@�	 > 0	𝑎𝑛𝑑		𝑐��?,@��?	 > 0,
0, 𝑖𝑓	𝑐��?,@�	 < 0	𝑎𝑛𝑑		𝑐��?,@��?	 < 0,
1, 𝑒𝑙𝑠𝑒.

 

Airways (𝑛 + 1, 2𝑘) and (𝑛 + 1, 2𝑘 + 1) are the daughters of airway (𝑛, 𝑘). For a value of 0, both 
daughters have reduced flows compared to the healthy case so airway (𝑛, 𝑘) or ascending branches may be 
constricted. If the value is 1 some constrictions would more likely occur downstream. 
We also define the distribution ratio: 
 
 
 
 
 
 
 
 



 
 

 

𝛿�,@� =

d𝑉�,@�]^" − 𝑉�,@�]+�e
^C./]^

d𝑉�,@�]^" − 𝑉�,@�]+�e
^C./]^

+ d𝑉�,@��?]^" − 𝑉�,@��?]+� e
^C./]^

d𝑉�,@�]^" − 𝑉�,@�]+�e
/v^±./Ì

d𝑉�,@�]^" − 𝑉�,@�]+�e
/v^±./Ì

+ d𝑉�,@��?]^" − 𝑉�,@��?]+� e
/v^±./Ì

, 

𝛿�,@��? =

d𝑉�,@��?]^" − 𝑉�,@��?]+� e
^C./]^

d𝑉�,@��?]^" − 𝑉�,@��?]+� e
^C./]^

+ d𝑉�,@�]^" − 𝑉�,@�]+�e
^C./]^

d𝑉�,@��?]^" − 𝑉�,@��?]+� e
/v^±./Ì

d𝑉�,@��?]^" − 𝑉�,@��?]+� e
/v^±./Ì

+ d𝑉�,@�]^" − 𝑉�,@�]+�e
/v^±./Ì

. 

 
It compares the volume distribution between an airway and its sister. If 𝛿�,� is significantly smaller than 1, 
airway (𝑛, 𝑘) or some downstream branches may be constricted. These features may behave differently 
depending on the airway generation as the effect of constrictions depends on the flow which itself 
decreases with the generation level [5]. So we add the generation level 𝑛 as a feature. 
Each airway (𝑛, 𝑘)  is associated with a feature vector [𝑐�,�,𝛼�,�	,𝛽�,�, 𝛾�,�, 𝛿�,�, 𝑛]. 
The machine learning step then matches the defined feature vector to the constriction ratio (12) of the 
considered branch. 
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Tables 

 Noise-free With noise 

ML IP FP ML IP FP 

No neighbors 98.5 93.8 1.7 98.5 85.2 6.0 

Neighbors 98.5 94.3 1.2 98.5 88.0 3.8 

Table 1: Summary of plug classification and detection results, in %, by the machine learning step (ML), by 
the identification problem step (IP), and proportion of false positive (FP). Note that at the ML step, a plug is 
considered to be properly classified if its predicted radius reduction ratio ranks in the first half (see 
subsection 3.2) whereas a plug is considered to be properly classified by the IP step if its average computed 
radius reduction ratio over the ten time points is under 0.3 (see subsection 3.2). Results are given for both 
noise-free and noisy displacement data. 

 

 
 

Assumptions on the model 

• Linear elastic parenchyma behavior 
• Homogeneous isotropic parenchyma model 
• Use of Pedley resistance model both at 

inspiration and expiration 
• Rigid airways 

 
 
 
 

Assumptions on the data 

• Knowledge of the parenchyma mechanical 
properties 

• Knowledge of the tree bifurcations 
positions 

• Radii of airways determined as not 
constricted are assumed to be known, their 
values being set by the space-filling tree 
model 

• 4𝐷 ventilation data are known and do not 
contain artifacts 

Table 2: assumptions on the model and on the data. 

 


