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H I G H L I G H T S
c Human sexual networks exhibit a heterogeneous structure.
c Expected network-based properties are at odds with epidemiological data for STI.
c Most network models typically assume a constant transmission risk per partnership.
c We develop a framework to weight sexual networks based on biological assumptions.
c Our weighting model re-conciliate network theory and epidemiological data for STI.
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a b s t r a c t

Human sexual networks exhibit a heterogeneous structure where few individuals have many partners

and many individuals have few partners. Network theory predicts that the spread of sexually

transmitted infections (STI) on such networks should exhibit striking properties (e.g. rapid spread).

However, these properties cannot be found in epidemiological data. Current network models typically

assume a constant STI transmission risk per partnership, which is unrealistic because it implies that

sexual activity is proportional to the number of partners and that individuals have the same activity

with each partner. We develop a framework that allows us to weight any sexual network based on

biological assumptions. Our results indicate that STI spreading on the resulting weighted networks do

not have heterogeneous-related properties, which is consistent with data and earlier studies.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Networks reflecting human sexual contacts over several years
in a population have been shown to exhibit a high variance in the
number of sexual partners per individual (Liljeros et al., 2001;
Hamilton et al., 2008). The exact nature of the distribution of
partners per individual is debated: some argue that it tends to
follow a power-law (PL; Liljeros et al., 2001; Schneeberger et al.,
2004; Hamilton et al., 2008), others argue that it tends to follow a
negative-binomial (NB; Handcock and Jones, 2004; Hamilton
et al., 2008). At any rate, both these distributions are the
appanage of highly heterogenous networks in which a few nodes
in a network (i.e. individuals) are highly connected (i.e. have
many partners), while the others nodes have few connect-
ions. Theory predicts that epidemics spreading on heterogeneous
ll rights reserved.
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networks (either PL or NB) should exhibit specific properties such
as a very low epidemic threshold, a rapid spread or in the case of
PL, a doubling time that decreases with population size (Newman,
2003; Keeling and Eames, 2005). There is an ongoing debate in the
literature concerning the relevance of these predictions for
biological systems (especially the absence of epidemic threshold;
May, 2006; Hamilton et al., 2008). For instance, specific epide-
miological properties of highly heterogeneous networks are not
observed generally in the data (Liljeros, 2004; Handcock and
Jones, 2006; Britton et al., 2007; Hamilton et al., 2008).

Most network-based epidemiological studies consider unweighted
networks. In the context of sexually transmitted infections (STI), it
means that the risk of infection is the same on all the edges (i.e. for all
the interactions) in the network (but see Eames et al., 2009). While
these assumptions may be justifiable for diseases such as flu or
tuberculosis that only require short-term interactions between hosts,
they are unrealistic for STI. Here, we develop a new framework to
add sex acts explicitly on sexual contact networks and show that
such a biologically relevant weighting has major epidemiological
consequences.
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Modelling the spread of STI on unweighted networks makes
two implicit assumptions. First, the total number of sex acts of an
individual per unit of time is assumed to be strictly proportional
to his/her number of sexual partners. Second, these sex acts are
assumed to be partitioned equally among all the partners. That
individuals with five sexual partners generally have five times
more sex acts per unit of time than individuals with one partner is
unrealistic and contradicts empirical data (Blower and Boe, 1993;
Nordvik and Liljeros, 2006; Britton et al., 2007).

Several studies point out the importance of weighted networks
in general (see e.g. Barrat et al., 2004b’s seminal work). Some
studies consider the spread of STIs on weighted networks of
infinite size. Newman (2002) already showed that assuming that
the transmission rate from one infected individual to another is
not constant but rather a function of node degree (i.e. number of
partners) can affect disease spread. More precisely, he shows that
for epidemics to spread rates of transmission need to fall off
slower than inversely with node degree (independently of the
network structure). Wang et al. (2007) approximate an infinite
size so-called ‘scale free’ network with mean field equations and
show that assuming that the transmission from one node to
another is proportional to the node degree affects epidemic
spreading. Joo and Lebowitz (2004) use a similar approach but
consider a more elaborate transmission function, which they
allow to saturate with increasing node degree. They find that
such a saturation further decreases the speed of disease spread.
Recently, Britton et al. (2011) study infinite size weighted sexual
contact networks, where weights are drawn in a distribution that
is allowed to depend on node degree. They show that if nodes
(vertices) with high degree tend to have a low weight, then it is
harder for an epidemics to take off. The two main limitations of
these models are that they consider infinite size networks and/or
that they do not consider any biological basis for the weighting
they use. Note also that in most of these formalisms, the
transmission rate from an individual A to an individual B differs
from the transmission rate from B to A if they have different
number of partners. In Britton et al. (2011) the assumption is
slightly different because a node can only be linked to a node that
has the same weight (which means the weighting constraints the
shape of the network).

More biologically oriented approaches develop individual-
based models to understand how sexual contact networks emerge
(see e.g. Althaus et al., 2010) or pair-approximation models but
without taking into account sex acts (Ferguson and Garnett,
2000). Among these studies, two consider the effect of sexual
activity on the spread of an STI more explicitly. Röttingen and
Garnett (2002) study the association between STI risk and
number of sex acts without a network-based approach by fitting
the relationship between the HIV transmission probability per-
partnership and the number of sex acts. However, their model
ignores epidemiological feedbacks, thus assuming for instance
that all sexual partners of one individual have the same prob-
ability to be infected (whereas this probability should at least
depend on the number of partner these partners have). More
recently, Britton et al. (2007) model the spread of an STI in a
heterogeneous population (in terms of number of sexual partners)
where individual of each class can have both ‘steady’ or ‘casual’
partnerships. The latter partnerships have higher transmission
probabilities than the former and the ratio of each type of
partnership is inferred from empirical data on the number of
sex acts per partner. They show that the basic reproduction
number (R0) can be over-estimated when different types of
partnerships are not considered.

For sexual contact networks, the weight of an edge between
two nodes corresponds to the number of sex acts that are actually
realised between two individuals per unit of time (here weeks).
In the following, we refer to these as realised sex acts (RSA). We
derive the number of RSA between any interacting pair (i.e. all the
weights of the network edges) from the network topology based
on two simple biological assumptions. First, each individual is
allocated a number of potential sex acts (PSA). PSA can be seen as
a quantification of the sexual activity of an individual. Second,
each individual partitions his/her PSA among his/her sexual
partners. The number of RSA between two individuals i and j

depends on the number of PSA that i attributed to j and vice versa
(see the Methods section).

We consider three models that describe the link between the
number of PSA allocated to an individual and the number of
partners of this individual: a linear relationship (the linear
allocation model Alin), a saturating relationship (the saturating
allocation model Asat), or a constant relationship where each
individual receive the same number of PSA (the constant alloca-
tion model, Acst). Further details about the model are available in
the Material and Methods section. Classical models implicitly
make the strong assumption that PSA are allocated linearly with
the number of sex partners, which is at odds with empirical data
(Blower and Boe, 1993; Nordvik and Liljeros, 2006).

In our study, PSA can then be partitioned by an individual
among his/her partners in three ways: (i) equally ðPequÞ, where all
the partners get the same share, (ii) randomly ðPrandÞ, where the
fraction each partner gets is random and (iii) to maximise his/her
number of RSA ðPmaxÞ. Classical models implicitly assume an equal
or a maximising partitioning, but the random partitioning argu-
ably better reflects current sexuality, where the majority does not
act in terms of maximising sex budgets (Foucault, 1976).

Our framework stands out compared to earlier studies because
we use a finite size network inferred from contact tracing data,
contrary to earlier models that are based on infinite ‘scale-free’
networks (Joo and Lebowitz, 2004; Wang et al., 2007) or that
use degree distributions without explicit network topology
(Röttingen and Garnett, 2002; Britton et al., 2007). This allows
us to model explicitly how individual sexual behaviours affect the
network weighted topology and, hence disease spread. Earlier
studies that account for sex acts either do not include epidemio-
logical feedbacks (Röttingen and Garnett, 2002) or only model a
heterogenous population with two types of partnerships and
therefore cannot keep track of individual behaviours (Britton
et al., 2007). Our framework also allows us to model sex acts
explicitly on any network type. Overall, we show that minimal
deviations from implicit assumptions regarding sexual behaviour
made in earlier models can strongly affect diseases spread.
2. The model

2.1. The network

A sexual network is a representation of individuals (the net-
work nodes) and sexual relations between these individuals (the
network edges). Each individual i has ki sexual partners. Sexual
networks evolve through time by creation and removal of sexual
relationships among partners. However, the networks we usually
have access to summarise sexual contacts over long periods of
time because, in most studies, participants are asked to list their
sexual partners over several years (see e.g. Potterat et al., 1985;
Liljeros, 2004). Our method of weighting allows the modelling of
epidemics occurring on a short time scale (days), even with a
contact network inferred over a longer time scale (years).

For simplicity, we focus on disease spread on static networks
of men having sex with men (MSM), even if our methods are also
applicable to dynamical and bipartite (heterosexual) networks.
Such networks can be described using an adjacency matrix ðAÞ,
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Fig. 1. Illustration of our weighting model. In this example, individuals i (A) and j

(B) are allocated a constant sex budget (set to b¼4 sex acts per week) that they

partition equally among their partners. The number of sex acts actually realised

(RSA) between individuals i and j is the minimum of the two contributions (C).
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the elements of which ðAði,jÞÞ are equal to 1 if there is a link
connecting node i to node j and 0 otherwise.

Except when stated otherwise, the results we present are
obtained on an empirical network of 381 nodes built from a
contact tracing study in Colorado Springs involving a cohort of
individuals infected with gonorrhoea (Potterat et al., 1985). The
average degree of the network (i.e. number of sexual partners) is 2.
As shown in the Supplementary Methods, the degree distribution
of this network is best described by a power law of coefficient
g¼ 1:98.

We also generated theoretical power-law (PL) and negative-
binomial (NB) networks of different sizes with the Barabasi–Albert
algorithm with a g coefficient of 3 (Barabasi and Albert, 1999) and the
so-called ‘configuration model’ (Catanzaro et al., 2005) respectively.
For both PL and NB, we set the average degree to 4 (see Supplemen-
tary Methods). This allowed us to check that our results were not due
to the specific topology of the empirical network.

2.2. Weighting the network

Each individual i is allocated a number of potential sex acts
(PSA) per unit of time (denoted bi). This individual then partitions
his/her PSA among his/her ki sexual partners. It is thus possible to
define the availability of an individual i for interacting with j,
which is the number of PSA allocated by i to j (denoted ½i-j�).

2.2.1. Allocation of sex acts

We consider three models as to how the number of PSA (bi) is
allocated to an individual i:
�
 The linear allocation model ðAlinÞ, which assumes that bi

is strictly proportional to ki, the number of partners.

�
 The saturating allocation model ðAsatÞ, which assumes that bi

is proportional to
ffiffiffiffi
ki

p
.

�
 The constant allocation model ðAcstÞ, which assumes that bi is
the same for any node of the network.

2.2.2. Partitioning of sex acts

PSA are then partitioned by an individual i among his/her
partners according to three models:
�
 The equal partitioning model ðPequÞ, where all the partners of
an individual i get an equal share ½i-j� ¼ bi=ki.

�
 The random partitioning model (Prand), where all the partners

of an individual i get a share ½i-j� ¼ bi rj=R, where rj is drawn
in a uniform distribution and R¼

Pki

j ¼ 1 rj.

�
 The maximisation partitioning model (Pmax), in which an

individual uses information about the topology to maximise
their number of realised sex acts by giving to his/her partners
in proportion to what theses partners are giving to him (see
the Supplementary Methods for further details).

STI models with an unweighted network implicitly assume a
linear allocation model with an equal or a maximising
partitioning.

2.2.3. Realised sex acts

The number of sex acts actually realised (RSA) between
individuals i and j (denoted Wði,jÞ) is then assumed to be

Wði,jÞ ¼minð½i-j�,½j-i�Þ ð1Þ

because an individual i cannot have more sex acts with a partner j

than the number of sex acts that j is willing to have with i and vice
versa. From this, we obviously have Wði,jÞ ¼Wðj,iÞ.
Our weighting framework (Fig. 1) thus allows us to transform
a classical adjacency matrix ðAÞ into a weighted adjacency matrix
(W), the elements of which are the realised number of sex acts (as
defined in Eq. (1)).
2.2.4. Loss of sex acts due to the weighting

Care is needed because, even though our definition on how sex
acts are realised is biologically sensible, it introduces a potential
confounding factor because the more ½i-j� and ½j-i� differ, the
more PSA will be lost. We quantify this loss of sex acts on the
whole network with a parameter d defined as

d¼
P

i

P
jWði,jÞP

i

P
js

nAði,jÞ ð2Þ

where the Wði,jÞ are the elements of the weighted adjacency
matrix, Aði,jÞ are the elements of the adjacency matrix and sn is
the average number of potential sex acts between two
individuals.

We want to compare the spread of a pathogen on different
weighted networks and this spread is obviously a function of the
total number of sex acts realised on the network. In order to
isolate the effect of the network itself, we define the weights on
the network such that the average number of sex acts realised per
individual per unit of time on a network is equal to the average
degree of this network ðsn ¼ k ¼ 4Þ. We hence calculate a corrected
weighted adjacency matrix ~W ¼W=d. Note that for the genuine
GonoCocci network, denoted the GC network throughout, kGC ¼ 2
so in order to get values comparable to the other networks we
corrected the W for GC by 2kGC . In summary, the total number of
realised sex acts is constant for any network structure, allocation
model and partitioning model.
2.3. The epidemiological model

Since our goal is to investigate the importance of weighting
the network, we deliberately consider a simple epidemiological SI
model, where hosts can be either susceptible or infected
(Anderson and May, 1991). When an infected individual has sex
with a susceptible one, the disease is assumed to be transmitted
at a constant rate per sex act. We further assume that there is no
recovery and that death does not occur over the duration of the
simulation.
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This simple model is a reasonably good approximation to the
transmission of HIV over short periods of time (Liljeros, 2004), as
there is no significant removal of individuals due to death on
timescales close to the average duration of an HIV infection if
untreated (� 10 year; Anderson and May, 1991). Furthermore,
transmission rate per sex acts was set to b¼ 0:01, which is
consistent with HIV data (Vittinghoff et al., 1999; Boily et al.,
2009). The speed of disease spread is estimated through the
median doubling time td. The doubling time is an appropriate
summary of disease dynamics for a pathogen such as HIV at the
beginning of an outbreak (May et al., 2001). Some results can be
inferred directly from the network topology but this is beyond the
scope of this study.

In the case of PL, the basic reproduction number, denoted R0,
increases with network size (Farkas et al., 2001). As R0 and
doubling time are negatively correlated in the early stages of an
epidemic (May et al., 2001), doubling time is expected to decrease
with population size (Newman, 2003; Keeling and Eames, 2005).

Further details are available in the Supplementary Methods of
the Electronic Supplementary Material (ESM).
3. Results

We show that using biological assumptions to weight sexual
contact networks strongly affects the epidemiology of STI. As the
exact structure of these networks is the subject of an intense
debate (Hamilton et al., 2008), we first present the results
obtained on an empirical network (Potterat et al., 1985). How-
ever, our results hold when we consider theoretical finite size
networks with PL and NB distributions.

3.1. Resulting realised number of sex acts

Our framework requires two biological assumptions to weight
the network. The first assumption has to do with the allocation of
the potential number of sex acts (one could think of this as the
‘libido’ of the individuals). The second has to do with the variance
in the number of sex acts individuals have with each of their
partners. For both these assumptions, existing data are very
limited. However, one can evaluate the relevance of these
assumptions by looking at the realised number of sex acts.

We find that for all allocations and partitioning, the total
number of RSA and the total number of partners (degree) are
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positively correlated, as shown in Fig. 2. While the assumptions
used in most models (Alin with either Pmax or Prand) yields a linear
relationship between RSA and degree, the constant case (Acst and
Prand) is characterised by a saturating slope for large number of
partners. The increasing but saturating relationship in realised sex
acts (RSA) as a function of degree observed in the case with
constant allocation of sex acts is apparently counterintuitive. This
paradox is explained by the fact that high degree nodes are less
likely to loose potential sex acts (PSA) than low degrees nodes:
even though the PSA are constant, a high-degree node is more
likely to find partners to satisfy all its PSA whereas a low-degree
node is less likely to find partners to use them. Note that the
correction of the weighting by delta to keep the average number
of RSA constant and equal to the average number of PSA is applied
with the same intensity to each node of the corrected network: it
is hence not changing the shape of the relationship between RSA
(prior or after correction) and degree.

Empirical studies based on wide surveys tend to find that
number of sex acts tend to increase with the number of partners,
but that this increase saturates and is clearly not strictly propor-
tional to the number of partners (Blower and Boe, 1993; Nordvik
and Liljeros, 2006; Britton et al., 2007). This suggests that
saturating or constant allocation models for PSA might be more
realistic than the linear allocation, which is often implicitly
assumed.

As explained in the Model section, any discrepancy in the total
number of sex acts is corrected for in the following analyses. More
precisely, we use d to normalise the edge weights and thus keep
the average number of RSA per individual constant for all the
networks that we consider. Therefore, any change we observe in
disease spread are only due to the weighted topology.

3.2. Disease spread on the empirical network

Fig. 3 shows the effect of biological assumptions on the
topology of the network and how this affects disease spread.
The ‘classical’ approach assumes the linear ðAlinÞ model for PSA
allocation with equal ðPequÞ or maximising ðPmaxÞ partitioning. As a
consequence, all the interactions have the same weight and the
number of RSA increases proportionally with the number of
sexual partners (Fig. 3A). Assuming that the partitioning of the
PSA among sexual partners is random ðPrandÞ generates variance in
the weights of the edges (Fig. 3B). If we further assume that all the
individuals are allocated the same number of potential sex acts
ðAcstÞ, we observe drastic changes. First, the variance in edge
weights increases even more. Second, there is a complete shift in
terms of sexual activities: nodes with few neighbours, whose
activity was negligible with the classical approach, become
important at the expenses of super-connected nodes (Fig. 3C).
Fig. 3D illustrates the consequences of these assumptions on the
spread of an STI (see the Methods for a description of the
epidemiological model used). Assuming a Prand partitioning model
instead of a Pequ model slows the spread of the disease by more
than 50% and assuming an Acst allocation model instead of an Alin

model slows it by an extra 50%. Note that the longer the
epidemics runs, the less realistic some of our model assumptions
become (e.g. in the case of HIV, infected individuals are going
to die).

To get a better understanding of these results, we analyse key
variables on the same empirical network (Table 1). One of these
variables is the median doubling time (td) of an STI. td estimates
the speed of spread of a disease and we define it as the time
required in stochastic simulations for the disease prevalence to go
from 1% to 2% of the host population. We find that the median
doubling time is significantly higher with a constant allocation
model or with a random partitioning, when compared to the
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Table 1
Effect of weighting the empirical network on disease spread. Each individual is

allocated a number of PSA (lines) which can be partitioned in three different ways

(columns). For each combination, the table shows the median doubling time (td, in

weeks) with first and third quartile and d, which is the ratio between the total

number of realised sex acts (RSA) and the total number of potential sex acts (PSA)

on the network. Edge weights are normalised by d so that all the td are calculated

on weighted networks with the same total number of RSA. We assume b¼ 0:01

and four RSA per week per individual on average. There were 1000 repetitions for

each random partitioning. Further details are available in the Material and

Methods and in the Supplementary Results.

Allocation Estimator Partitioning

Pequ Pmax Prand

Alin td 33 (19–57) 33 (19–57) 39 (22–79)

d 1.0 1.0 0.7470.01

Asat td 36 (23–61) 67 (37–130) 48 (28–92)

d 0.71 0.81 0.6470.01

Acst td 45 (27–76) 149 (72–404) 59 (34–109)

d 0.47 0.61 0.4470.01
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classical approach (Alin and Pequ). We also find an interaction
between Acst and Pmax. Results obtained on 100 theoretical PL
networks also show a significant effect of Asat (see Supplementary
Results).

As soon as we deviate from the classical approach (Alin with
Pequ or with Pmax), the number of RSA over the whole network
decreases. This is captured by d, which is the ratio between the
total number of RSA and the total number of PSA over the whole
network prior correction of the weighting. This decrease comes
from the fact that super-connected individuals cannot match the
availability of all their partners. Note that we use d to normalise
the edge weights and thus keep the average number of RSA per
individual constant for all the networks that we consider.

3.3. Results on theoretical networks and HIV data

For the sake of generality, we tested our results on theoretical
heterogeneous network of different sizes assuming two types of
partner distributions: power-law (PL) and negative-binomial
(NB). Further details about the theoretical networks are available
in the Supplementary Methods. In Fig. 4, we show the results for
100 PL and 100 NB networks (see Supplementary results for a
negative control using homogeneous small-world networks). In
all cases, we find that diseases spread faster on networks
weighted with the ‘classical’ Alin PSA allocation model than on
networks weighted using the Asat model, which themselves lead
to a faster spread than networks weighted using the Acst model.

One of the consequences of the weighting is that the doubling
times estimated at the beginning of an epidemic (Table 1) and the
number of sex acts per week needed to reproduce early HIV
prevalence observed throughout the world are better explained
by weighted than unweighted PL networks (both on empirical or
theoretical networks). The doubling times we obtain from the
simulated evolution of epidemic prevalence on realistically
weighted networks are in the same order of magnitude as that
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observed early in an HIV epidemic, i.e. approximately 1 year for
men having sex with men (May and Anderson, 1987; Anderson
and May, 1991). Note that the exact value of the doubling time is
scaled by the product of the transmission rate per sex act (here
set to b¼ 0:01; Vittinghoff et al., 1999; Boily et al., 2009) and the
average number of realised sex acts per week per individual (here
set to 4, see Supplementary Methods).

In the case of PL networks (Fig. 4A), we also observe that, with
the Alin PSA allocation model, disease doubling time decreases
significantly with network size (in red, slope¼�6:9e�4, p-value
o0:001), as expected for a network with a PL distribution (Farkas
et al., 2001). For Asat, however, the speed of disease spread is not
affected by network size (in brown, slope¼ 3:2e�5, p-value¼ 0:51).
Finally, for Acst, the spread is even slower on larger networks (in
blue, slope¼ 9:5e�4, p-valueo0:001). This result is interesting
because, in the case of HIV, the doubling time of the disease has
been shown to be constant whatever the geographic scale (city,
country or continent) considered for the sexual network (May and
Anderson, 1987, 1988; Anderson and May, 1991). The current
explanation for this is that some sexual contact networks that seem
to be PL are actually NB (Hamilton et al., 2008; Handcock and Jones,
2006). Our results suggest a new explanation, which is that even if
the network node degree distribution follows a power law, edge
weights can lead to the loss of decrease in doubling time with
network size. Put differently, the mismatch between epidemiologi-
cal data and the network structure could be due to the fact that
using an unweighted network implicitly implies making unrealistic
biological assumptions regarding the number of sex acts.

3.4. Effect of node removal on disease spread

Finally, we consider the effect on the median doubling time of
removing a node on the empirical network (Fig. 5A). Node
removal could be interpreted as any measure that blocks poten-
tial transmission. The difference between a prevention strategy
and a treatment strategy is that node removal is independent
from the host’s infectious status. In other words, the goal is to
modify the shape of the network in order to slow the speed of
spread of an STI that may emerge in the population. Note that
we are looking at doubling times so the higher the value, the
more slowly the disease spreads. With the Alin model, removing
individuals with the highest number of partners (i.e. a targeted
strategy) has the strongest effect on disease spread. This is
captured by the slope between the degree of the node removed
and the increase in doubling time: a zero slope means that there
is no effect of targeting individuals with an increasing degree.
Here, we find a strongly increasing slope. This can be explained
intuitively by the fact that super-connected individuals (or hubs)
are also super-spreaders of the disease. For the Acst model,
targeting hubs has less impact than in the Alin model (the slope
of the regression between the change in median doubling time
and the degree of the node removed drops from approximately
1/3 compared to the slope of the linear case). This suggests that
other criteria might be more appropriate than node degree to
detect key spreaders but none of the parameters we tested
(number of sex acts realised, average degree of the neighbouring
nodes, generalisation of this value to weighted networks; Eguiluz
and Klemm, 2002; Barrat et al., 2004a, 2004b) performed better
than the degree.

In a second procedure, we allow for multiple node removal
(Fig. 5B and C). In this case, we compare the efficiency of a
prevention policy aimed at individuals with many partners (in
green) to a non-specific policy (in black). Again our goal is to see
which modification of the network leads to a slower spread of a
future emerging STI. We find that several individuals need to be
removed for there to be a significant difference between these
policies. If the PSA allocation is constant, prevention policies have
less effect on the disease doubling time and more individuals
need to be removed for there to be a difference between specific
and non-specific targeting (see also Supplementary Results). This
corroborates the results obtained in Fig. 4A by showing that in
biologically realistic networks, aiming prevention policies at
super-connected individuals might not yield a decrease in the
spread of emerging STI as strong as one might expect. These
results hold for theoretical networks (see Supplementary Results).
4. Discussion

Over the last decade, a passionate debate has emerged because
sexual contact networks have been shown to have a highly
heterogeneous structure (Liljeros et al., 2001; Hamilton et al., 2008;
Schneeberger et al., 2004) but the spread of STI does not have the
properties one would expect to find given such network structures
(Hamilton et al., 2008; Handcock and Jones, 2006). Our results fit into
this debate because they show that epidemiological trends in the data
are consistent with the assumption that not all the edges of the
network have the same weight. In other words, even though sexual
networks do have a highly heterogeneous structure, they do not have
associated properties because they are weighted and this weighting is
not captured by studies that use contact-tracing or other methods to
infer the shape of the network.
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We developed a framework to weight sexual contact networks
using biological assumptions. This allows us to show that the under-
lying assumptions made when modelling disease spread on
unweighted networks lead to correlation patterns between number
of partners and number of sex acts that are at odds with empirical
data (Blower and Boe, 1993; Nordvik and Liljeros, 2006). We also
show that adopting a more realistic (weighted) network affects
epidemiological dynamics in a way that is consistent with epidemio-
logical data on HIV. Furthermore, these results hold for theoretical
power-law networks and negative-binomial networks.

Our goal in this study is not to yield the most realistic model
(we actually doubt that a decent level of realism can be achieved
without adding a very large number of assumptions). Rather, our
aim is to develop a general framework that is flexible enough to
be applied to different epidemiological and sociological scenarios,
while remaining biologically relevant. To the best of our knowl-
edge, our allocation-partitioning model is first to present a
biologically plausible relationship between total number of sex
acts and total number of partners derived from explanatory
behavioural hypotheses. In earlier studies (e.g., Newman, 2002;
Joo and Lebowitz, 2004), this relationship is imposed without any
mechanistic justification.

Interestingly the ratio of realised over potential number of sex
acts (d in Table 1) can yield insights into associated human
behaviours (allocation and partitioning). This suggests that
combining our model with epidemiological data could allow us
to investigate some sexual behaviours.

Optimal public health policies depend on the way diseases
spread (Anderson and May, 1991). Even if weighted networks lose
their heterogenous-related properties, removing the most con-
nected nodes still has the strongest effect on the STI spread.
However, if the prevention policy covers a too small fraction of
the population, targeting super-spreader might not be a signifi-
cantly better strategy than random targeting. This effect is
accentuated by using a more realistic allocation model for sex
acts. Of course, these results on the effect of public health should
be taken with care, for instance because the epidemiological
model we use is extremely simplified.

Other studies have addressed the problem of the discrepancy
between network theory and HIV epidemiological data (see e.g.
Röttingen and Garnett, 2002; Hamilton et al., 2008). In particular, a
widespread method is to model ‘concurrent partnerships’ by con-
sidering that not all the edges of the network are active at the same
time (Morris and Kretzschmar, 1997; Bauch and Rand, 2000; Eames
and Keeling, 2004). Such models have increased biological realism but
they require many additional assumptions that are difficult to test
empirically. Moreover, they too make strong assumptions concerning
the number of sex acts. In a future study, we will investigate the
consequence of adding dynamical partnerships to a weighted net-
work in order to disentangle the effect of the two on disease spread.
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This study can be extended in other ways. First, other network
topologies could be investigated (see also our Supplementary
Results). We could consider more complicated epidemiological
models and/or other STI. Also, it is very likely that people modify
their behaviour once they know that they are infected with an STI
(Funk et al., 2010). Finally, we focused on STI but our method can
be applied to any type of networks with time-consuming inter-
actions, e.g. in economics or in ecology (Newman, 2003).

Finally, this study calls for further studies on the link between the
number of partners and the number of sex acts. Such data can be
acquired without knowing the exact contact structure detail and it
could greatly help to check whether the allocation and partitioning
hypotheses of the model make sense. Furthermore, this study also
underlines the importance of deriving new estimators to predict the
speed of disease spread on weighted finite-size networks.
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Catanzaro, M., Boguñá, M., Pastor-Satorras, R., 2005. Generation of uncorrelated
random scale-free networks. Phys. Rev. E 71 (2), 027103, http://dx.doi.org/
10.1103/PhysRevE.71.027103.

Eames, K.T.D., Keeling, M.J., 2004. Monogamous networks and the spread of
sexually transmitted diseases. Math. Biosci. 189, 115–130, http://dx.doi.org/
10.1016/j.mbs.2004.02.003.

Eames, K.T.D., Read, J.M., Edmunds, W.J., 2009. Epidemic prediction and control in
weighted networks. Epidemics 1 (1), 70–76, http://dx.doi.org/10.1016/
j.epidem.2008.12.001.

Eguiluz, V.M., Klemm, K., 2002. Epidemic threshold in structured scale-free
networks. Phys. Rev. Lett. 89 (10), 108701, http://dx.doi.org/10.1103/
PhysRevLett.89.108701.

Farkas, I.J., Derenyi, I., Barabasi, A.L., Vicsek, T., 2001. Spectra of ‘real-world’
graphs: beyond the semicircle law. Phys. Rev. E 6402 (2), 026704, http://dx.doi.
org/10.1103/PhysRevE.64.026704.

Ferguson, N.M., Garnett, G.P., 2000. More realistic models of sexually transmitted
disease transmission dynamics: sexual partnership networks, pair models, and
moment closure. Sex. Transm. Dis. 27 (10), 600–609.

Foucault, M., 1976. Histoire de la sexualité. Gallimard, Paris, France.
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