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Abstract: The Human Immunodeficiency Virus (HIV) is one of the most threatening viral
agents. This virus infects approximately 33 million people, many of whom are unaware of
their status because, except for flu-like symptoms right at the beginning of the infection
during the acute phase, the disease progresses more or less symptom-free for 5 to 10
years. During this asymptomatic phase, the virus slowly destroys the immune system until
the onset of AIDS when opportunistic infections like pneumonia or Kaposi’s sarcoma can
overcome immune defenses. Mathematical models have played a decisive role in estimating
important parameters (e.g., virion clearance rate or life-span of infected cells). However,
most models only account for the acute and asymptomatic latency phase and cannot explain
the progression to AIDS. Models that account for the whole course of the infection rely on
different hypotheses to explain the progression to AIDS. The aim of this study is to review
these models, present their technical approaches and discuss the robustness of their biological
hypotheses. Among the few models capturing all three phases of an HIV infection, we can
distinguish between those that mainly rely on population dynamics and those that involve
virus evolution. Overall, the modeling quest to capture the dynamics of an HIV infection
has improved our understanding of the progression to AIDS but, more generally, it has also
led to the insight that population dynamics and evolutionary processes can be necessary to
explain the course of an infection.
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1. Introduction

It has been more than three decades that the Human Immunodefficiency Virus (HIV) has reached a
pandemic state. The worldwide emergence of this infectious agent coincided with the advent of new
modelling techniques in epidemiology, e.g., the basic reproductive number R0 [1], but also in evolution,
e.g., the adaptive dynamics framework [2]. Arguably, this was the first time that so many mathematical
approaches have been mobilized to decipher the course of an infection.

Although there can be variations from patient to patient, the course of an HIV infection follows a
general pattern [3,4] (Figure 1). The viral load increases exponentially in the first three to six weeks
following infection [5–7]. The cellular immune response kicks in after one to two weeks followed by
the humoral response after four to eight weeks upon infection [8]. This early phase of infection is
commonly referred to as the primary infection or initial phase and shares many similarities with acute
infections. With the onset of a cellular immune response, the viral load decreases and settles to a more
or less constant value for several years. This is the second phase, which is known as the chronic (or
asymptomatic) phase. Importantly, even though it might appear as if the virus is resting in this phase,
there in fact is a rapid turnover of infected cells and it is the cellular and the humoral immune response
that keep viral loads to a constant level, which is referred to as the set point viral load [9]. Furthermore,
during this chronic phase, the virus within-host diversity increases [10] and the number of host CD4+

T-cells decreases because they are the primary target of the virus. The third phase or AIDS phase is
characterized by a dramatic loss in CD4+ T-cells and a strong increase of viral load (Ho et al. [11],
Coombs et al. [12] showed that viral titers increase in the AIDS phase and O’Brien et al. [13], Lyles
et al. [14] confirmed this trend in longitudinal studies). Clinically, the onset of AIDS is defined as the
time point at which the CD4+ T-cell count in the blood falls below 200 per µL. The AIDS phase also
often (but not always) coincides with a shift in the virus population and the emergence of virus strains that
are able to use CXCR4 co-receptors (instead of CCR5 coreceptors) and thus a wider range of immune
cells become susceptible to the virus [15,16]. Because of the fragility of their immune system (low T-cell
counts), patients suffer from a variety of opportunistic infections during the AIDS phase. Furthermore,
within-host virus genetic diversity tends to decrease during this phase [10,17].
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Figure 1. Typical course of an HIV infection. The top panel (inspired by [10] and [17])
shows the diversity along with the type of HIV variant that dominates as in [18]. The
diversity measure shown here is Tajima’s D, which compares the average pairwise distance
of a set of sequences to the number of sites that are polymorphic [17,19]. The bottom panel
shows the dynamics of the viral load, in red, and the CD4+ T-cells, in blue as in [3]. The
three phases of an HIV infection are stressed with different colors.
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An ideal mathematical model of HIV infection should capture the following dynamics. Concerning
the virus load, it should exhibit the viral peak in the acute phase, the constant set point viral load during
the asymptomatic phase and the viral increase at the end of the infection observed in most HIV infections.
Concerning the immune cell dynamics, it should display the decrease of the CD4+ T-cell count in the
early acute phase, its slight replenishment to a constant level in the asymptomatic phase and its decrease
during the AIDS phase. We refer to these typical patterns as progression to AIDS in the following
modeling context.

The question of how an HIV infection progresses from the acute phase to AIDS has been intensively
discussed [20]. Mathematical models had a non negligible part in this debate. It is often thought that the
(sole) purpose of mathematical models is to estimate parameters. Indeed, a mathematical model needs to
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be formulated for estimating parameters associated with the infection, such as the death rate of infected
cells or the viral production rate, out of longitudinal data on virus load and T-cell counts. Another
use of mathematical models is for comparing hypotheses. If, for instance, there are two competing
hypotheses to test, e.g., that virus growth is limited by the availability of target cells or by the immune
response [21], one can first estimate parameters for each model and then compare the likelihood of
these two models assuming the most likely parameter values for each model [22]. These two uses of
mathematical models have been exploited in the case of HIV. However, mathematical modelling is also
a tool to investigate potential causative links between observations. This third type of models, often
referred to as conceptual models, will be the focus of this review. These models make it possible to
extrapolate from well studied and well-understood processes to less well-understood phenomena. For
example, a model of virus dynamics can be used to study the consequences of adding a drug that blocks
a specific process in the virus life-cycle. As we will see, the case of HIV is quite unique because such
conceptual models had a preponderant role in the debate on the cause of AIDS.

Theoretical models did (and still do) improve our understanding of the course of an HIV infection.
For example, Yates et al. [23] could show that the so far well accepted hypothesis for the slow depletion
of memory CD+4 T cells (which they name the “runaway” hypothesis) is only appropriate for the early
stages of an infection. The “runaway” hypothesis explains the massive loss of uninfected cells in the
chronic phase by homeostatic compensation and/or immune activation of CD4+ T cells, which, as [23]
phrase it, would “fuel the fire by generating new susceptible cells and thus more infection” . The
problem, as proved by their simple model, is that this hypothesis can only account for a depletion in
the range of months and not decades as observed in most HIV infected individuals (the memory CD4+

T cell pool reaches its equilibrium too rapidly). Yates et al. [23] conclude that other processes must
be at play. More generally, modeling studies have been able to shed a new light on some of the details
of the infection but still somehow fail to capture the whole course (and progression) of the infection.
Note however that theoretical approaches share this failure with empirical approaches. Interestingly, the
inability to explain the course of an HIV infection with a simple model has diverted a lot of the modeling
effort towards more specified questions, in particular simple models to estimate parameters (especially
related to drug treatments). The reason for this is probably that this is the area where within-host models
have proved to be the most useful to clinicians.

Here, we review mathematical models that have attempted to capture the complete course of an HIV
infection. The literature on HIV modelling is plethoric for a glimpse, see e.g., [24,25] but most studies
focus on a narrow part of an HIV infection. We mainly restricted our corpus to articles that model HIV
infections from the acute to the AIDS phase. Amongst these, we roughly make a distinction between
two model categories. A first category of models only involves population dynamics and does not invoke
virus evolution to explain the course of the infection. However, simple population models fail to explain
the progression to the AIDS phase if they do not include a change of at least one parameter over time. A
second category of models studies evolutionary dynamics, i.e., allow for virus evolution and population
dynamics to occur. This distinction is not purely arbitrary but, as we will see, they have biological and
clinical implications as they reflect the way the infection is understood. More precisely, it is known that
HIV evolves over the course of an infection [10], but whether this evolution is only a side effect or on
the contrary explains the progression to AIDS remains an open question [26]. We also explore in further
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details the role of stochasticity in these models, especially with regard to the initial stages of an infection
and also with regard to virus evolution. Finally, we mention the role of other within-host processes such
as multiple infections and immunopathology and discuss perspectives for future research.

2. Population Dynamics Models

The acute phase (viral peak) and the asymptomatic phase of an HIV infection (set point viral load,
stable CD4+ T-cell count) can be captured with a simple target-cell limitation model [25,27]. In
particular, this model has led to the estimate of virus replication rates and proves that there is substantial
virus replication during the chronic phase [9,28,29]. As shown in Box 1, the model captures the
population dynamics of uninfected target cells, infected cells and the virus population with differential
equations. The name “target cell limitation” comes from the fact that the production and natural death
of target cells lead to an equilibrium level, similar to source-sink models in physics or in ecology.

The two main discrepancies between this basic model and the typical course of an HIV infection can
be seen by comparing Figure 1 and Box 1. First, the target cell density rapidly reaches a set-point value
in the basic model. The existence of a set-point in CD4+ T-cell count is not a problem per se because if
its value is sufficiently low, it can be argued to correspond to the AIDS phase. The key issue is the speed
at which the decrease in CD4+ T-cells occurs, which is difficult to reconcile with the slow progression
of the disease (see the discussion above and [23]). Second, there is no AIDS phase, i.e., once the
equilibrium densities of viral load and target cells are reached, they do not vary anymore. Furthermore,
Bonhoeffer et al. [30] showed that such a model failed to explain the observed dynamics during drug
treatment even in the asymptomatic phases: if there was only target-cell limitation, the virus load should
be unaffected by the presence of drugs because the decrease in new infections is counterbalanced by the
increased availability of susceptible cells. They concluded that another class of models is more likely
to explain observations related to drug treatment. In this other class of models, the virus load does not
stabilize because of the lack of cells to infect but because infected cells are actively killed by immune
cells. Therefore, these models are referred to as “immune control models”. Note that these models in
their simplest form also do not account for the increase of the viral load or the decrease in target cell
density in the AIDS phase [25,27].

As discussed in the following, both the target-cell-limited and immune-limited models of HIV
infection have been extended in several ways to account for the complete course of an infection. In
this section we focus on models with no (or extremely low) virus diversity such that virus population
dynamics are the main driver of the infection and not virus evolution.

Several models invoke additional cell compartments to account for the course of the infection. For
example, Kirschner et al. [31] include more realistic immune cell dynamics. T-cells continuously
circulate in the lymph and blood and are capable of migrating through the blood vessels into the
tissue [32]. Ref [31] incorporate these dynamics into their model by subdividing the T-cell pool into
different compartments, both in the blood and the lymphatic system. Each compartment requires an
additional differential equation. Only T-cells belonging to specific compartments can produce virions.
In addition, there is an exchange of T-cells between some compartments. However, viral load is
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not integrated specifically into this model and it is only the constant decline in CD4+ T-cells that is
interpreted as progression to the AIDS phase.

Box 1: The target-cell limitation model and a general scheme of HIV within-host models
The simplest mathematical model to study virus dynamics [27] describes the changes in the density of

susceptible target cells (T ), infected cells (I) and free viruses (V ) with differential equations. Target
cells constantly enter the system at rate λ. These cells die at a natural death rate dT and become infected
at rate β. Upon infection, cells move into the I class and have a potentially increased death rate dI .
Infected cells produce viruses at rate p. Viruses are removed from the system at rate c. Flow diagrams
are a useful tool to illustrate these dynamics. By either solving the system of equations analytically
when possible or using numerical methods, we can predict the behavior of densities of viruses and
target cells. Stafford et al. [33] used this model to estimate the model parameters by fitting the model to
viral load data of 10 HIV patients. The figure shows the model dynamics observed when using these
estimates (see Table 1).

c
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dT/dt = λ− dT T − β V T (1a)
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From a mathematical perspective, most of the deterministic, continuous time models are special cases
of a general model with n different virus populations (Vj , j = 1 . . . , n) infecting m different target
cell populations (Ti, i = 1 . . . ,m) leading to infected cells of type i with virus j (Ii,j). The influx of
new target cells is captured by a function bi(Ti, Iij), their death by a function dTi(Ti) and the infection
of the cells and thus their transition into the infected class by a function β(Ti, Vj , Iij). Target cells of
type i infected with viral strain j die a natural death according to dIi(Iij). However, this death rate can
be increased by the immune response (SI(Iij , Vj , Ti) or ST (Iij , Vj , Ti)). Type j viruses are produced
from infected cells according to p(Ii,j) and vanish by death, infection of target cells or different immune
functions (Yj) captured by c(Vj , Ti, Yj). The change in the density of each of the cell and virus types is
described by a separate differential equation:

dTi/dt = bi(Ti, Iij)− dTi(Ti)− β(Ti, Vj , Iij)− ST (Iij , Vj , Ti) (2a)

dIij/dt = β(Ti, Vj , Iij)− dIi(Iij)− SI(Iij , Vj , Ti)− δ(Iij) (2b)

dVj/dt = p(Iij , Vj)− c(Vj , Ti, Yj) (2c)

The different functions for birth, death, infection and viral production must be adapted to the biological
assumptions made in each specific case. The basic target cell-limited model explained above is a special
case with m,n = 1.
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Table 1. Mathematical notations used. This table summarizes all the notations used with
their biological description. For parameters, we provide a typical value when it has been
estimated (these values are used to obtain the figures). v indicates a variable and f a function
of several variables. Note that for Box 3, Nowak et al. [34] do not give units for their rates so
we used a dimension week−1 (other dimension such as day−1 or year−1 did not make sense).
We also have to point out that some of the parameters used here are still under debate (for
instance, recent estimates of the virion clearance rate lead to rates of 5 to 500 day−1 [35]).

Symbol Description Value

NOTATIONS USED IN BOX 1 Parameters from [33]

T Density of susceptible target cells v, T0 = 10 cells · µL−1

I Density of cells infected by the virus v, I0 = 0 cells · µL−1

V Density of free viruses v, V0 = 10−6 virions · µL−1

b Input rate of target cells f , 0.17 cells · µL−1 · day−1

β Infection rate of target cells by free viruses 6.5 × 10−4 µL · virion−1 · day−1

dT Death rate of uninfected cells 0.01 day−1

dI Death rate of infected cells 0.39 day−1

p Virus production rate of infected cells 850 virions · cell−1 · day−1

c Clearance rate of free viruses 3 day−1

NOTATIONS USED IN BOX 2 Parameters from [21]

Q Density of quiescent target cells v, Q0 = 188 cells · µL−1

r Proliferation rate of activated target cells 1 day−1

Ttot = Q+ T + I , Total T-cell count f , T0 = 12 cells · µL−1, I0 = 0 cells · µL−1

Tmax Maximal T-cell number 1200 cells · µL−1

V Density of free viruses v, V0 = 10−6 virions · µL−1

αQ Activation rate of quiescent T-cells 0.1− 1 day−1

dQ Death rate of quiescent T-cells 0.001 day−1

β see above 1.35 × 10−3 µL · virion−1 · day−1

γ Virus induced depletion rate of activated T-cells 5.6 × 10−3 µL · virion−1 · day−1

dI See above 0.5 day−1

p See above 100 virion · cell−1 · day−1

c See above 3 day−1

NOTATIONS USED IN BOX 3 Parameters from [34]

n Number of virus strains in the host v, n0 = 1 strain
Yi Density of immune cells specific to virus strain i v, Yi(0) = 1 cell · µL−1

Z Density of non-specific immune cells v, Z(0) = 1 cell · µL−1

rV Virus replication rate 5 virion−1 · week−1

c1 and c2 Activation rates of immune cells 1 cell · virion−1 · week−1

u1 and u2 Killing rate of immune cells by viruses 1 virion−1 · week−1

k1 Killing rate of viruses by specific immune cells 5 cell−1 · week−1

k2 Killing rate of viruses by non-specific immune cells 4.5 cell−1 · week−1

d1 and d2 Baseline death rates of immune cells 0
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Perelson et al. [36] extend the basic model with target cell limitation by considering uninfected,
latently infected and actively infected T-cells. The growth of uninfected target cells has two origins: a
constant supply of T-cells from the thymus and a logistic growth term that depends on the total amount of
T-cells. Uninfected cells become latently infected T-cells upon infection with the virus and then proceed
to the actively infected T-cell class. Only these active cells are able to produce new virus. This model
fails to account for the initial peak of virus but it does capture the long term increase in viral load,
the decrease in uninfected CD4 T-cell density and the increase in the density of latently and actively
infected cells.

Essunger and Perelson [37] analyse a model with a very detailed description of the T-cell
compartment. They distinguish between virgin, activated and memory T-cells. In their model, only
activated cells can be infected. Progression to AIDS can then be observed if viral production rate is
made time-dependent (which is already a form of evolution). In the same study, a second model allows
for infection of resting cells and it can explain the selective depletion of memory cells in the AIDS phase.

Kirschner [38] and Kirschner and Webb [39] replace the constant birth rate of CD4+ T-cells by a
virus-dependent production and proliferation rate of T-cells. Virions are produced by infected T-cells but
also by another source of infected cells. This model accounts for the AIDS phase only by increasing the
production rate of the non-T-cell based source during disease progression (which again seems to account
for evolutionary changes in the virus population).

De Boer and Perelson [21] study three different model types and they point out that the clinically
observed patterns in disease progression cannot be explained in target-cell limited models by infection
of CD4+ T-cells alone. However, their activated T-cell model, in which the T-cells are quiescent but
can be activated at a certain rate, and where only activated T-cells can be infected, can account for
the progression to AIDS if the activation level and/or the viral infection rate increases over time. In
their immune-control model, in which CTL effector cells can kill infected cells, progression to AIDS
is achieved by changing the activation/proliferation rate over time. Further details about their activated
T-cell model can be found in Box 2.

Fraser et al. [40] extend the population dynamics framework by incorporating the slow timescale of
resting CD4+ and CD8+ T-cells and the rapid timescale of the turnover of activated CD4+ and CD8+

T-cells. In addition, they add antigenic stimulation, i.e., the transition from the resting to the activated
class, using a simple random process. This model predicts the general trends in disease progression but
also accounts for variability of disease outcomes observed amongst patients. The main drivers of these
difference are the efficacy of anti-HIV cytotoxic T lymphocyte responses, the overall viral pathogenicity
and additional (non-specified) random effects. In addition, this model is able to predict a variety of
responses to anti-viral therapy.

Finally, one of the most recent examples of models that account for the course of an HIV infection
of virus evolution with negligible evolutionary processes is provided by Ribeiro et al. [41]. In their
model, the progressive decline of one type of target cells leads to a shift in terms of virus target cell
preference. This change is very abrupt due to assumptions on functions governed the replenishment of
target cells. Purists might argue that there is evolution in a way in their model because they consider
three virus types, which differ in the type of cells they can infect and in life-history parameters (infected
cell death rate, virus production rate, etc.). Since the relative frequency of each virus type varies over
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the course of an infection, there is evolution stricto sensu in the virus population. However, on the other
hand, there is no generation of virus diversity at all in their model, which is mainly driven by population
dynamics processes.

Box 2: Activated T-cell model
In the activated T-cell model by De Boer and Perelson [21], the T-cell pool is subdivided into quiescent
and activated T-cells, denoted by Q and T respectively. This subdivision reflects the finding that HI
viruses can infect activated T-cells easier than quiescent T-cells [42]. In the model, quiescent T-cells are
activated at rate αQ and die at rate dQ. Activated T-cells proliferate at maximal rate r but new cells are
born into the quiescent T-cell class. Activated T-cells become infected at rate β. All the virus-induced
depletion of activated CD4+ T-cells is incorporated into the virus induced depletion rate γ. Infection
of T-cells and virus dynamics are the same as in Equation 1b and 1c. Thus the following system of
differential equations describes the activated T-cell model with density dependent proliferation:

dQ/dt =
2r

1 + Ttot/Tmax
T − (αQ + dQ)Q (3a)

dT/dt = αQQ− r T − (β + γ) V T (3b)

dI/dt = β T V − dI I (3c)

dV/dt = p I − c V (3d)

The term 2/(1 + Ttot/Tmax) acts as a density dependent regulation of the proliferation rate with total
T-cell number Ttot = Q+ T + I and maximal T-cell number Tmax.
The following figure illustrates the model properties. Panel A shows that the model with constant
parameters cannot predict the progression to AIDS. Theoretically, the maximum T-cell count, the
additional depletion γ, the infection rate β and/or the activation rate of quiescent T-cells αQ can change
over time. However, partial T-cell loss and thus the progression to AIDS is best explained in this
framework with increasing activation rate αQ (B and C). In B, the activation rate is increased by tenfold
400 days after initial infection and in C, the activation rate increases linearly over time. All parameter
values are taken from [21].
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Note that this model is a special case of the general formulation in equation system 2 with two uninfected
T-cell types (m = 2) and one virus type (n = 1).



Viruses 2012, 4 1993

3. Evolution Models

One of the common features of all the models listed above is that they rely more on population
dynamics than on virus evolution to explain the course of an HIV infection. However, this distinction is
quite tenuous because accounting for disease progression by changing the viral infection rate or the
proliferation/activation rate of a T-cell compartment during the course of an infection [21,38,39] is
difficult to justify by another process than virus evolution. We also mentioned that some models, such
as the one by [41] considers several virus types that vary in frequency, which can be interpreted as an
evolutionary process. Instead of concealing evolution in an implicit formulation or accounting for it in
an extremely simplified way, many models have tried to explicitly model virus diversity and evolution. A
justification for this is that we do know that HIV infections are diverse and that the virus genetic diversity
increases over the course of an infection [10,17,43]. In fact, there is also evidence that virus traits such
as the replication rate can evolve over the course of an infection [44,45].

One of the first models that included this diversity was one of the most influential, and also one of the
most fiercely debated, models in the HIV within-host modelling literature [34]. We extensively describe
this model in Box 3 but in a nutshell, its idea is that new HIV strains emerge through mutation and
strain specific immune responses fight these new variants. At some point the virus diversity overwhelms
the immune response, which leads to a general collapse of the system and to AIDS. By making several
simplifying assumptions (e.g., CD4+ T-cell dynamics are not considered), the authors even manage to
analytically derive the maximum number of virus strains that an immune system can control, whence the
current name of this model: the diversity threshold model. The main factor which drives the progression
to AIDS in this model is the asymmetry between the ability of viruses to infect cells and of the immune
system to kill viruses: virions can infect all types of target cells but each type of immune system cell
can only recognize one particular viral strain. Therefore, each CD4+ target cell has a very small chance
to recognize its specific epitope but a high chance of becoming infected. This model by [34] changed
the status of ecology and evolution of infectious diseases because for the first time it was argued that
evolutionary dynamics could explain the clinical course of an infection. Furthermore, the model leads to
patterns that match experimental observations quite well despite relying on only few simple assumptions.
Note however that the timing of the onset of AIDS strongly depends on the initial conditions of the
model [46].

As for the target cell limitation model, several improvements were made to this baseline model.
For instance, in a sequel article [47], the authors address the question of what is the fraction of HIV
variants that must be recognised by an immunogen (vaccine) to prohibit the development of AIDS.
Another model added target-cell limitation to this diversity threshold model and showed that this
limited virus diversification [48] (note that in this model, contrary to the [34] original framework,
there is no killing of the cells involved in the strain specific immune response by the virus). For
completeness, Iwami et al. [49] developed a model that also relies on a diversity threshold. Their setting
is very similar to that of Regoes et al. [48] and they show analytically that there exists an upper threshold
in terms of the number of virus strains the immune system can contain.
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Box 3: Diversity threshold model
In the diversity threshold model by Nowak et al. [34], the progression to AIDS comes from the
accumulation of HIV strains. One of the key features of this model is that viruses can kill immune
cells (at a rate u1 and u2). The model is based on 2 n + 1 equations (n being the number of HIV
strains): one equation for the density of each virus strain (Vi), one equation for the density of each clone
of immune cells recognizing this strain (Yi) and a final equation for the density of non-specific immune
cells that can target any virus strain (Z ) (see Table 1 for further description of the parameters):

dVi/dt = (rV − k1 Yi − k2 Z) Vi (4a)

dYi/dt = c1 Vi − d1 Yi − u1 Yi
n∑

j=1

Vj (4b)

dZ/dt = c2

n∑
j=1

Vj − d2 Z − u2 Z
n∑

j=1

Vj (4c)

The following figure illustrates the predicted viral dynamics, each strain represented by a different color.
At each time step, there is a probability µ Vi that a cell infected by strain i produces a new virus strain.
The different panels differ in the mutation rates (A: µ = 1.2 × 10−3, B and C: µ = 1.6 × 10−3) and
the initial conditions (A and B have the same initial viral load and immune density whereas these are ten
times smaller in C). The sudden exponential increase in the viral load marks the onset of AIDS (note that
the time scales differ in the panels).
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This model nicely captures the virus load dynamics and the increase in virus diversity. However, it has
been criticized for mainly three reasons. (i) The mutation process is unclear in the framework and in
order to predict the timing of AIDS one needs to assume that mutants emerge at regular time steps. (ii)
The initial conditions have an enormous effect on the predictions of the diversity threshold (cf. panels
B and C). (iii) The diversity dynamics do not match those observed in vivo. However, this last point of
criticism is probably the most fragile because diversity in this model is based on “strains” and not on
genetic distances. In order to compare the model to data, it would be necessary to quantify HIV diversity
by estimating the number of different epitopes that activate immune responses at a given time.

This model is a special case of the general formulation in equation system 2. Virus production is
independent of target cell dynamics and is only captured by the constant viral replication rate rV .
Equations 2a and 2b are omitted and thus it follows p(Iij , Vj) = rV Vj in Equation 2c. In contrast,
immune dynamics are described in much more detail, i.e., the clearance term in Equation 2c equals
(k1 Yi + k2 Z) Vi, where Yi and Z are each captured with a separate differential equation.
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Whilst the original publications introducing the diversity threshold [34,50] only performed qualitative
comparisons between the simulations and the data, other experimental biologists attempted to challenge
this hypothesis with clinical data. In particular, Wolinsky et al. [51] used longitudinal data of six
individuals infected by HIV-1 to show that the rate of CD4+ T-cell loss was not associated with a
particular trend in terms of genetic diversity. They also stressed that amino acid changes of the virus
were consistent with epitopes being targeted by cytotoxic T lymphocytes, which they interpreted as
evidence of adaptive evolution.

One of the important aspects of the diversity threshold model is that it relies on phenotypic diversity,
not on genetic diversity. As Nowak et al. [52] point out in their reply to [51]’s study ‘it remains
unclear to what extent genetic variation [. . . ] represents antigenic variation’. This is because each
virus strain is defined by its ability to elicit an entirely specific immune response. This assumption can
be criticized from a biological point of view because it means that there is a specific immune response
ready to target any possible strain that might emerge [53]. Nevertheless, this assumption also means
that virus genetic data as in [10,17] cannot be used to challenge this model because phenotypic diversity
is different. Therefore it still remains unclear whether the diversity threshold model goes beyond a
qualitative description of virus evolution and whether it can be tested quantitatively.

Schenzle [54] took another approach to integrate virus evolution in order to explain the course of
the infection. The main difference to the diversity threshold model is that [54] modeled the evolution
of the virus population in a deterministic way. Instead of introducing different viral strains, his model
follows the dynamics of the total virus population (with one differential equation), while the dynamics
of one viral trait averaged over the whole virus population (the average CD4+ T-cell infection rate) is
captured by a separate differential equation. The implicit assumption made here is that virus replication
rate increases over time. A theoretical model by Iwasa et al. [55] has shown that, in the absence of
trade-offs, the “pathogenicity” of a virus (defined as the inverse of the equilibrium number of target
cells) should increase over the course of an infection, provided that there is an accessible evolutionary
trajectory. Studies have argued that HIV replication rate increases over the course of the infection [44]
and recent data analysis using a predictive algorithm based on the virus sequence has confirmed this
result [45].

In itself, it is not problematic that the evolution of a life-history trait is captured by an equation. In fact,
this is what a recent framework that combines the population genetics and population dynamics does [56]
and it can be applied to within-host evolutionary dynamics [57]. However, in the latter approach, usually
referred to as the “Price equation” approach, the equations for trait dynamics stem from the genetic
diversity of the virus population and from the population dynamics. This is not the case in [54] where
the dynamics of the trait is defined arbitrarily. This approach makes it impossible to link the results to
other evolution models. Besides the total virus population and the dynamics of the CD4+ T-cell infection
rate, Schenzle [54] includes target cells, infected cells and anti-viral activity in his model. Overall, his
model can quantitatively describe T-cell depletion due to direct killing by HIV and persistent infection
dynamics due to virus evolution. Different incubation periods to AIDS among individuals derive from
sensible assumptions concerning the variation of model parameters. Stilianakis et al. [58] further study
the effect of changing biologically relevant parameters in this model framework, like the increase in
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virus reproduction rate or the initial values of the basic reproduction number. These parameter changes
can account for the different patterns of CD4+ T-cell decline among different patients.

Stilianakis and Schenzle [59] extend the models presented in [54,58] by subdividing the CD4+ T-
cell population into non-susceptible, susceptible and productively infected cells. The fraction of CD4+

T-cells entering the pool of susceptible cells is assumed to be time-dependent. This model has more
biological relevance than the other two and explains the whole infection and AIDS phase very well.

More recently, models have been developed that account for the evolution of virus traits over the
course of the infection by describing the dynamics of virus strains with different trait values instead of
capturing virus evolution by an (arbitrary) equation. Ball et al. [60] use a target-cell limited model that
allows for virus diversification. The originality of their model, which allows them to go further in their
analyses than earlier models that included differences in virus traits [50], is that they assume a trade-off
between the virus replication rate and the death rate of an infected cell. In other words, cells that are
more efficient at producing viruses die earlier see also [61]. The interesting pattern captured by the
model by [60] is that strains dominating early in the infection differ from strains that dominate late in
the infection. The reason for this shift is that the availability of susceptible cells decreases. Therefore,
they argue that the progression of an infection could be driven by virus evolution, which itself would
come from the target cell dynamics. Recently, Huang et al. [62] extended this framework to also include
CD8+ T-cells (i.e., an immune response acting against the virus). They show that there exist three critical
values for the virus replication rate: the first (and lowest) value allows the virus to establish in the host,
the second is the threshold that allows the virus to avoid being eradicated by the immune response and the
third is the AIDS threshold (overcoming the immune response). Unfortunately, contrary to the setting
by Ball et al. [60], there is no explicit evolutionary model for the virus replication rate and it is only
assumed that the replication rate increases over time, which bears the same limitation as the models
described above.

Alizon and Boldin [63] built a model with a similar trade-off but allowed for cell heterogeneity. They
show that the virus population evolves towards an evolutionary branching point, where the monomorphic
virus population gives rise to a polymorphic population with some viruses that are adapted to one cell
type and other viruses that are adapted to the other cell type. The evolution of virus traits over the
course of an infection, and particularly the switch between virus types (or the evolutionary branching),
is interesting in the case of HIV because there is a switch in terms of co-receptor usage in the virus
population in approximately half of the infections. In fact, before the discovery of these co-receptors,
the switch in the virus population was referred to as the “phenotypic switch” because early viruses and
late viruses exhibited different properties in cell cultures: late viruses would induce syncytia whereas
early viruses would not [15].

The co-receptor switch has also been studied using an approach from quasi-species theory. The
definition of quasi-species has been put forward to describe rapidly mutating viruses [64]. Because
of this high mutation rate, there can be significant transitions from one genotype to another. As a
consequence, mutations cannot be considered to be rare events and all the genotypes have to be studied
simultaneously in order to estimate quantities such as fitness. The unit of selection therefore shifts from
the single genotype to the level of the quasi-species. (One problem with this concept is that there are so
many definitions of what a quasi-species is that one could argue that the quasi-species concept has itself
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become a quasi-species.) Kamp [65] used a combination of different frameworks because the structure
of her model is similar to the diversity threshold model but it includes R5 and X4 virus types and the
viral growth rate of X4 viruses increases as a function of the density of cross-reactive immune cells,
which makes it similar to the [54] model. The main result of [65]’s model is that the co-receptor switch
occurs as a consequence of the environment. Sguanci et al. [66] used a similar methodology with a
target-cell limited model in which several rates (transmission rates and death rates) depend on a variable
(the concentration of Tumor Necrosis Factor, TNF) the density of which increases continuously over
time. As in earlier models [54,58,59,65], the fact that parameters depend on a variable that increases
over time leads to an increase in viral load that mimics that observed in an HIV infection.

Overall, models with virus evolution seem to have more facility to mimic progression to AIDS. We
know that viral genetic diversity increases over the course of an infection and we also know that virus
traits can evolve, however, the causality link is still unclear [10,17,43]. Put differently, is the change in
the virus population what drives the progression of the infection or is this evolution only a consequence
of the progression of the infection (which itself would happen for different reasons)? This is still an open
question that virus evolution models have not yet managed to solve [26].

4. The Role of Stochasticity

Stochastic events play a key role right from the early stages of an infection. Whether the small
amount of viruses entering the body can establish an infection is a pure chance event. This is highlighted
by the fact that the probability of becoming infected upon one coital act with an HIV-positive partner is
estimated to be between 0.1 and 1% [67]. Also, by applying phylogenetic methods to genetic samples
of early HIV infection, Keele et al. [68] could show that one single strain founded an HIV infection in
80% of HIV transmission via the heterosexual route.

These stochastic events can be captured with different approaches. One strategy is to analyse
a stochastic version of deterministic models using Monte Carlo simulations [69–71], the Gillespie
algorithm [72,73] or stochastic noise terms (also called stochastic differential equations) [74]. Another
strategy is to build a stochastic model from scratch [75–77]. All these models account for variation
of the virus population between hosts and they allow for extinction of virus in the early phase of an
infection. However, the only model that can explain the progression to AIDS is the model by Tan and
Wu [69] which is a stochastic version of the models by Perelson et al. [36], Schenzle [54]. Overall,
most of the stochastic models of HIV dynamics have focused on the initial (acute) phase (the study
by Tan and Wu [69] is one of the few exceptions). However, stochasticity also drives evolutionary
processes during the chronic (or latent) phase through the mutation process. This is probably best
illustrated by a model that explains the progression to AIDS only with evolution and without population
dynamics [16]. Ref [16] consider two types of HIV strains, the R5 type that has a high fitness and the
X4 type that has an even higher fitness. The passage from one of these strains to the other requires to
go through a given number of intermediate mutants, each of which has a fitness lower than 1, meaning
that in the long run these intermediate mutants are bound to become extinct within the host. The role of
stochasticity is that even though each intermediate mutant will eventually disappear, it can give rise to
other mutants in the meantime. Depending on the number of intermediate mutants required and on the
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exact fitness values of these mutants, the time to switch from an R5 to an X4 strain will vary. This could
explain the delay in the progression to AIDS (note that earlier studies had put forward this idea without
formalizing it [78]).

Cellular automaton (CA) models inspired from physics account for stochasticity in a completely
different way. One of these CA models that had the most influence is that by Zorzenon dos Santos
and Coutinho [79] but, as pointed out in a reply by Strain and Levine [80], it only exhibits the acute
infection peak for parameter values that are biologically unrealistic. Interestingly, it seems to be the
strong structure of the cellular automaton (e.g., that target cells cannot move) that slows the spread of the
virus see also the model by [81]. Cellular automatons have the advantage of allowing the incorporation
of spatial aspects, in particular population structure. However, the downside is that, first, understanding
the effect of some parameters can be challenging and, second, the way in which the spatial structure is
captured might strongly differ from the biology [82].

More recently, Lin and Shuai [83] extended the classical CA approach of Zorzenon dos Santos and
Coutinho [79] by including more biological realism. They modelled cell and virion movement along a
two dimensional lattice and defined rules for meeting events. Thereby they include CD4+ T cells, CD8+

T cells expressing different epitopes, B-cell immunity indirectly by an CD4+ helper dependent immune
response and different virions. This biologically more realistic approach reflects the acute, asymptomatic
and AIDS phase and confirms earlier findings concerning the diversity threshold from Nowak et al. [50].

Again, it is not clear how these simulations relate to the course of an HIV infection. Furthermore,
several conclusions from these CA models, e.g., the fact that the replenishment rate of target cells
matters [81], match that observed in epidemiology when using spatial structured models. On this aspect,
more insights could be gained from evolutionary ecology models that study how spatial structure affect
the spread and the evolution of the disease at the same time [84].

5. Other Processes

At the risk of turning this section into a catalogue, we present some hypotheses that have been put
forward in mathematical models to account for the course of an HIV infection.

One of these hypotheses is that AIDS is the result of “short-sighted” evolution only optimizing virus
fitness at the within-host level, not at the between-host level [78,85]. Therefore, over the course of
an infection, viruses continuously adapt to the host, which eventually leads to AIDS. However, these
viruses are not good at infecting new hosts and selection occurs upon transmission to favor “less evolved”
strains. Interestingly, this hypothesis has gained more support with the recent finding that evolutionary
rates seem to be lower at the within-host level than at the between-host level [86,87], which is consistent
with a model where viruses that are preferentially transmitted would be stored in latent T-cells and then
retrieved [88].

Another aspect that has received a lot of attention lately is multiple infection of cells, i.e., the fact
that the same cell can be infected by (genetically) different virions. This has been known for a long
time because recombination is observed for HIV requiring such multiple infections [89], but more recent
evidence suggest that they are actually very prevalent among infected cells [90,91]. Some multiple
infection models have been used to study virus dynamics, see, e.g., [92] but, in general, they are not
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really linked to the course of the infection. In fact, most of these models have been used to understand
the evolution of drug resistance [93,94]. Recently, however, the realization of the importance of direct
cell to cell transmission from multiply infected cells [95] has renewed the interest in these multiple
infections.

A model by Bartha et al. [96] suggested that the pathogenesis of an HIV infection could be due to
immunopathology [97]. Their idea is that local immune activation is advantageous to the virus inducing
it, mainly because it increases the number of susceptible target cells available locally. At the within-host
level however, systemic activation is selectively neutral because it indifferently increases target cell
supply to any viruses. Finally, this immune activation could have a cost at the between-host level by
increasing immune pathogenesis, which would lead to host death, thus shortening the duration of the
infectious period. This is an example of conflict between levels of selection that typically occur when
evolution occurs at multiple scales [98].

Almost all models accounting for the progression to the AIDS phase employing evolutionary
dynamics focus on the evolution of viruses. However, immune cells also undergo a constant process
of evolution [99]. Galvani [100] models this mechanism and identifies the constant stimulation of
production of new T-cells from T-cell precursors as a stimulant for the rise of mutated T-cells. This
processes accumulates deleterious mutations over time, which can disturb the lymphocyte regeneration.
Viruses can still infect these non-functional cells leading to an uncontrolled rise in viral load.

Another approach to model the constant co-evolution of the immune system with viral strains is taken
by Korthals Altes et al. [101]. They capture the immune system evolution by considering HIV-specific
CD4+ T-cells with different (randomly distributed) avidity to viruses. Note that viruses are not explicitly
modelled but linked to the number of infected cells. With this model, the authors can show that avidity
of the CD4+-regulated immune response is the main determinant for disease progression rather than the
breadth of the immune response. In addition they can identify a link between the avidity of the best
clones and the time until the onset of AIDS.

Finally, Hogue et al. [102] analyse the role of dendritic cells in disease progression. Dendritic cells
take up antigens from their environment, travel to lymph nodes, present antigens to other cells of the
immune system and thereby activate CD4+ and CD8+ T cells [32,103]. When infected by HIV virions,
dendritic cells can disperse the virus to other parts of the body [104]. Ref [102] extended the ODE
framework of viral dynamics to integrate these characteristics. This framework shows that dendritic
cells drive the infection in the early stage of an HIV infection when CD4+ T-cell densities are low. In
addition, failure of dendritic cell function is a significant driver of progression to the AIDS phase. Note
that Iwami et al. [105] also modified their earlier framework [49] to incorporate dendritic cells. The
originality of their study is that they use parameter estimates obtained from patient data in [33] and
show that variability in these estimates account for variability in the time to AIDS. The downside of
their approach is that they assume that one of the value of one parameters (the immune impairment rate)
increases deterministically over time.
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6. Discussion and Perspectives

The failure to understand the course of an HIV infection based on experimental observations only
has led to numerous mathematical models. A widespread view is that such modeling studies are at best
redundant because they anyway rely on biological data. The case of the course of an HIV infection offers
an interesting counterexample to this statement. If we consider the diversity threshold model [34] for
instance, it has caused a paradigm shift in the evolutionary ecology community by putting forward the
fact that evolutionary dynamics matters. More precisely, this model showed that the dynamical aspects
of evolution at a given level (within-host) can explain emerging properties taking place at another level
(the course of an infection and the progression to AIDS). In the end, it is interesting that this framework,
which was originally developed to understand HIV infections, has had more influence in the ecology
field than in the HIV field. This might be due to the reluctance of their designers to challenge it with
longitudinal patient data (in most of their models, they do not go beyond a comparison of general trends
but they do not attempt to fit parameters and compare model likelihoods).

Despite a slightly dismissive tendency against mathematical models in the biological sciences in
general [106], the fraction of theory-oriented articles on HIV seems to increase linearly over time
(Figure 2). However, while writing this review, we were surprised by the strong decrease in the number
of articles that fitted our selection criterion (mathematical models of the course of an HIV infection) over
time. In fact, the majority of the articles we cite were published in the 1990s. Over the last decade, it has
become increasingly difficult to publish models in the field of HIV if they do not analyze (preferentially
novel) data. As we pointed out in our introduction, mathematical models of HIV have had a lot of
success in parameter estimation. However, this is not always feasible [107,108]. Also, even with simple
HIV models, small variations in parameter values can generate large fluctuations in viral load [109].
That models are backed up with biological observations is of course a necessity, however imposing data
analysis also tends to restrict the role of mathematical models to parameter estimation at the expenses of
conceptual modeling.
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Figure 2. Fraction of articles on HIV that involve theoretical biology. The regression
was highly significant (r = 0.0027, p-value < 10−3 and adj-R2 = 0.97). The data was
collected on Web of Science on July 13, 2012. The articles on HIV were selected using
the keywords Topic=(HIV) AND Topic=(virus OR immunodefic*) and there were 110, 064

hits. The restriction to theoretical articles was performed by adding the keyword AND
Topic = (dynamics OR mathemat* OR computational) and there were 4, 277 hits.
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As we have shown here, basic models of virus dynamics can explain the acute and latent phase of an
HIV infection but they fail to explain the progression to AIDS (see Table 2 for a summary of existing
studies). Only when some parameters changes over time, mathematical models can capture the whole
course of an infection. These advanced models allowed researchers to test some hypotheses that can
explain the onset of AIDS. We showed that these hypotheses include virus diversity, loss in immune cells,
phenotypic switches of the virus, i.e., cell tropism or virulence, or multiple cell infections. However, we
still do not clearly understand which of these factors or which combination of these factors actually leads
to the onset of AIDS in vivo. Only an association between experimental and theoretical approaches will
eventually allow us to fully understand HIV infections.

Some important biological facts remained unmentioned in this review. One of these is that multiple
infection, i.e., the simultaneous infection of the same host by different pathogen species, is increasingly
recognized as a major challenge to understand the course of an HIV infection [110,111]. Within-host
models that account for these co-infections have been developed for a long time [112,113]. These models
argue that other pathogens lead to the activation of helper T-cells, which subsequently can be infected by
HIV. If the number of activated T-helper cells exceeds a certain threshold, the target cell pool for HIV
virions increases massively. This is followed by infection and destruction of the T-helper cells and the
immune system is unable to control pre-established pathogens. This dynamics finally leads to AIDS.
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Table 2. Overview of HIV dynamics models. We list all the models described in the main text that focus on the course of an HIV
infection. For each model, we indicate the number of CD4+ T-cell compartments, the number of virus strains (“v” means it varies as
the virus evolves and the number of strains is then denoted by nv), whether the model includes a host anti-viral immune response (and
if it does so which type of response) and whether it follows the entire infection and is able to reproduce the slow time scale of CD4+

T-cell decline. We split the CD4+ T-cell compartment into uninfected and infected compartments depending on whether the cells of this
compartment are infected with viruses or not. If a paper includes more than one model, we list these models separately (“basic” stands
for “basic model”, “act. T” for “activated T-cell model”, ‘im. con.’ for “immune control model” and “drug” for “drug model”). In the
models where the number of viral strains are “NA”, the virus dynamics is assumed to be in quasi-steady state with the infected cells,
i.e., the viral numbers are a function of the number of infected cells. In the models with “NA” numbers of CD4+ T-cell compartments,
viruses are assumed to be generated at a constant, target-cell independent rate. If the model captures the progression to the AIDS phase,
we list the driving force for disease progression. Here, “NA” indicates that a feature is not included in the model.

Model Number of compartments:
Immune response

Dynamics captured: Timescale of asymp-
Driver of disease progressionuninfected infected viral CD4+ T-cells virus load tomatic phase

CD4+ T-cells strains

POPULATION DYNAMICS MODELS

Perelson et al. [36] 1 2 1 NA no initial peak but long-term between 3 and slow progression due to different
increase in viruses and 9 years T-cell compartments and initial
decrease in T-cells parameter choice

Essunger and 3 4 1 NA no initial peak but long-term between 2 and time-dependent viral production
Perelson [37] increase in viruses and 8 years rate, initial viral peak observable

decrease in T-cells for model extension allowing
infection of resting cells

Perelson et al. [29] 1 1 1 and
2 (drug)

NA acute and asymptomatic phase ∞ only by changing parameters
manually during simulations

Kirschner [38]; Kir- 1 1 1 NA no initial peak but long-term approx. increasing the non-T-cell based
schner and Webb [39] increase in viruses and 4 years viral production rate over time

decrease in T-cells
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Table 2. Cont.

Model Number of compartments:
Immune response

Dynamics captured: Timescale of asymp-
Driver of disease progressionuninfected infected viral CD4+ T-cells virus load tomatic phase

CD4+ T-cells strains

De Boer and Perel-
son [21]

1 (basic),
2 (act. T),
0 or 1
(im. con.)

1 (basic),
1 (act. T),
1 (im. con.)

1 CD8+ (im cont
only)

yes yes depending
on parameter
choice

different models described,
progression to AIDS only
achievable by changing the
activation or proliferation rate
in a special T-cell compartment
(immune control model) or the
viral infection rate (activated T-cell
model) over time

Kirschner et al. [31] 2 4 NA NA no yes < 10 years slow but constant drop of CD4+

T-cells due to multi-compartment
model

Fraser et al. [40] 2 2 NA CD8+ yes no 4-14 years slow and fast compartments and
(random) antigenic stimulation

Perelson [27] 1 2 1 (basic) NA acute and asymptomatic phase ∞ only by changing parameters
manually during simulations

Ribeiro et al. [41] 2 6 3 NA yes yes approx. 4 years two virus types using different
coreceptors, rise in X4 type due
to selection and dominance of X4
virus

EVOLUTIONARY MODELS

Nowak et al. [34] NA NA v general and strain
specific

NA yes 6 to 8 years antigenic diversity threshold,
asymmetry between viral infection
and viral recognition

Nowak and May [47] NA NA v general and strain
specific

yes yes 6 to 8 years diversity threshold and asymmetry,
similar model as [34]

Nowak et al. [50] 1 1+nv v general and strain
specific

yes yes approx. 8 years diversity threshold and asymmetry
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Table 2. Cont.

Model Number of compartments:
Immune response

Dynamics captured: Timescale of asymp-
Driver of disease progressionuninfected infected viral CD4+ T-cells virus load tomatic phase

CD4+ T-cells strains

Schenzle [54] 1 1 1 general yes yes approx.
10 years

within-host evolution modelled by
increasing CD4+ T-cell infection
rate during the infection

Stilianakis et al. [46] NA NA v general and strain
specific

yes yes depending
on initial
conditions

diversity threshold and asymmetry,
similar model as [34]

Stilianakis et al. [58] 1 1 1 general yes yes approx.
10 years

increasing CD4+ T-cell infection
rate during the infection

Regoes et al. [48] 1 2nv v strain specific dynamics not shown NA adds target cell-limitation to [34]
Stilianakis and
Schenzle [59]

2 1 1 general yes yes approx.
10 years

increasing CD4+ T-cell infection
rate and increasing susceptibility of
CD4+ T-cells during the infection

Ball et al. [60] 1 nv v NA yes not shown NA target-cell limited model and
virus diversification with trade-off
between the virus replication rate
and the death rate of an infected
cell

Sguanci et al. [66] nv nv v TNF yes yes approx. 4 years target-cell limited, transmission
and death rates depend on TNF
concentration

Iwami et al. [49] 1 nv v CD8+ NA NA NA AIDS begins when the number of
virus strains exceeds a threshold

Iwami et al. [105] 1 1 NA CD8+ not shown yes variable across
patients

increase in immune impairment rate
over time (as in [54])

Kamp [65] NA NA v general and strain
specific

yes not shown NA diversity threshold, increasing viral
growth rate
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Table 2. Cont.

Model Number of compartments:
Immune response

Dynamics captured: Timescale of asymp-
Driver of disease progressionuninfected infected viral CD4+ T-cells virus load tomatic phase

CD4+ T-cells strains

Alizon and Boldin
[63]

2 2 v NA not shown yes approx.
10 years

trade-off between the virus replica-
tion rate and the death rate of an
infected cell and cell heterogeneity

Huang et al. [62] 1 1 1 general yes yes 3 to 8 years deterministic increase in virus repli-
cation rate

STOCHASTICITY-DRIVEN MODELS

Tan and Wu [69] 1 2 1 NA yes yes approx.
10 years

target cell proliferation rate is a
decreasing function of viral load (as
in [36])

Zorzenon dos Santos
and Coutinho [79]

1 2 1 general yes yes approx. 8 years CA model; infected cells organize
themselves into spacial structures

Regoes and Bonhoef-
fer [16]

NA NA v NA yes no 5 to 30 years emergence of mutants strains with
different fitnesses

Lin and Shuai [83] 1 1 1 CD8+, B-cells indi-
rectly

yes yes influenced by
viral mutation
rate

CA model; spatial structure, virus
mutation (asymmetry)

OTHER PROCESSES

Galvani [100] 4 1 1 CD8+, B-cells yes yes approx. 9 years elevated production of new T-cell
clones that accumulate deleterious
mutation

Korthals Altes et al.
[101]

1 1 + nv NA strain specific
CD4+

yes no 3 - 40 years avidity of CD4+ T-cell response
(the lower the avidity is the faster
is progression to AIDS)

Hogue et al. [102] 2 1 1 CD8+, dendritic
cells

yes yes dependent
on parameter
change

induced by change of one or more
parameters related to infection and
viral production or to immune
effector functions



Viruses 2012, 4 2006

Models are needed that take into consideration new theories to explain disease progression. For
instance, most of the models presented in this review make a simplifying assumption concerning the
location of the infection by assuming that the infection happens in one compartment. This would
correspond to a scenario in which the disease dynamics would take place in the blood. However,
other body compartments play also important roles in disease progression. Zeng et al. [114] show that
damage in the lymphoid tissue as a consequence of an infection leads to limited reconstruction of T
cells after antiretroviral therapy. Some viral infection models do account for within-host structure but
either this structure is extremely simplified (e.g., [63,115]) or the focus of the article is not really on
disease progression [116–118]. In addition to the spatial structure, recent advances have also been made
in understanding how the functioning of the immune response matters to disease progression, many
of which are reviewed by Douek et al. [119]. For example, the ability of HIV-specific T-cells to be
“polyfunctional” (i.e., to have the phenotype of both memory and effector T-cells) seems to help control
an HIV infection. Some disease progression models do include memory vs. effector T-cells [41] but not
polyfunctional T-cells. Another striking feature of HIV-specific CTLs (activated CD8+ T-cells) is that
they are more prone to programmed death (they tend to overexpress PD-1). The less the T-cells express
PD-1, the better the infection is controlled. Finally, another point Douek et al. [119] mention is the
importance of immune activation and depletion in the gut. This perturbation of the gut mucosa leads to
translocation of microbial products into the main circulation of the body [120]. From a modeling point of
view, this latter source of pathogenesis is quite different because it involves another actor (the gut flora)
that is unrelated to the host, which also brings us back to co-infection frameworks. Integrating these
facts into mathematical models of HIV infection might help to capture the different phases of disease
progression. In addition, mathematical models might help to identify key factors in disease progression.

A second major fact we voluntarily ignored in this review is anti-retro-viral treatment, largely because
this would require another (and probably longer) review. HIV mutates extremely rapidly and strains that
are resistant to at least one drug can arise in almost all treated individuals. Modeling drug treatment
had a huge success in determining strategies to reduce the risk of evolution of drug resistant strains and
lead to the combination therapy which is widely used in HIV treatment. These models are becoming
increasingly important since treated infections could become the majority worldwide.

HIV within-host models for drug-treatment mainly focus on a certain aspect of the HIV infection. One
of their main goals is to devise treatment strategies that are optimal at the within-host level and at the
between host level. One crucial focus of this arm of HIV models concerns the evolution of drug-resistant
strains. However, the long-term effects of therapeutic interventions on the onset of the AIDS phase are
less studied and currently largely not understood. We therefore see a need for models explaining the
whole infection even with the advent of massive access to treatment.
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