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Closed-loop RGB-D SLAM Multi-Contact Control for Humanoid Robots

Arnaud Tanguy?!, Pierre Gergondet?, Andrew 1. Comport! and Abderrahmane Kheddar?>

Abstract— This paper discusses the integration of a state-
of-the-art dense 6D simultaneous localisation and mapping
(D6DSLAM) to close the QP control loop on an humanoid robot
in multi-contact motions. Our multi-contact planning defines
desired contacts based on 3D (CAD) models, and generates a
reaching plan. Registration of the 3D model onto an RGB-D
key-frame graph representation of the explored environment
allows to use of visual odometry to make real-time adjustments
to the reaching plan, leading to improved in robustness from
a wide range of perturbations. Extensive results are presented
on various complex tasks using the HRP-2Kai humanoid robot
including valve and car’s steering-wheel grasping, multi-contact
stair climbing from approximate initial humanoid poses.

I. INTRODUCTION

The DARPA Robotics Challenge (DRC)! highlighted the
possibility to use humanoid robots in rescue and intervention
operations. Recently Airbus Group has shown interest in de-
ploying humanoid technology to automate part of the assem-
bly operations in aircraft manufacturing lines®>. Humanoid
robots can exploit multi-contact technology for locomotion
and manipulation in confined spaces. In these two use-cases
or other similar large-scale workspaces such as shipyards or
buildings, a large part of the tasks, many of the tools and the
environment are known a priori or partially.

Two fundamental challenges of prime importance will be
considered in this paper; (i) the ability of the robot to localize
itself in a changing but nearly structured environment (e.g.
using SLAM technology), and (ii) the ability of the robot
to have very reliable and precise multi-contact operation
capabilities, which requires using perception in closed-loop
with the control of the robot.

For dense localization and mapping, D6DSLAM technol-
ogy is one of the most prominent solutions. Substantial
research and development efforts have led to high robust-
ness, accuracy and real-time efficiency. Such a mature and
industrial grade solution will be readily accessible in the near
future. Even so, few working solutions have been exploited
in the context of humanoid locomotion. Previously real-time
walking and navigation coupled to dense real-time vision was
first presented with [1]. More recently real-time footstep-
planning abilities coupled to real-time vision have been
demonstrated using dense stereo SLAM in [2] for the case
of uneven terrain walking. To our knowledge no attempts
have gone further than walking. Multi-contact control and
interaction is a key behavior for humanoids because it allows
to: (i) create closed kinematics chains to drive higher forces;

*This work is supported by grant from RoboHow.Cog, the Comanoid
H2020 project and PIXMAP

1 CNRS-University of Nice Sophia Antipolis, I3S, France

2 CNRS-University of Montpellier, LIRMM, Interactive Digital Humans,
France

3 CNRS-AIST Joint Robotics Laboratory, UMI3218/RL, Japan

lwww.theroboticschallenge.org

2yww . comanoid.eu

Fig. 1.
driving wheel grasping trials. The localization of the robot is shown w.r1.
DO6DSLAM’s map

Reconstructed view of the multi-contact stair climbing and

(ii) plan for stable postures using additional contact supports
by means of hands and/or any other limbs; and (iii) perform
complex locomotion in confined spaces.

We propose a full system that integrates the QP-controller
detailed in [3][4] with state-of-the-art 6D dense SLAM
detailed in [1]. D6DSLAM need only rely on cheap, compact,
widely available, RGB-D sensors, such as the Asus Xtion
PRO Live or their outdoor counterparts. The SLAM approach
allows to estimate, in real-time, both the environment map
and the robot’s location within that map. By using such a
scheme, it is possible to close the QP-control loop by contin-
uously adjusting the target’s pose according to the estimated
pose of the robot within its surrounding environment.

We show such possibilities via a set of several represen-
tative humanoid walking, climbing and grasping tasks. In
summary, the following trials have all been conducted after
an extended walking phase starting from arbitrary unknown
initial location: (i) Grasping a valve, and (ii) Grasping a car
handlebar. The following are performed without walking,
but from an approximate initial location: (iii) Grasping a
steering wheel, (iv) Executing the first step of a complex
multi-contact stair-climbing plan.

Whilst both perception and multi-contact control modules
have been previously published, combining them together is
a non-trivial task that has lead to the following integration
challenges:

e Maintaining real-time alignment of the task goal with

the mapped environment

« Robot-centric RGB-D calibration

o Robustness to robot’s self-observation (creates outliers

in SLAM)

¢ Closed loop QP-control with dense visual SLAM for a

set of challenging task

II. SYSTEM

A. Overview

In [5] a methodology was devised to plan a sequence of
contacts that realize complex tasks such as to egress/ingress a
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car or climb ladder/stairs. The planning and control are com-
puted in a simulated environment with parametric models
allowing for efficient computation. In particular, the planning
and control methods require both 3D CAD models of the
contact targets as well as a 3D model of the humanoid robot.
In [4] such model-based planning and control techniques was
tested in a vertical ladder climbing case. One major drawback
in such an approach is that the control is performed in open-
loop with respect to the real environment. It was necessary
to place the robot at a well calibrated position. In order to
get rid of this drawback, we propose to close the task-space
loop using vision and depth sensors.

Contrary to [6], it is assumed here that 3D parametric
models of the target objects are available (car, ladder, stairs,
valve...). In this case, contact actions and tasks can be
planned using these models (i.e. in simulation) and then
used to perform online control by maintaining registration
between the 3D CAD model and the 3D map acquired by a
real-time SLAM algorithm. By doing so, the planner and
controller task goals (desired contacts and transition) are
updated and corrected throughout the execution of the task
by the SLAM algorithm.

We describe the different components and their integration.

B. Multi-contact planning and control

A detailed explanation of the multi-contact planning and
control basics used in this paper can be found in [7][8] and
its implementation in a ladder climbing scenario in [4]. In
order for the paper to be self-contained, the main components
will be described briefly.

Consider the scenario of climbing stairs in Fig. 2. The
planner is provided with 3D models of the stairs along with
that of the robot. For each 3D model the areas where contact
can occur are specified off-line. The planning consists of two
modules: a contact explorer and a static posture generation
module. The contact explorer suggests potential contacts
for addition or removal together with associations between
pairs of surfaces (robot, object/environment). These contacts
are provided as an input to the posture generator. The
latter builds and solves a non-linear optimization problem
to determine whether a viable posture is feasible. In this
case a statically stable posture (or the robot in contact) is
communicated to the planner, which then builds a tree of
contact transitions up to the goal.

The contact stances can be smoothened as in [4]. The
planned stances of contact with associated robot poses are
then given as task objectives using a finite state machine
(FSM) that manages task scheduling and uncertainties and
builds a multi-contact controller as a quadratic program (QP)
that solves the whole body motion locally.

As shown in Fig. 2, contacts are realized respectively in
the operational space (by defining a contact pose task Tcontact)
and a desired pose in the articular space (a least weighted
task 7¥,osmre to meet at best). Both can be realized using our
task-based quadratic programming (QP) controller [4]. The
desired contact and posture pose are formulated as errors
that appear among the sum of weighted least-squares terms
in the QP cost function. The QP controller includes other
tasks Tomers, and is solved at each control step. The QP
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Fig. 2. Overview of the motion generator with the addition of D6DSLAM
pose estimation closing the loop on the QP-control and the FSM.

variable vector x = (g7, \T)7, gathers the joint acceleration
q, and the linearized friction cones’ base weights A, such
that the contact forces f are equal to KyA (with Ky the
discretized friction cone matrix). The desired acceleration
q is integrated twice, qq to feed the low level built-in PD
control of HRP-2Kai. The driving task with the QP controller
writes as follows:

N
minimize _ wi|Ei(q, & &) + wal| A
* i=1
subject to
1) dynamic constraints 1)

2) sustained contact positions

3) joint limits
4) non-desired collision avoidance constraints

5) self-collision avoidance constraints,

where w; and w) are task weights or gains, and E;(q, q, §)
is the error in the task space. Details on the QP constraints
(since they are common to most tasks) can be found in [4].
Contacts are modelized as set-point objective tasks; each
contact task (¢) is defined by its associated task-error €; so
that Ez = Kpi@; + Kvlez + Ez

We propose to improve contact tasks by altering the FSM
actions to take into account a live measurement of the
pose of the robot via dense visual odometry. As shown in
Figure 2, the D6DSLAM method (see Section II-C) is added
to the overall architecture where it continuously estimates
the robot’s pose, and provide clouds for registration with the
3D models all of which is fed back to the QP controller
and the finite state machine. The QP controller loop is now
effectively closed based on visual odometry estimations. One
should note however, that in the case of large discrepancies
on-line re-planning might be necessary as the controller
might not suffice in recovering such cases.



C. Dense 6D Simultaneous Localization and Mapping

Dense 3D SLAM aims at building a map of an environment
while simultaneously providing an accurate 6D pose within
it. This is achieved by taking advantage of the real-time
frame rate of depth-enabled camera sensors, such as the
cheap RGB-D sensors or a stereo pairs of cameras, to locally
estimate the motion of the sensor for every image frame.
For completeness we provide an overview of the multi-
keyframe dense SLAM method which we employed — for
more details refer to [1]. The basic underlying principle
is to estimate a sensor pose x € se(3) that best explains
both the photometric and geometric discrepancies between
a pair of RGB-D images: a reference denoted as (I*,P*)
and the current sensor frame (I,P). Through novel-view
synthesis, the current image is iteratively rendered and warps
to the reference image location based on the current pose
estimate. The pose is estimated by iteratively solving the
following non-linear error function for each pixel ¢, until the
discrepancies between the reference and current image are
small enough.

A (1P 1 (w0, P)) |

%) = N;T (P - IITT(x)P; )

i
2)
where the first row of equation (2) is the photometric term
relating the reference and current images (I* and I) and the
second row is a point-to-plane ICP error with projective data
association. The surface normals N} are computed for the
reference image from the time integrated set of 3D points
P*. The over-line denotes homogeneous coordinates and I
converts from homogeneous coordinates. The function w(-)
is the inverse warping function whose role is to generate
a novel-view of the world’s geometry from the current
image based on the current pose estimate. T € SE(3)
represents the last available pose estimate, and T(x) the
current pose increment. A is the weight which defines the
relative uncertainty between depth and image measurements.

This non-linear error is iteratively minimized using a
Gauss-Newton approach such that:

x=—JT3) )7, 3)

where J contains the stacked Jacobian matrices of the errors
of equation (2), and e is the stacked error vector.

The pose estimate T is finally updated using a homoge-
neous update until convergence as T + TT(x).

The basic alignment procedure is extended over large envi-
ronments using a keyframe-graph to represent extended and
more complex environments with occlusions and changing
resolutions. In this case pose tracking is performed w.r.t.
a predicted reference RGD-D frame which is generated by
fusing the N closest keyframes in the graph. New frames
are added to the graph if the sensor explores new and
un-mapped areas. The graph’s keyframes are continuously
optimized and updated with new information by fusing depth
and color data from new images. Robust M-Estimators are
used to minimize the impact of noise and outliers (either
sensor or environment related) on tracking. This keyframe-
graph is a memory-efficient representation suitable for large-

scale environment, and it provides efficient ways of doing
novel-view synthesis [9], generating alternative represen-
tations such as 3D point-cloud and octree maps. It also
provides computational efficiency through the use of multi-
resolution keyframes. Additionally, the approach is made
robust to global illumination changes through high-dynamic
range [9] images, accounts for motion blur and rolling-
shutter effects [10], and makes it possible to generate super-
resolution maps [11].

ITI. INTEGRATION
A. Registration of CAD and D6DSLAM maps

In order to use the planned multi-contact control on a
keyframe environment map it is necessary to estimate the
transformation between the 3D parametric CAD models used
for planning and the observed environment model. The full
transformation is a 6D pose which transforms the 3D CAD
model onto D6DSLAM’s keyframe-graph. In order to achieve
this, first points are uniformly sampled from the CAD model
using a Poisson-disk sampling method [12]. D6DSLAM’s
internal keyframe-based representation is also converted into
a pointcloud by backprojecting each RGBD-keyframe into a
common world reference frame. The resulting pointcloud is
then filtered using a voxel grid filter to obtain the desired
pointcloud resolution. Converting both 3D models into a
common pointcloud representation makes it possible to use
widely studied registration methods such as the Iterative
Closest Point algorithm [13] to estimate the transformation
between them. ICP is a non-linear iterative registration
approach (a similar process as that described in II-C for
D6DSLAM’s tracking) which relies on finding the pose that
best minimizes a mean-square distance between two 3D
pointclouds. Despite being one of the most widely used
methods for registration, the minimization process is only
local and requires a good initialization. Since the CAD model
only needs to be registered once offline, a rough initial
transformation is provided using a 4 point pose estimation
procedure [14] and 4 points in correspondence are manually
chosen by a user by clicking with a mouse on the image. It
should be noted that automatic registration can be performed
if a priori knowledge is available such as in the case of
the DRC driving and egress task. In this case the robot is
manually placed in a roughly known seated position onto the
driver’s seat which provides enough information to initialize
the registration procedure.

B. Extrinsic Calibration between sensor and the robot

We need to design a self-calibration procedure that the
robot can perform autonomously without requiring the ob-
servation of any external calibration pattern.

The robot assumes a set of /N random but feasible static
postures for which the arm gripper is visible in the camera
sensor’s field-of-view (see Fig. 3). For each posture, a simple
head-scan motion is performed to generate a 3D map of the
gripper and associated pair of poses:

1) T € SE(3) the transformation from the best known
estimate of the RGB-D sensor pose to the gripper as
obtained from the kinematic tree;
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Fig. 3.  Calibration performed in simulation, where the RGB-D sensor
pose is wrongly defined. The left figure shows the uncalibrated sensor pose,
the gripper frame, and a CAD model of the gripper registered onto the
pointcloud acquired from D6DSLAM. The right part validates the calibration
result on a posture that was not part of the calibration set. Notice that the
pointcloud is correctly aligned onto the robot’s gripper.

Fig. 4. Left: Combined view of D6DSLAM’s tracking and HRP-2 showing
the successful end of the valve grasping trial. Right: rendering of robot
binary mask overlaid on live sensor image.

2) T* € SE(3) obtained by registering the gripper’s CAD
model with D6DSLAM’s pointcloud, see section III-A.
Using the full set C = {(Tl,Tl), . 7(’T‘N,TN)} of
several such poses, the calibration can be formulated as a
pose optimization problem.
The pose to be estimated is defined as T(x), where z €
s¢(3), that minimizes, for each pose pair in C, the following
cost function:

e = T* 1TT(x) — I 4)

This non-linear error is iteratively minimized using a Gauss-
Newton approach such that

- (J(—Zl;l‘]cal) 71Jcalecala ®))

X =

where J contains the stacked Jacobian matrices of the errors
of equation 4. The pose estimate T is finally updated as in
section II-C. R

The final pose T yields the transformation from the
previously non-calibrated sensor pose to the calibrated one.
Its accuracy depends on several factors: accuracy of the
encoders, quality of the registration and variability in the
gripper postures. One should note that this isn’t a global
calibration procedure, and as such, running the calibration
process from a clearly wrong posture, as depicted in Fig. 3
may lead to inaccuracies. The process may be repeated sev-
eral times until the final registration ICP error on validation
postures is deemed small enough for the desired accuracy.

C. Self Occlusions

The assumption of a rigid world is made in order to
keep geometric consistency throughout tracking. Unfortu-
nately, this assumption is likely to be frequently invalid.

Indeed, we do not consider moving objects within the
environment itself. This will, to some degree, be handled by
D6DSLAM’s embedded robustness mechanisms. Moreover,
self-observation, i.e. the robot’s own links being visible
within its camera field-of-view, is entirely within our control,
and every effort has been made to minimize the effect of
self-occlusions. We chose not prevent self-occlusions from
happening, but instead prevent them from interfering with
D6DSLAM’s tracking and mapping. The main idea is to
alter the photometric matching algorithm to avoid taking into
account areas where the robot is visible. To do so, using
the robot’s kinematic state and its CAD model, we render a
binary mask of the visible parts from the sensor’s perspective
(see Fig. 4). In order to account for small deviations between
the CAD rendering and the actual robot state, we apply a
small dilatation to the generated mask.

Let M : Q x RT — [0,1]; (p) — M(p,t) represent the
binary mask corresponding to the measurement acquired at
time ¢. O-values correspond to areas where part of the robot
is visible within the measured frame.

DO6DSLAM’s tracking equation 2 is modified to incorporate
this mask in the following way

em(x) =M (w(’i‘T(xL P*)) e(x) ©)

In effect, we are considering the error as an outlier at each
pixel where the robot is visible.

While this masking scheme effectively improves the ro-
bustness, potentially large portions of the input sensor data is
effectively ignored, which can lead to tracking inaccuracies,
or even in extreme cases loss of tracking.

In addition to dealing with self-occlusion, some steps,
not considered here ought to be taken in order to update
D6DSLAM’s map according to the robots predictable actions
within the environment, i.e. if the task is to move an object,
then the corresponding object in the map ought to be updated.

D. Control scheme

During the offline planning phase, a set of contact surfaces
C* ={Cj3,---,C:} are defined with respect to a reference
CAD model M* of the desired task (valve, printer, ladder...).
Using CAD model allows to guarantee planned movements
within the planning environment. Given an initial reference
pose R* w.rt. M*, end-effector trajectories are generated
to reach given contact surfaces. At any given moment, the
pose Er of an end-effector is known w.rt. the base of the
kinematic tree. We denote this trajectory by the function
T*(Ex(t),C).

Thanks to the calibration parameters of III-B and the
estimated 6D-pose Tp(t) obtained in real-time w.rt a
3D pointcloud map P, the whole robot kinematic tree is
transformed into the world coordinate frame. The pose of
any end effector can be expressed w.r.t. to P as

Ep(t) = Tp(t)Ks ' (H)Ex(t), (7)

where Ky is the pose of the calibrated RGB-D sensor w.rt.
the base of the kinematic tree

Registration allows us to express the CAD model M* and
all its surfaces C* w.r.t. the environment P

M = RpM*Cp = RpC*, (8)
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Fig. 5. Closed loop control system. Contact poses C* defined during the planning phase w.r.t. a CAD model frame M* are related to D6DSLAM’s map

by registration yielding world space contact poses C. HRP’s position in world-frame is tracked by D6DSLAM’s odometry yielding a pose T. The QP
control is tasked with moving an end effector according to the pose error ec defined as the error between the contact pose C' and the end effector pose
obtained as Ep(t) by transforming the robot kinematic tree according to the estimated pose T.

where Rp is the pose of the registered object in the point-
cloud.

This allows us to express the pose error between the
current position of an end effector and it’s target surface
within the environment as:

ec(t) =Ep '()Cp —1 )

The effective end-effector trajectory T (Ep(t),Cp) is
continuously updated according to the relative pose between
the end-effector and its target surface, so that at any given
moment the controller seeks to minimize the error of Eq. 9.
It can be clearly seen in Eq. 7 that the end effector position
not only depends on the current absolute encoder readings,
but also on the estimated odometry. This means that the QP
control will behave as if it was controlled to track a moving
target, where in fact, the target is fixed and the end-effector
position is recomputed according to odometry.

IV. EXPERIMENTS AND RESULTS

The following experiments aim to demonstrate the ability
of the autonomous system to reach the desired contacts, and
execute multi-contact plans within an environment where no
a-priori map, nor well-calibrated initial pose for the robot is
available. All trials are carried out on an HRP-2Kai (used
for the DRC), using a low-cost Asus Xtion Pro Live RGB-D
sensor and PIXMAP’s D6DSLAM system [1].

A. Walking phase

For the walking phase two fixed walking targets are
defined w.r.t. the registered CAD model M. The former is
a waypoint used to manually ensure a collision-free path
to the later, a final target placed at the expected starting
position used during the offline multi-contact planning phase.
The posture generator and walking controller from [15] are
used to effectively execute the walk. Although we do not
adjust the walking plan w.r.t. visual odometry, D6DSLAM’s
tracking and mapping is left active so as to demonstrate its
ability to provide sufficiently robust localization to achieve
the following tasks.

B. Valve

Inspired by the valve task of the DRC, we aim to, after an
extended walking phase from an uncalibrated initial location,
establish a gripper-valve contact that would allow us to
manipulate it.

1) Setup: HRP-2Kai is placed in an initial configuration
ensuring that the valve is visible within the environment to
be mapped. That is, facing in the direction of the valve from
roughly 4 meters away. The walking targets of Section IV-
A, along with a grasp target are attached to the valve CAD
model.

2) Walk: As no a-priori map is available, not enough
information is yet available for a precise registration. Thus,
a rough manual initial registration is performed, which
provides walking targets (waypoint and destination). As the
robot walks, D6DSLAM maps and tracks the robot’s motion.
Rolling-shutter and motion blur estimation [10] are used
to minimize the impact of the high velocity and jerkiness
of the walking motion. Still, we observe some inaccuracies
in the pointcloud, such as the ones visible in Fig. 6, most
notably on the rightmost part, where parts of the pointcloud
are mapped in double. This is due to inaccuracies in the pose
estimation of some keyframes added during the fast walking
motion. This problem could be lessened by first scanning
the environment from a stable posture, and walking within
the scanned area without mapping, to prevent the creation of
inaccurate keyframes. Instead, we opted to perform a head-
scan of the target (without resetting the map) from the final
walking target, to provide a locally accurate map followed
by a second more accurate registration using the method
described in III-A.

3) Grasp: A simple control strategy is adopted: without
a-priori planning, the QP-controller is tasked with moving
the gripper end-effector to the valve target. In order to
avoid collisions with the valve, a waypoint in both position
and orientation is added directly in front of the desired
contact. Throughout the whole motion, the relative pose
between the end-effector and its target is updated according
to D6DSLAM’s pose, as described in III-D. For additional
robustness, a guarded approach is used whereby the motion is
stopped once a force threshold is attained on the gripper. Our
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HRP-2Kai localized within D6DSLAM’s 3D reconstructed map at various stages of the valve-grasping trial. From left to right: initial position,

position after first walk, position after second walk and beginning of grasping motion. In the last two images, details of the grasping can be seen. The top
one shows the end-effector aligned with a checkpoint, the second shows the gripper on the valve, and the checkpoint fully reached.

Fig. 7.

Combined view of the wheel grasping experiment.

experiment shows that, even after walking with live-mapping
and no a-priori map, successful grasp may be achieved.

C. Steering Wheel

HRP-2Kai is manually placed into the driver’s seat before
being actuated. As such the initial pose of the robot cannot
be fully controlled, and trying to blindly grasp the wheel
would be impossible.

First, a head-scan is performed to acquire a map of the
car’s dashboard, including the target steering wheel. Even
though the initial posture of the robot cannot be fully
determined, good convergence of the ICP registration may
be achieved without manual initialization, by assuming a
plausible initial position of the steering wheel with respect to
the robot. We apply the same control strategy as for the valve:
a waypoint is defined to avoid collision with the dashboard
and the steering wheel, and the target is continuously up-
dated. One should note that due to the narrow space between
the robot and the wheel, self-observation is unavoidable.
The masking scheme presented in III-C prevents this from
affecting the tracking and mapping process.

D. Stairs climbing

While the previous experiments are simple enough not to
use the multi-contact planning approach described in II-B,
stairs climbing uses it fully. We demonstrate our ability to
robustely reach planned contacts from an unknown initial
configuration, and under heavy perturbations.

1) Setup: HRP-2Kai is placed in an initial configuration
q; close to the one ¢, given as input to the MCP. It is placed
so that the QP controller is in a configuration where all its

Fig. 8.
figure shows the gripper’s grasping pose (leftmost frame) that would have
been tasked by the MCP without registration, and the corrected registered
grasping frame onto the handrail. The others show HRP-2Kai climbing the
first step.

Combined view of the stairs climbing experiment. The left

tasks are feasible. The stairs are mapped using a simple head-
scan, and their planning model is registered, along with all
planned contacts.

2) Closed-loop: The QP is tasked with reaching the first
handrail contact of a predefined stair-climbing sequence.
Figure 9 starts with control w.rt. to the MCP only and
transitions to a closed-loop control strategy. It can clearly be
seen that the contact position is modified when transitionning
to closed-loop control. This is the result of registration, that
accounts for the difference of initial configuration between
q; and gs. This can be visually observed in Figure 8 where
both the planned contact and registered contact are shown.
We introduce considerable perturbations by pulling the robot
backwards on its ankle flexibilities. The contact trajectory
is continuously updated based on D6DSLAM odometry as
described in III-D, and consequently, the desired contact is
reached, as shown in the video-attachement provided with
the paper.

V. CONCLUSIONS AND FUTURE WORKS

We presented a complete system to close the loop on the
QP-control in multi-contact scenarios, whereby the pose of
the robot within the world is estimated using visual odome-
try, and its planned motion is adjusted to guarantee accurate
positioning of its end-effectors. In addition, we demonstrate
the recent robustness advances of SLAM approaches, and
propose a strategy to handle the problems caused by having
the robot limbs in motion in front of the RGB-D sensor.

Future work will focus on applying the closed-loop
method to full multi-contact plans, and providing a detailed
analysis of its influence on contact-reaching robustness.
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Fig. 9. Closed-loop control of the gripper end-eftector tasked with grasping
the first handrail contact of a multi-contact stair climbing plan. The white
area represents control w.rt. the planning reference, while the gray area
corresponds to closed-loop SLAM control. Two independent experiments are
considered, on the left contact is reached without additional perturbations,
while on the right the robot is manually pulled back at the vertical line.
The expected contact position (Zrcf,Yref,2res) and controlled gripper
position (z,y, z) are reported.

Further improvements in both calibration and robustness of
SLAM approaches in challenging environments need also be
considered.
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