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S1. Supplementary Methods

S1.1. About the Networks

S1.1.1. Introduction to networks

In this subsection, we only present some basic elements of network theory.

For further reading, the reader should refer to more detailed reviews [e.g. 1, 2].

Concerning the applications of network theory to epidemiology, see Newman

[3] or Keeling and Eames [4].

Network theory has been used in recent years to help understand and

predict the behaviour of a range of natural, social and technological systems

[1, 2]. A network of N interacting units (e.g. individuals, species, nurseries,

farms, hospitals or airports) is composed of N nodes, or vertices, interact-

ing with each other by edges, or links, the connections being here purely

relational and not necessarily related to the Euclidean distance between two

entities [5]. In some networks, edges and nodes can be assigned weights.

When modelling spread of pathogens on networks, we consider that nodes

are individuals and links are interactions among them (e.g. sexual inter-

course, handshake, etc.). Our work is applied to sexually transmitted in-

fections (STIs) in general but we focus on the case of HIV. Moreover, we

only study homosexual networks which are unipartite networks (either men-

men or women-women interactions only), and not, heterosexual and bisexual

networks which are bipartite networks [6]. Our model can nevertheless be

extended to any type of network, including heterosexual networks.

We also assume that the network is static, i.e. that the interactions

between individuals do not vary over time. However, our model can be

extended to consider dynamical networks such as concurrent partnerships
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networks [7].

Mathematically, a static network can be represented by an N × N ad-

jacency matrix A whose elements A(i, j) are equal to 1 if there is a link

connecting node i to node j and 0 otherwise. Here, a node cannot be con-

nected to itself (self-loops are not biologically relevant) so A(i, i) = 0. We

also assume that networks are undirected, i.e. that A(i, j) = A(j, i). This

might not be the case for human immunodeficiency virus (HIV) as trans-

mission rates are known to differ between partners (e.g. men and women in

heterosexual couples). Using directed networks would increase the realism

[8] but would also make the model much more difficult to analyse. Note

that the weighting model presented below can be straightforwardly applied

to directed networks.

Four main types of networks can be defined from the topology of a net-

work, i.e. depending on the repartition of the numbers 0 and 1 in the

adjacency matrix [1, 5, 9]: local networks, where edges only link adjacent

nodes, random networks, where nodes are connected randomly, small-world

networks, which are topologically local networks with some nodes rewired

randomly, thus generating heterogeneous networks in which a few nodes are

highly connected while the others nodes have few connections. Our focus

here is on heterogeneous networks. We focus in particular on networks fol-

lowing a power law or a negative binomial distribution but we also show that

a similar approach can be applied to homogeneous small-world networks.

S1.1.2. Terminology

Degree. For any node i part of a network, the degree ki of i is the total

number of edges from node i to all other nodes. We define the degree vector
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k such that k[i] = ki.

Scaling exponents of power law (PL) networks. In power law networks,

the distribution of the degree k, is assumed to follow a power-law [10], which

can be expressed according to Goldstein et al. [11] as

p(k, γ) =
k−γ

ζ(γ)

where γ is the scaling exponent of the power law (γ > 1) and ζ is the Riemann

zeta function defined by

ζ(γ) =
∞∑
k=1

k−γ

Preferential attachment is a well-know mechanism leading to power-laws

distributions of degrees in power law networks when the number of nodes

added is high [12, 13].

S1.1.3. The empirical GC sexual-contact network

This network (denoted GC in the following) was derived by Potterat et al.

[14, 15]. Data were collected by contact-tracing of partners of individuals who

have been infected with Gonorrhoea between January 1 and June 30, 1981 in

Colorado Springs, Colorado. The age range (in years) of the respondents in

this study was [15 - 34] [14]. 1729 individuals were included in the data and

connected through sexual connection; 259 appeared only as cases, 993 only as

contacts, and 447 as both cases and contacts [14]. 451 men and 285 women

were infected with gonorrhoea. Of 451 men diagnosed with gonorrhoea, 69

named (or were named by) homosexual partners and 382 did not (or were

not). The former are classified as homosexual and the latter as heterosexual

[15].
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The GC 1981 network used for analysis is composed of 1726 individuals

and 1430 links. The largest connected component was composed of 381

individuals and 381 links. We only focus on the largest connected component.

We used a model comparison based on the Akaike Information Criterion

(AIC) to determine the type of distribution that best fitted the node degree

distribution of the largest connected component of the GC network. The

maximum likelihood estimation for each distribution was perfomed using the

mle2 function from the bbmle R package [16]. Results are shown in Table 1.

Table 1: Fitting the best distribution for the node degree distribution of the GC network

a and b are parameters fitted using the bbmle package in R. Confidence

intervals are shown in brackets. k is the node degree.

Distribution Formula Best fit AIC

Poisson an e
−a

k!
a = 1.02 [0.67, 1.46] -32.5

Negative Bino-

mial

bk(1− b)a
(
a+k−1
k−1

)
, with ab

1−b = 2 b = 0.32 [−0.52, 0.73] -26.3

Yule aΓ(a+1)
(a+k)1+a a = 1.99 [1.68, 2.05] -34.8

Pareto a
ka+1 a = 0.60 [0.57, 0.63] -75.2

Truncated Nega-

tive Binomial

(1−b)−a

(1−b)−a−1
bk(1− b)a

(
a+k−1
k−1

)
a = 0.00061, b = 0.67 -82.4

Zeta Power Law k−a

ζ(a)
a = 1.98 [1.94, 2.03] -90.9

The best fit was obtained with the zeta power law distribution and the

corresponding scaling exponent was γ = 1.98, with a confidence interval 1.94
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Figure S1: Node degree distribution for the GC network.

The red dashed line indicates the power law distribution.

– 2.03 (see also Table 2). This is illustrated by Figure S1. Note that the AIC

difference between the Negative Binomial distribution truncated in 0 and the

PL distribution is 8.5 and a difference between models is often considered

to be significant if the AIC differ by 10. However, the expectancy of the

distribution found in the Truncated NB is of 1.83, which is slightly different

from the average network degree (which is 2).

Contact tracing studies have known biases described in [17]. One of

these biases is that it is often difficult to identify all the partners of an

infected individual. A second bias is that these networks tend to isolate sub-

networks where disease spread is easier. However, this does not invalidate the

results for such sub-groups of the population because, as shown by Newman
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[18], large sexual-contact networks can be seen as many small and dense

networks (or ‘modules’) that are weakly interconnected. Contact tracing

studies provide us with a description of one of these modules.

Our goal in this study is to compare networks weighted using different

biological assumptions. The GC network offers the great advantage to be

drawn from empirical data. However, we want to show that our method is

more general and can be applied to heterogeneous networks in general with-

out affecting the results qualitatively. Moreover, the GC network includes

homosexuals and heterosexuals, whereas in our approach we assume for sim-

plicity that we are working on a homosexual network (this way we do not

need to use a bipartite network). For these two reasons, we also randomly

generated heterogeneous networks, as further described below. For these

networks, we chose an average degree of 4 because the estimates for the av-

erage number of partners found in the literature vary from 2 to 8 partners

on average (see below). Finally, in order to compare the results from the GC

network and the theoretical networks we set the average number of sex act

per week per individual constant and equal to 4 (i.e. to the degree in the

theoretical networks).

Table 2: Key properties of the GC network

N is the number of nodes, k is the mean degree, ΛA is the dominant eigenvalue

of the adjacency matrix A and γ is power law of coefficient.

Name N Edges k ΛA γ

GC1981 381 381 2 3.88 1.98
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S1.1.4. Randomly generated power law (PL) networks

In order to better assess the robustness of our results, we generated ran-

dom power law networks. We chose to study this typical structure because

some sexual contact networks have been reported to be power law (see the

main text). However, we also used other distributions for heterogenous net-

works, such as the negative binomial distribution (see below).

The theoretical power law networks we used were built using the Barabasi-

Albert algorithm [10], where a basic network called a seed is expanded re-

cursively into a network of greater size with preferential attachment (on the

whole, new nodes are added to already highly connected nodes; more pre-

cisely, new nodes and links are added proportionally to existing nodes’ de-

grees). In this case, the γ coefficient is 3.

We used an average degree of 4, which is the mean number of partners

over the last 5 years for heterosexual men in Britain in 2000 [19] or the

lifetime median number of partners for heterosexual women in Englan in

2000 [19] and in France in 2006 [20]. Note that this value can be higher for

other communities (for instance, men having sex with men communities tend

to have higher number of partners).

S1.1.5. Threshold properties of power law networks

As discussed below, the dominant eigenvalue of the binary adjacency

matrix is an indicator of disease spread on networks. For canonical Barabasi-

Albert power law networks [10], the dominant eigenvalue ΛA of the binary

adjacency matrix A increases with number of nodes N such that

ΛA ≈
√
mN

1
4
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thus leading to an increase in disease speed of spread with N [21]. However,

there is a controversy about the relevance of this result to real epidemiological

networks [22].

S1.1.6. Randomly generated networks with a negative-Binomial (NB) node

degree distribution

Networks reflecting human sexual contacts in a population over several

years are often argued to exhibit heterogeneous structures which are e.g.

corresponding to ‘negative-binomial’ (NB) graphs (see the main text).

The negative binomial law NB(a, b) is given by [23]:

Pr[k] =

(
a+ k − 1

k − 1

)
bk(1− b)a (S1)

where k is an integer for the node degree. The law has a mean µ = ab/(1−b)

and a variance v = ab/(1− b)2.

As each individual in a sexual contact network as at least one sexual

partner, we consider a truncated negative binomial distributions where [23]:

Pr∗[k] =
Pr[k]

1− Pr[0]
=

(1− b)−a

(1− b)−a − 1

(
a+ k − 1

k − 1

)
bk(1− b)a (S2)

The law has a mean µ∗ = ab
1−b

(1−b)−a

(1−b)−a−1
and a variance v∗ = ab

(1−b)2 +
(

ab
(1−b)2

)2
(1−b)−a

(1−b)−a−1
−(

ab
(1−b)2

)2 (
(1−b)−a

(1−b)−a−1

)2

.

In the context of sexual networks, the NB(a, b) model implies a search

mechanism where sexual partners are acquired with probability b until the

search is stopped when a suitable partners are found [24]. Here we set the

probability that a partner is successfully retained to bc = 1− b = 0.26 based

on surveys of men sexual behaviours in the USA [25].
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We generated theoretical negative-binomial networks with the so-called ‘con-

figuration model’ (CM) [26]. In the CM, we use Pr∗[k] (see equation [2]) with

µ∗ set to the average number of partners of empirical MSM networks. As b

(see above) and µ∗ = 4 are known, a is derived immediately.

A unipartite network can be constructed from any size distributions Pr[k]

using the configuration model [26]:

1. Each node i is assigned a random number ki of ‘stubs’, i.e. ends of edges

emerging from the node. ki is drawn from the degree distribution Pr[k]

with 1 ≤ ki ≤ N − 1 (a node can not have a degree larger than N − 1)

and imposing the constraint that
∑

i ki must be even.

2. The network with pre-assigned degree distribution Pr[k] is constructed

by connecting pairs of stubs uniformly at random to yield complete

edges.

S1.1.7. Randomly generated small world (SW) networks

We generated theoretical SW networks using the Watts-Strogatz model

[27] with a rewiring coefficient r = 0.01. For the range of nodes explored

(n = 500 to 4000), r = 0.01 exhibit a low average shortest path length as

with r = 1 (pure random networks) and a high clustering coefficient as with

r = 0 (pure local networks), thus yielding SW networks exhibiting strong

small-world properties [5].

S1.2. Weighting sexual-contact networks

The model we develop allows one to model the spread of a STI (which

occurs on a time scale of days) on a sexual contact network (which is built
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over a time scale of years). Here, the nodes of the network are individuals

and the edges indicate that at least one sexual contact occurred between two

individuals over several years (more precisely, over the number of years the

network summarises). We consider a static and unipartite network but our

results also apply to bipartite and dynamical networks.

S1.2.1. Network topology

The topology describes the way the individuals are connected to each

other. All the information on the topology is contained in the adjacency

matrix A, whose elements are binaries (0 or 1). The degree of the individuals

(i.e. the number of sexual partners) is stored in a degree vector k.

S1.2.2. Individual weights

These weights represent the propensities of individuals to interact with

each other. In the case of sexually transmitted infections (STIs), these

propensities to interact can be interpreted as potential number of sex acts

(PSA) per unit of time. These PSA are contained in a propensity vector b,

the ith component of which (bi) represents the willingness of individual i to

interact with other individuals.

PSA are related to ‘relational effects’ if there is a positive or negative

correlation between the weights and the degrees of a node. A positive cor-

relation corresponds to a case where individuals with many PSA tend have

the highest number of partners and conversely.

Here, we assume three models of PSA allocation:

1. The linear allocation model (Alin), where b is strictly proportional to

k.
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2. The saturating allocation model (Asat, where b is proportional to
√
k.

3. The constant allocation model (Acst), where PSA is independent of

node degree and bi ∝ k (k being the average degree of the network).

Classical approaches implicitly assume a linear allocation.

S1.2.3. Edge weights (i.e. realised number of sex acts)

Partitioning potential number of sex acts (PSA). We have to assume a rule

for individuals to partition their PSA among their sexual partners. The set

of all the partners of individual i is denoted Γi.

Availability of a focal node i for a node j. Let [i → j] be the availability

of focal individual i for interacting with individual j. [i→ j] represents the

amount of time that individual i can spend with individual j per unit of time

given that i is also spending time with his/her other partners, and that these

neighbours also spend time with their own partners, etc. If i and j are not

connected (i.e. if j /∈ Γi), we have [i → j] = [j → i] = 0. By definition, we

also have ∑
j∈Γi

[i→ j] = bi (S3)

We consider three cases:

1. Equal partitioning (Pequ), where all the partners of an individual i get

a share [i→ j] = bi/ki.

2. Random partitioning (Prand), where all the partners of an individual i

get a share [i→ j] = bi ρj/R, where ρj is drawn in a uniform distribu-

tion and R =
∑

j∈Γi
ρj.
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3. The maximisation partitioning (Pmax), which is further described be-

low and where individuals use information about the topology to max-

imise their number of realised sex acts.

Classical approaches assume either a equal or a maximisation partitioning

(both are equivalent with a linear allocation model, as we show below).

Edge weights. The ‘weights’ of the links between individuals represent the

frequencies of interactions at each time-step or the number of realized sex

acts per time-step for all pairs of individuals in the network.

The weights of links between two individuals i and j (denoted W (i, j))

are contained in the weighted adjacency matrix W . If nodes i and j are not

connected, W (i, j) = A(i, j) = 0. If nodes i and j are connected, W (i, j) is

a function fij of the propensity vector b and of the degree vector k. More

precisely, W (i, j) = A(i, j) fij(b,k), which remains true when A(i, j) = 0.

As explained in the main text, we define the interaction function as

W (i, j) = min([i→ j], [j → i]) (S4)

We clearly see that W (i, j) = W (j, i) and that W (i, j) represents the

amount of time that individual i and j spend together per time step given

that i and j also spend time with their other neighbours, and these neighbours

also spend time with their own neighbours, etc. We have the relations:∑
j∈Γi

W (i, j) ≤ bi (S5)

∑
i∈Γj

W (i, j) ≤ bj (S6)
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The case of unweighted networks

Modelling STI spread on unweighted networks corresponds to an extreme

situation where bi (i.e. the total number of PSA per unit of time) of an

individual i is strictly proportional to its number of sex partners ki (we have

a linear allocation) and where PSA partitioning is equal or maximising. In

this case

[i→ j] =
bi
ki

= α
ki
ki

= α = [j → i] (S7)

Hence,

W (i, j) = min(α, α) = α (S8)

It follows from equations S17 and S8 that the total number of sex acts si

realised by individual i is

si =
∑
j∈Γj

W (i, j) = bi (S9)

and that the network is unweighted. We have therefore si ∝ ki.

S1.2.4. Loss of sex acts due to the weighting

As highlighted above in condition S5, in the general case the availability

of i to j is unlikely to be exactly the same as the availability of j to i. This

leads to a loss of sex acts, which we quantify on the whole network with a

parameter δ, where

δ =

∑
i

∑
jW (i, j)∑

i

∑
j A∗(i, j)

(S10)

where the W (i, j) are the terms of the weighted adjacency matrix W and

A∗(i, j) are the terms of the generalised adjacency matrixA∗, which is defined

by A∗(i, j) = s∗A(i, j), where s∗ is the average number of realised sex acts
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between two individuals (which is set to the same value in all our simulations

to get comparable results).

We want to compare the spread of HIV on different weighted networks

and this spread increases with the number of sex acts realised on the network.

In order to isolate the effect of the network itself, we define the weights on

the network such that the average number of sex acts realised per individual

per unit of time on a network is equal to the average degree of this network

(k). We hence calculate a corrected weighted adjacency matrix W̃ = W/δ.

Note that for the genuine GC network, kGC = 2 and in order to get values

comparable to the other networks (where kPL/NB ≈ 4) we corrected the W

for GC by 2kGC .

S1.2.5. Maximisation partitioning

The third partitioning we consider is more complex, which is why we dis-

cuss it separately. It assumes that individuals try to maximise their number

of realised sex acts by taking into account information about the network

topology.

This partitioning can be used with different orders of moment of closure

because an individual can partition his/her PSA according to what his/her

partners give to him (order 1), but then these partners also have their own

partners and can decide to partition their PSA according to what their part-

ners give to them (order 2), etc. At the first order of closure, we close the

recursion with the partners j of the focal individual i. In other words, for all

the j ∈ Γi, we assume that

[j → i] =
bj
kj

(S11)
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which corresponds to an equal partitioning. Then, the focal will partition

his/her PSA bi among his/her partners j in proportion of what j gave to

him/her. Mathematically,

∀j ∈ Γi [i→ j] = bi
[j → i]∑
v∈Γi

[v → i]
(S12)

where Γi represents the node-neighbourhood of node i, i.e. the set containing

the individuals v connected to i (not including i itself).

At the first order of closure, equation S12 can easily be solved (at least

numerically) because

∀j ∈ Γi [i→ j] = bi
bj/kj∑
v∈Γi

bv/kv
(S13)

At higher orders of closure, equation S12 is still valid but the availabilities

are more complicated. For instance, at order 2, if we still consider a focal

individual i, to know [j → i], we need to know how j, as a focal individual,

partitions his/her PSA among his/her partners l ∈ Γj.

More generally, for a closure moment of order m, the availabilities for any

focal individual i can be inferred by recursively with the following equation:

∀m ∈ N? [i→ j]m+1 = bi
[j → i]m∑
v∈Γi

[v → i]m
(S14)

where [i → j]m is the availability of i to j obtained at moment closure m,

Γi represents the node-neighbourhood of node i, i.e. the set containing the

individuals v connected to i (not including i itself). Practically, this means

that to find all the [v → i]m, we need to study each neighbour v as a focal

and compute all the [w → v]m−1, with w ∈ Γv. We continue until we reach

the m+ 1th neighbour of i, denoted x, for which we assume that

[x→ y]1 =
bx
kx

(S15)
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where y ∈ Γx. This assumption of an equal partitioning for the mth neighbour

of i allows us to close our recursion.

Note that for individuals with only one partner, i.e. the ends of the

network, the partitioning is easy: they attribute all their PSA to their single

partner. The problem is that, even with this simplification, there usually is no

straightforward way to compute all the availabilities analytically for a closure

moment strictly greater than 1 (and even less for an arbitrary moment m).

This is why here we use numerical simulations to estimate these availabilities.

The higher the order, the more complete the information is. For the

theoretical networks, we could only go up to order 3 because computational

time increased exponentially. For the genuine GC network, we were able to

go up to order 4.

It is however possible to derive exact analytical solutions from S14 for

local networks (see below). Moreover, we notice a convergence of [i → j]m

when m goes to infinity, which can be written

[i→ j] = [j → i]∞ = lim
m→∞

[i→ j]m (S16)

In the term [i→ j], the focal individual is the node i whereas in the term

[j → i], the focal individual is node j. Hence, the neighbours v taken into

account in [i→ j] differ from the neighbours v taken into account in [j → i]

and consequently [i→ j] 6= [j → i] in the general case.

Note that definition S14 respects the normalization condition:∑
j∈Γi

[i→ j] = bi (S17)

If the network is regular, then ki = k. With our assumptions, this implies

that bi = b. From S14, we thus directly have for this case [i→ j] = b/k.
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S1.3. Epidemiological modelling

S1.3.1. The SI model

As described in the main text, we assume one of the simplest epidemiolog-

ical settings, i.e. the SI model [28]. Here, susceptible individuals can become

infected when they have sex with infected individuals, with a probability of

transmission of β per sex act. Here, we study the spread of a STI on a net-

work, which means that an infected individual can only infect his/her sexual

partners. We assume that there is no recovery and that we are studying the

population on a short enough time scale so that the population size remains

constant (no births nor deaths). We also neglect immigration or emigration

in the host population so the networks remains the same.

S1.3.2. Estimating the speed of disease spread

A classical measure of the spread of a disease is the basic reproduction

rate (denoted R0), which estimates the number of secondary infections that

an infected host generates if all the other individuals in the population are

susceptible [28]. If we take into account the network of host interactions, it

is possible to estimate R0 (even if often sometimes less straightforward).

With non-weighted networks, the speed of disease spread can be estimated

through the dominant eigenvalue of the adjacency matrix (A), as shown in

[29, 30]. May and Anderson [31, 32] also derived a more general method to

estimate the spread of a disease in a heterogeneous population (which is the

case of a population on a network). This method is further described below

but, in short, it assumes that hosts can be grouped into different transmission

groups depending on the number of contacts they have. In a network case,
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such an assumption means that we ignore the specificity of the network and

only work with the distribution of sexual partners.

When it comes to weighted network, there currently is no specific esti-

mator. This is why we estimate the doubling time from simulations. Using

the adjacency matrix to predict disease spread will be the focus of another

study.

S1.3.3. Stochastic simulations

We use the Gillespie direct algorithm [33] to run stochastic epidemics on

continuous time. For each individual i, the rate corresponding to the event

of i becoming infected is the sum of all the βwij, where j are the sexual

partners of i who are infected and β is the disease transmission rate per sex

act.

For each network, we infect randomly 1 node and compute the time

elapsed to go from 1% of the nodes infected to 2% of the nodes infected

(the time elapsed to go from 4 infected nodes to 8 infected nodes for the

GC empirical network). This estimator allows us to compare networks of

different sizes. Because of the over-dispersion of the data, we use the me-

dian doubling time as our estimator and denote it td. This definition of the

doubling time has the advantage that it removes some of the stochasticity of

the very early stages of the epidemics, while remaining an measure of initial

growth (which can be associated to R0).

For any couple allocation-partitioning on the GC network, we generated

100 networks with different weightings and did 1000 runs for each network

to estimate td. Increasing the number of replicates did not seem to affect the

results.
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To model prevention policies, we remove one (or multiple nodes) and

compute the change on td. In the random policy, nodes removed are chosen at

random. In the policy targeting individuals with many partners, we remove

the most connected nodes first. In cases with random partitioning (Prand),

the change is estimated by comparing the td for the weighted network with

all the nodes and the weighted network without one (or several nodes).
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S2. Supplementary Results

S2.1. Effect of prevention policies on theoretical power-law networks

All the results of Figure 5 of the main text are obtained with the genuine

GC network. For theoretical power-law (PL) networks with 500 nodes, we

find that removing the most connected individuals is the best way to decrease

the disease doubling time (Figure S2). However, the efficiency of this strategy

varies with the assumptions made to weight the network. A generalised linear

model yielded significant correlations with a slope of 0.19 for the case with

linear allocation with equal partitionning, 0.16 for the same allocation but

with random partitionning and 0.08 for the case with constant allocation

of potential number of sex acts (PSA) and random partitionning. Also, in

the latter case, the nodes that have a largest effect on disease spread have a

intermediate degree.

S2.2. Removing multiple nodes

Here, we study a case where many individuals can be removed. This

removal can be done in three ways: i) randomly, ii) following node degree

(i.e. target first highly connected individuals) and iii) following sex acts (i.e.

target first individuals with the higher number of realised sex acts).

Figure S3A shows that increasing the number of nodes removed tends to

increase the median doubling time of a disease spreading on the GC network

weighted assuming linear PSA allocation and random partitionning. How-

ever, there is a decrease in median doubling time if 7 individuals are removed.

This is likely to be due to specificities of the GC network because we do not

see such a decrease for theoretical PLnetworks (see below). Also, if many
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Figure S2: Change in median doubling time after node removal as a function of node

degree for different PSA allocations

In black we have linear allocation and equal partitionning, in red linear allocation

and random partitionning and in blue constant allocation and random partition-

ning. Box plots shows median values, the three quartiles and the outliers for

100 theoretical PL network with 500 nodes with 10000 runs per network. Here,

β = 0.01 and individuals have on average 4 sex acts per week.

nodes can be removed, targeting the most highly connected individuals (in

black) tends to be the best strategy. This is shown on panel B: as soon as at

least 3 individuals are removed, targeting the most connected individuals (or

the individuals with the highest number of sex acts) leads to a significantly

more important decrease in doubling time than random targeting (see the

figure caption for further details about the statistical test used).

The same approach can be applied to the GC network weighted assum-

ing constant PSA allocation and random partitionning. In this case, the

consequence of node removal on doubling time is much weaker (figure S3C).
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Figure S3: Consequence of multiple node removal on median doubling time for the GC

network

Panels A and C show the change in median doubling time as a function of the number of nodes removed.

The colour indicates the strategy of node removal (red is random, blue is targeting for sex acts and black

is targeting for partners). Panels B and D show the p-value of a Wilcoxon signed-rank test, which tests for

an effect of the removal strategy on the median doubling time. The colors indicate the strategies that are

compared (see the caption on panel B). In A and B the network is weighted using a linear allocation and

a random partitionning. In C and D the network is weighted using a constant allocation and a random

partitionning. Here, β = 0.01 and individuals have on average 4 sex acts per week. Box plots shows

median values, the three quartiles and the outliers for the median td.
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Figure S4: Consequence of multiple node removal on median doubling time for theoretical

PL network

In A and B the network is weighted using a linear allocation and an equal partitionning. In C and D

the network is weighted using a linear allocation and a random partitionning. In E and F the network is

weighted using a constant allocation and a random partitionning. Here, β = 0.01 and individuals have on

average 4 sex acts per week. Box plots shows median values, the three quartiles and the outliers for 100

theoretical PL networks with 500 nodes with 1000 runs per network.
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Moreover, it takes many nodes to be removed before one can see a different

between the strategies (figure S3D).

In order to check that these results were not only due to the specificity

of the GC network, we applied a similar approach to 100 theoretical PL

networks of 500 nodes (figure S4). In this case we had enough data to also

consider the case of a linear allocation with an equal partitionning (figure

S4A and B). In this case, as for the case with linear allocation and random

partitionning (figure S4C and D), we see a significant difference between

the targeting strategies as soon as one node is removed. In the case of the

constant allocation however, it takes 2 individuals to be removed before a

significant difference can be observed between the random targeting and the

targeting for individuals with high number of partners (figure S4E and F). It

even takes 4 individuals to be removed if the targeting is based on sex acts.

Finally, the magnitude of the change in doubling time is much smaller in the

constant allocation case, suggesting that targeted policies are less efficient.

These results illustrate that taking into account the number of sex acts

explicitly leads to network topologies where prevention strategies aimed at

the most connected individuals require to target a larger subset of the pop-

ulation to be more efficient than policies with random targeting.

S2.3. Doubling times on the GC network

We here present in details the results of the generalised linear model tests

assessing the effect of key parameters on median doubling times on the GC

network (Table 3).
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Table 3: Effect of biological assumptions on the observed median doubling time in the GC

network

We use a generalised linear model to test for differences with the case with

a linear allocation and an equal partitionning. Significant effects are in bold

font.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.7895 0.0524 53.21 <0.001

replicate 0.0001 0.0001 0.94 0.348

allocation sat 0.0788 0.0741 1.06 0.289

allocation cst 0.1471 0.0741 1.98 0.048

partitionning max 0.0000 0.0741 0.00 1.000

partitionning rand 0.1042 0.0529 1.97 0.050

sat : max 0.1965 0.1049 1.87 0.062

cst : max 0.5428 0.1049 5.18 <0.001

sat : rand -0.0021 0.0745 -0.03 0.977

cst : rand 0.0238 0.0745 0.32 0.749

S2.4. Results for networks with a power-law (PL) node degree distribution

All the results of Table 1 in the main text were also checked on theoretical

power-law networks. Here, we present the results of simulations done on all

the networks (genuine and theoretical are pooled into a single data set). For

each of the networks (GC, PL with 500 nodes and PL with 4000 nodes) we

studied two transmission rates (β = 0.01 and β = 0.001) We study the effect

of allocation model, partitionning model, network size and transmission rate

(β) on observed median doubling times.
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When all the networks are pooled we find, as for the GC network alone,

that constant allocation and random partitionning lead to doubling times

that differ from the classical approach (Table 4). We also find here that the

saturating allocation has a significant effect. Since we have different types

of network, we can study the effect of the size (N) of the network and of

the transmission rate (β): both affect the doubling time. When we look at

interaction terms, we find that there is a strong interaction between the net-

work size and the allocation model or the random partitionning model. Note

that all the effects on the doubling time of the network size were weak (lower

than 1e-5 for weighted networks). This could be linked with the effect that

we describe in the main text: doubling time is expected to decrease with N

on PL networks and the weighting can cancel this effect. This interpretation

is supported by the fact that we find no significant interaction involving the

transmission rate, which is only a scaling parameter.
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Table 4: Effect of biological assumptions on the observed median doubling time on all the

networks

None of the interaction between more than two factors were significant.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.2108 0.0247 89.65 <0.001

replicate -0.0001 0.0001 -1.24 0.214

allocation sat 0.1809 0.0347 5.22 <0.001

allocation cst 0.3354 0.0347 9.68 <0.001

partitionning max -0.0000 0.0347 -0.00 1.00

partitionning rand 0.4732 0.0299 15.81 <0.001

N 3.7e-5 0.0000 -4.23 <0.001

β -112.67 3.4485 -32.67 <0.001

sat : max 0.1315 0.0490 2.68 0.0073

cst : max 0.2274 0.0490 4.64 <0.001

sat : rand -0.0664 0.0423 -1.57 0.1167

cst : rand -0.1027 0.0423 -2.43 0.015

sat : N 3.7e-05 1.2e-5 3.01 0.0026

cst : N 4.8e-5 1.2e-5 3.90 <0.001

max : N 0.0000 0.0000 0.00 1.00

rand : N -0.0001 1.1e-5 -9.87 <0.001

sat : β 1.6143 4.8769 0.33 0.741

cst : β 1.2468 4.8769 0.26 0.798

max : β 0.0000 4.8769 0.00 1.00

rand : β 1.5930 4.2129 0.38 0.705

N : β 0.0004 0.0012 0.33 0.744
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S2.5. Results for small-world (SW) networks

Table 5: Effect of network size on disease spread for three allocation models. For further

details, see the caption of figure S5.

n = 500 n = 1000 n = 2000 n = 4000

Prand Alin 68 (46-99) 129 (92-177) 211 (149-295) 274 (206-387)

Prand Asat 69 (47-100) 129 (94-177) 210 (150-294) 277 (207-386)

Prand Acst 68 (47-99) 131 (95-177) 214 (149-296) 281 (213-389)
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Figure S5: Doubling time for theoretical SW networks of different sizes. We weighted

theoretical small-world networks using a random partitioning (Prand) with a linear (Alin,

in red), saturating (Asat, in brown) or constant (Acst, in blue) allocation. Disease spread

is estimated with the median doubling time (td) computed over 100 runs of the simulation

per replicate network. The box plot shows the median values over 100 different networks,

the three quartiles and the outliers. Dashed lines are the output of a generalised linear

model testing the effect of network size on td (see the main text). Parameters are as in

Figure 2 of the main text
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