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Abstract

The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to
ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at
odds with the data for many networks (e.g. sexual contact networks) and to have a critical influence on epidemics’ behavior.
One of the reasons why models usually ignore heterogeneity in transmission is that we currently lack tools to analyze
weighted networks, such that most studies rely on numerical simulations. Here, we present a novel framework to estimate
key epidemiological variables, such as the rate of early epidemic expansion (r0) and the basic reproductive ratio (R0), from
joint probability distributions of number of partners (contacts) and number of interaction events through which contacts
are weighted. These distributions are much easier to infer than the exact shape of the network, which makes the approach
widely applicable. The framework also allows for a derivation of the full time course of epidemic prevalence and contact
behaviour, which we validate with numerical simulations on networks. Overall, incorporating more realistic contact
networks into epidemiological models can improve our understanding of the emergence and spread of infectious diseases.

Citation: Kamp C, Moslonka-Lefebvre M, Alizon S (2013) Epidemic Spread on Weighted Networks. PLoS Comput Biol 9(12): e1003352. doi:10.1371/
journal.pcbi.1003352

Editor: Christophe Fraser, Imperial College London, United Kingdom

Received March 26, 2013; Accepted October 5, 2013; Published December 12, 2013

Copyright: ! 2013 Kamp et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MML is supported by the French Ministries in charge of Agriculture and Environment. SA is funded by an ATIP-Avenir grant from CNRS and INSERM and
by the IRD and the CNRS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: christel.kamp@pei.de

Introduction

Contact structure between hosts is known to have a key
influence on disease spread [1]. A striking result is for instance that
the more heterogeneous the contact network is, i.e. the higher the
variance in the number of contacts per individual, the more rapid
the initial disease spread.

One way to capture contact structure is to use a network [2].
Such contact networks are typically described by a square binary
adjacency matrix, where each term on the ith line and jth column
can take the value 0 or 1 to indicate respectively the absence or the
presence of a contact between individuals i and j. Contact
networks are widely used because they possess several convenient
properties, one of which being that the dominant eigenvalue of the
adjacency matrix is an indicator of the initial propagation speed of
an infectious disease spreading on this network [3,4].

The main limitation of contact networks is that their exact shape
is often difficult to infer. This is why there is a continuous effort to
predict disease spread from network summary statistics that are
easier to estimate, such as the distribution of the number of
contacts (degrees). For instance, the number of secondary
infections generated by a typical infected host in a fully susceptible
population, i.e. the basic reproductive number R0 [1], scales with

the ratio of the second moment Sk2T and first moment (mean)
SkT of the distribution in the number of contacts k. This result

holds both for static networks (denoted Rstat
0 ) [5] as well as for fully

mixed, dynamic networks (denoted Rmix
0 ) [6,7] with
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where s2
k~Sk2T{SkT2 is the variance of the distribution of the

number of contacts. The static case corresponds to networks in
which the identity of contacts is fixed (as approximatively seen in
sexual contact networks) and the fully mixed dynamic case
corresponds to a situation in which individuals update their
contacts dynamically in a fully mixed fashion within the
population (as approximatively seen in airborne infections).

Rstat
0 and Rmix

0 represent the lower and upper bounds of the

basic reproductive ratio [8] for SIR epidemics on random
networks if individuals transmit the infection at a rate b and
recover from the infection at a rate c. On both static and dynamic
heterogeneous networks with a large or even diverging variance in
the distribution of the number of contacts, epidemics die out only
for very small or even vanishing transmission rates b.

One of the typical key assumptions epidemiological models on
networks make to obtain such elegant expressions for R0 is that the
transmission rate is the same between all pairs of individuals. This
is materialized by the fact that all the edges of the contact matrix
have a weight of 0 or 1. This is known to be a simplifying
assumption [9]. A well-studied example related to infectious
diseases is that of sexual contact networks, where the number of
sex acts per unit of time is not constant in all partnerships [10–12].
More generally, the number of interaction events (which
correspond to potential transmission events) may vary among
contact pairs and is likely to decrease with the number of contacts
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an individual has (see also Figure S3). Simplifying the reality is
commendable but the problem is that tampering with the
weighting of the network has been shown to lead to the loss of
important epidemiological properties of heterogeneous unweight-
ed networks, such as the low value of the epidemiological threshold
or the negative correlation between the epidemiological threshold
value and network size [13]. To summarize, although contact
networks appear to be ‘scale free’ in structure, they might not
exhibit the properties one might expect from this structure.

An increasing number of studies in epidemiology point to the
importance of considering weighted networks. Some examples
include the spread of sexually-transmitted infections [13], disease
transmission in sheep flocks [14], respiratory diseases of humans
[15] or general infectious diseases of human spreading on a social
contact network [16] or on airline connection networks [17].
Several more conceptual studies have also been published in the
theoretical physics literature (e.g. [2,18–20]). Most of these studies
have in common that they use weighted networks and resort to
(heavy) numerical simulations. Indeed, contrary to unweighted
networks, we lack analytical frameworks to analyze epidemic
spread on weighted networks.

Here, we present an original framework, which builds on
configuration type network epidemic approaches [21,22] that
offers an alternative to simulating epidemics on full networks. It
allows to model the dynamics of a disease spreading on a weighted
network and to estimate key epidemiological variables from the
network’s properties. The framework provides us with explicit
expressions for the rate of early epidemic expansion (r0) and the
basic reproductive ratio (R0) of the infection without requiring
strong simplifying assumptions regarding epidemiological process-
es or the distribution of weights on the contact network. It also
allows for a derivation of the full time course of epidemic
prevalence and contact behaviour of susceptible, infected and
recovered individuals (in terms of the probability generating
functions – PGFs – of the degree distributions). As sketched in
Fig. 1, the parametrisation is done in a general fashion using the

joint probability distribution Pkl of an individual to have k contacts
among which (s)he randomly distributes l interaction events. We
validate our analytical results using numerical simulations on
networks.

Importantly, since this framework relies on summary statistics of
the network and does not require knowledge of the exact shape of
the network, it can be parametrized using large scale survey data.
The network information we lose by using these summary statistics
requires that we make the assumption that there is no assortativity
between individuals in our framework. However, we show that
even with these assumption we can approximate epidemic
dynamics better than with non weighted networks.

Materials and Methods

The configuration model
Individuals have k contacts and l interaction events per time

interval, which are distributed among their k contacts (l is
sometimes also referred to as the strength of the node [9]).

The model is broadly applicable as it can be parameterised
through any joint probability distribution of the number of
partners (k) and number of interaction events (l). Such a joint
probability distribution Pkl can be written as the product
Pkl~PkPlDk, PlDk being the probability distribution of the number
of interaction events per time l given that the individual has k
contacts. If PlDk~dlk, where dlk is 1 if l = k and 0 otherwise, we are
then back to a ‘classical’ network case, with an exact linear
dependency between the number of contacts and the number of
interaction events (for a detailed discussion, see Text S1, Section
D, The recovery of the classical equations in the linear case). Our
framework can capture more general situations by explicitly
choosing PlDk.

Our analytical approximation assumes that an individual
distributes his/her l interaction events multinomially among his/
her k contacts, which are static and are randomly assigned as in
configuration models [21,22]. This individual is infected at a rate
proportional to his/her average number of interaction events with

Figure 1. Weighting between contacts. Both the number of
contacts that an individual maintains and the weight that (s)he assigns
to each contact are relevant for the spread of an infectious agent. Here,
each individual has l interaction events that (s)he can distribute among
his/her k contacts. On the scale of the transmission network, these are
modelled by the joint probability distribution Pkl to find an individual
with k contacts and l interaction events per time interval.
doi:10.1371/journal.pcbi.1003352.g001

Author Summary

Understanding how infectious diseases spread has public
health and ecological implications. The contact structure
between hosts strongly affects this spread. However, most
studies assume that all types of contacts are identical,
when in reality some individuals interact more strongly
than others. This is particularly striking for sexual-contact
networks, where the number of sex acts is not identical for
all partnerships. This heterogeneity in activity can either
speed up or slow down epidemic spread depending on
how strongly the individuals’ number of contacts coincides
with their activity. There are two limitations to current
frameworks that can explain the lack of studies on
weighted networks. First, analytical results are difficult to
obtain, which requires numerical simulations. Second,
inferring weighted networks from survey data is extremely
difficult. Here, we present a novel framework that allows to
alleviate these two limitations. Building on configuration
type network epidemic approaches, we manage to
capture disease spread on weighted networks from the
distribution of the number of contacts and distribution of
the number of interaction events (e.g. sex acts). This allows
us to derive analytical estimates for the epidemic threshold
and the rate of spread of the disease. It also allows us to
readily incorporate survey data, as illustrated in this study
with data from the National Survey of Sexual Attitudes and
Lifestyles (NATSAL) carried out in the UK.

Epidemics on Weighted Networks
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i infected contacts among his/her total k contacts (so 0ƒiƒk).
This averaging implies the choice of a time scale for the number of
interaction events such that SlTwSkT (the network shape is
assumed to be constant over the time period considered so the
number of contacts is not affected by the time scale). The
analytical approach only relies on the nodes’ statistics and does not
consider the constraints for half-contacts to match half-contacts
with similar weight, whereas in reality, the weight on a link
between two nodes should be the same for the two nodes. This
could lead to an unrealistic network segregation for some artificial
networks where SlTwSkT. This network segregation can affect
epidemic dynamics in these networks in a way that is not seen in
the analytical approach per se but can be considered through
corrections in the analytical approach as we discuss later on.

The epidemiological model
A susceptible individual becomes infected at a rate proportional

to the number of interaction events per time interval (l), the
transmission probability per interaction event of the pathogen (b)
and the probability for each of his/her contacts to points to an
infected individual (pSI ). The population dynamics of susceptible,
infected and recovered individuals with k contacts and l interaction
events per time interval (denoted Skl , Ikl and Rkl respectively) are
thus captured by the following set of differential equations:

_SSkl~{bpSI lSkl ð2aÞ

_IIkl~bpSI lSkl{cIkl ð2bÞ

_RRkl~cIkl , ð3cÞ

where c is the rate at which hosts recover and become immune to
subsequent infection (see Table 1). This setting can capture lifelong
infections if c = 0.

The dynamics of the total number of susceptible, infected and
recovered individuals can be obtained by summing over k and l in
equation system 2. This leads to:

_SS~{bpSISlTSS ð3aÞ

_II~bpSISlTSS{cI ð3bÞ

_RR~cI : ð3cÞ

where SlTS~
P

k,l lSkl=S is the average number of interaction

events per time a susceptible individual has.
To close the equation system (2)–(3), we need expressions for the

temporal dynamics of the pAB, i.e. the probabilities for a status A
individual’s contact to be with an individual in state B. These can
be derived through a careful assessment of the links/contacts
among susceptible and infected individuals over the course of an
epidemic. This means following the dynamics of the joint
probability distribution to find k contacts and l interaction events
per time among susceptible individuals PSkl~Skl=S through its
PGF, denoted GS(x,y,t). The temporal dynamics of GS(x,y,t) can
be calculated by observing that the dynamics of the corresponding
joint probability distribution of contacts and interaction events
of susceptible individuals are governed by the equation

_PPSkl~
_SSkl

S
{

_SS

S
PSkl . Hence, we close equation system (2)–(3) with

the following equations:

_ppSI~pSI bpSS
SklTS

SkTS

{b(1{pSIzpSS)
SlTS

SkTS

{c

! "
ð4aÞ

_ppSS~{bpSI pSS
SklTS{2SlTS

SkTS

ð4bÞ

_GGS(x,y,t)~bpSI (SlTSGS(x,y,t){yG(0,1)
S (x,y,t)), ð4cÞ

where G(0,1)
S (x,y,t) is the partial derivative of GS(x,y,t) with

respect to y. Note that SlTS~G(0,1)
S (1,1,t) and SkTS~

G(1,0)
S (1,1,t). For furthers details about the terms in this equation

system, see Table 1.
The set of differential equations describing the epidemic process

is derived by careful bookkeeping of the links along which an
infectious agent spreads (a detailed derivation is provided in Text
S1, Section A, Equations for the epidemic model on weighted networks).

Analytical results and their validation
Distributions used. To validate the analytical approach, we

generated four types of networks corresponding to the combina-
tions of homogeneous and heterogeneous behaviour in the
number of contacts k and the number of interaction events l as
well as the corresponding networks with a linear dependency
between k and l. We studied the spread of an infectious agent on
these artificial networks using the analytical approach by plugging
the corresponding joint probability generating functions into
equations (3) and (4).

More precisely, we consider combinations of Poisson and power
law distributions for the number of contacts k and interaction
events per time l. As we neglect isolated hosts, we use the Poisson

distribution Pn~
1{dn0

1{e{SnT
SnTn

n!
e{SnT with support for nw0 and

probability generating function g(x)~
eSnT(x{1){e{SnT

1{e{SnT and

power law distributions with exponent l and cut-off k,

Pn~
n{le{n

k

Lil e{1
k

# $ and g(x)~
Lil xe{1

k

# $

Lil e{1
k

# $ (normalisation through

the Polylogarithm Lil) for homogeneous and heterogeneous
behaviour, respectively. If the joint probability distribution Pkl is
given by the product Pkl~PkPl of independent distributions with
PGFs g1(x) and g2(y), their joint PGF G(x,y) is also given by the
product G(x,y)~g1(x)g2(y). In the linear case with Pkl~Pkdkl ,
the PGF G(x,y) is given by G(x,y)~g1(xy).

Generating networks from PGF. Networks were generated
by assigning each host a number k of ‘half-contacts’ (stubs) and l
interaction events per time interval drawn from the distribution
Pkl . Each host then shared his/her interaction events equi-
probably at random (i.e. multinomially) among his/her k contacts.
Pkl was chosen to satisfy SlT~2SkT corresponding to a timescale
in which a host has on average 2 interaction events per contact.

The matching of half-contacts (stubs) was done at random but
by respecting their assigned number of interaction events per
contact. The problem is that not all probability distribution Pkl

can be realised topologically within a network. Indeed, weighting
of interactions between contacts can impose strong constraints on

Epidemics on Weighted Networks

PLOS Computational Biology | www.ploscompbiol.org 3 December 2013 | Volume 9 | Issue 12 | e1003352



network topology [23]. The fact that contacts can only occur
between stubs with the same weight can lead to network
segregation and assortative effects that are not seen in the
analytical approach per se due to its node-centric view (see Text S1,
Section E, Network segregation and the limiting case Pkl~PkdSlTl ). It is
even possible to devise joint probability distributions Pkl that
cannot be represented through a network topology (although this
is not a problem for Pkl empirically derived from realised
networks). In simulated networks, this necessity for exact matching
segregates the network into subnetworks, which can show
assortativity either with respect to the degree of connected nodes
or with respect to their edge weights.

Correcting for assortativity. If the number of interaction
events per time and per contact is large (i.e. if SlT=SkT&1), hosts
nearly equi-distribute their interaction events among all their
contacts due to convergence under the law of large numbers.
Decreasing SlT yields a more realistic network, as this introduces
some variability in the number of interaction events among a
host’s contacts, which offers more flexibility in the assignment of
interaction events on short time scales and reduces assortative
effects.

Weight assortativity arises in networks that have a (nearly) constant
number of contacts k per individual and where the number of
interaction events l is distributed in a heterogeneous way, thus
leading to an early expansion among the most highly active
individuals. This can accelerate the initial expansion of an
epidemic but, at the same time, it also constrains disease spread
compared to what one could expect from the analytical approach.
Alternatively, the network can also segregate with respect to the

number of contacts an individual holds (i.e. contact or degree
assortativity). An extreme case can be observed when a (nearly)
constant number of interaction events has to be distributed among
a heterogeneous number of contacts. This leads to a (near)
isolation of individuals with single contacts from the epidemic
process (see Text S1, Section E, Network segregation and the limiting case
Pkl~PkdSlTl ).

We can introduce some tolerance in ‘negotiating’ the number of
interaction events per contact. Another way to deal with weight
and degree correlations between neighbouring individuals is to
drop the assumption that weights are multinomially distributed
among an individual’s contact. Indeed, heterogeneous weight
distributions among an individual’s contacts can reduce correla-
tions among neighbouring individuals’ degrees and weights [23].
However, this cannot be done without changing Pkl to an

empirical distribution !PPkl , while at the same time deviations might
arise from the analytical approach as the assumption of
multinomial distribution of weights is violated.

Simulations on weighted networks
Networks for simulation are obtained by first generating 10,000

nodes with k half-contacts (stubs) and l interaction events as drawn
from the probability distribution Pkl . The l interaction events a
node has are then distributed multinomially among its k stubs.
Stubs are randomly matched together, with matches being
rejected if the weights of the stubs differ by more than one
interaction event. In addition matches are rejected if they differ by
more than 10% of the smaller weight involved to avoid biases in

Table 1. Notations used in the study.

_ff (x,t)~
L
Lt

f (x,t)
partial derivative of function f with respect to t

f (a,b)(x,y,t)~
La

Lxa

Lb

Lyb
f (x,y,t)

partial derivative of function f a times with respect to x and b times with respect to y

Akl number of individuals in group A with k contacts and l (potential) transmission events (per time interval)

A~
X

k,l
Akl number of individuals in group A

Nkl~
X

A
Akl number of individuals with k contacts and l transmission events (per time interval)

N~
X

k,l
Nkl total number of individuals

PAkl~
Akl

A

probability for an individual in group A to have k contacts and l transmission events per time interval

GA(x,y,t)~
X

k,l
PAkl (t)x

kyl probability generating function (PGF) of PAkl (t)

SkTA~G(1,0)
A (1,1,t) average number of contacts of A individuals

SlTA~G(0,1)
A (1,1,t) average number of transmission events per time interval of A individuals

SklTA~G(1,1)
A (1,1,t) average number of contacts times transmission events per time interval of A individuals

Pkl~
Nkl

N

probability for an individual to have k contacts and l (potential) transmission events per time interval

G(x,y,t)~
X

k,l
Pkl (t)x

kyl~
X

A

A

N
GA(x,y,t)

probability generating function (PGF) of Pkl (t)

SkT~G(1,0)(1,1,t) average number of contacts of individuals

MA~
X

k,l
kAkl~AG(1,0)

A (1,1,t) number of links coming from A individuals

M~
X

A
MA number of links

MAB number of links coming from A individuals and pointing to B individuals

pAB~
MAB

MA

probability for a link starting from an A individual to point to an B individual

A,B correspond to epidemic stages, i.e. S, I, R for susceptible, infected, recovered.
doi:10.1371/journal.pcbi.1003352.t001
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nodes with few links. If stubs with non-identical weights are
matched, the contact is assigned the mean weight randomly
rounded to the next integer. This results in the empirical

distribution !PPkl as mentioned in the previous subsection.
We use the Gillespie direct algorithm [24] to run stochastic SIR

epidemics on continuous time. For each susceptible node i,

transmission occurs at rate
X

j[I

bWj,i, where b is the probability of

transmission per sex act, W is the weighted adjacency matrix
listing the number of interaction events per time unit between all
pairs of nodes, and I is the set of infected nodes connected to node
i. Infected nodes recover at rate c. For each case analyzed, 20
nodes were initially infected uniformly at random in a population
of 10,000 and 100 replicate simulations were carried out over each
of 20 replicate networks.

Derivation of r0 and R0

The derivation of the early exponential growth rate r0 is based
on the observation that the rate of epidemic expansion as
described by equations (3a–3c) is proportional to the number of
links/contacts between susceptible and infected individuals MSI ,

i.e. pSI SSlTS~
MSI

MS
SSlTS~MSI

SlTS

SkTS

, with MS~SG(1,0)
S

(1,1,t)~SSkTS being the number of contacts of susceptible
individuals.

As there is no explicit expression for MSI we have to rely on
approximate equations that are valid in the early stages of an
epidemic. In the mean field approximation, MSI is approximated
by the number of infected individuals (I) and the average number
of contacts per individual found originally in the total population

(SkT~G(1,0)(1,1,0)). As soon as the epidemic is set, i.e. once we
are beyond the mean field approximation relying on a randomly
picked node, MSI is given by the product of I and a slightly more
sophisticated estimate of the number of contacts of infected hosts
than in the mean field approximation. More precisely, each
infected node contributes to MSI by the average excess degree of a
recently infected node chosen proportional to its number of

interaction events
G(1,1)(1,1,t)

G(0,1)(1,1,t)
{1~

SklT
SkT

{1 (for details, see

Text S1, Section A, Equations for the epidemic model on weighted
networks). This means that the contact the infection has spread from
is discounted and that all ‘new’ contacts are assumed to still be
susceptible in the early phase of an epidemic. In order to correctly
estimate MSI in the full chain of early infections, it is necessary to
discount not only the contact from which an individual got
infected but also the contact along which the epidemic

spreads further. This results in MSI&I
G(1,1)(1,1,t)

G(0,1)(1,1,t)
{2

! "
~

I
SklT
SkT

{2

! "
.

Altogether we have,

_II~bpSISlTSS{cI

~bMSI
SlTS

SkTS

{cI

We also have MSI
SlTS

SkTS

&MSI
SlT
SkT

where the approximation

holds in the early phase of the epidemic.

If we assume that MSI&ISkT, then

_II~(bSlT{c)I : ð5Þ

If we assume that MSI&I SklT
SkT {2
# $

, then

_II~
SklT{2SlT

SkT

! "
b{c

! "
I : ð6Þ

The exponential growth rate of the infected population in
equation (6) corresponds to r0. Approximation (5) corresponds to
a ‘mean field approximation’ representing the neighbourhood of a
randomly picked node, i.e. not a node picked according to its
number of interaction events per time interval. Approximation (6)
considers that an infected individual has been picked with a
probability proportionally to its number of interaction events per
time interval. The doubling time tD can be derived from the early
exponential growth rate r0 as tD~ln(2)=r0.

The basic reproductive ratio R0 is the average number of
secondary infections that a typical infected host produces in a fully
susceptible population. As for SIR models on classical random
networks, it is derived by first evaluating the distribution of excess
contacts of a typically infected host, i.e. the probability for a node
chosen according to its number of interaction events per time (l) to

have k excess contacts. This probability is Qkl~
lP(kz1)l

G(0,1)(1,1)
. R0 is

calculated in Text S1 (Section C, The basic reproductive ratio R0) as
the number of infections that spread along these excess contacts
before recovery of the typically infected host.

Results

Validation of the analytical model with simulations on
networks

In order to test our analytical model, we consider epidemiolog-
ical dynamics taking place on artificial networks on which we
release the constraints found in ‘classical’/unweighted networks by
assuming that the number of interaction events l an individual has
does not necessarily increase linearly with his/her number of
partners k. To create these networks, we used combinations of
Poisson and power law distributions for the number of contacts k
and interaction events per time l. This allowed us to introduce
arbitrary combinations of homogeneous or heterogeneous behav-
iour in the way contacts are made and in the number of
interaction events established, that may be either independent or
dependent (as in the linear case).

To validate the model, we compared the epidemic prevalence (I)
from repeated simulation runs with the results derived from the
analytical approach using the probability generating functions

corresponding to Pkl and !PPkl , G(x,y) and !GG(x,y). (Note that

Pkl(0)~PSkl(0), !PPkl(0)~!PPSkl(0), G(x,y,0)~GS(x,y,0) and
!GG(x,y,0)~!GGS(x,y,0).) The epidemiological dynamics are summa-
rised in Fig. 2. In addition of the analytical approach for Pkl

(G(x,y)), !PPkl (!GG(x,y)), we also show an approximation (applied to
Pkl ), in which we exclude individuals with one contact. The latter
is relevant for networks with heterogeneous number of contacts
and (nearly) constant number of interaction events per individual
(contact or degree assortativity). Quantitative measures to assess
the level of discrepancy between simulations and approximations
are provided in Text S1 (Section F, Agreement between approximations
and simulations) and Table S2. The derivation of analytical
expressions for the error (e.g. a 95% confidence interval) is likely

Epidemics on Weighted Networks
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to be an extremely difficult task as these expressions should consider
the complex implications on epidemic dynamics that are caused by
deviations in the network topology from those of random networks.
The simplest way might be to use numerical simulations to estimate
the magnitude of the error for given networks.

Overall, the analytical approach matches the simulation results
well if the constraints imposed by Pkl on the specific networks
topology are properly taken into account. The assortativity
correction (in orange) is most relevant for a heterogeneous
distribution of contacts (k follows a power law) and a homogeneous

Figure 2. Dynamics of the number of infected hosts (I) during epidemic spreading on different types of networks. The distributions in
the number of contacts (k) and interaction events per time (l) are either homogeneous (Poisson) or heterogeneous (power law). For the number of
interaction events, we also show the linear case in which l is strictly proportional to the number of contacts k, i.e. Pl~dkl . k and l are drawn from joint
distributions Pkl with SlT~2SkT (except for the analytical Pkl model’s linear case where l~k being compensated by a double transmission rate). The
figures show the epidemic prevalence I as the outcome of the simulation runs (grey, dotted lines), of the the numerical solution of the analytical
model with Pkl (red, solid line) and !PPkl (red, dashed line). In addition, we show the epidemic prevalence when excluding individuals with only one
contact (k~1) which is relevant for epidemics on networks with heterogeneous numbers of contacts including many individuals with k~1 in
combination with a (nearly) constant number of interaction events, as realised through a Poisson distribution (orange line, cf. specifically power law,
Poisson). Parameters chosen correspond to SkT~4 (Poisson case: SkT~4, SlT~8, power law case: lk~1:4, ll~0:89, kk~kl~22). Epidemiological
parameters are b = 0.01 (0.02 for the analytical Pkl model’s linear case), c = 0.004 in arbitrary units and I(0) = 20. The insets show the same data for the
early epidemic expansion in logarithmic scale showing early exponential growth according to I(0)er0t (black line) with r0 from Table 2.
doi:10.1371/journal.pcbi.1003352.g002
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distribution of interaction events (l is Poisson distributed). This is
because the strongest constraints on network topology are
expected to occur with these distributions (Fig. 2, top panel, right
side). On the contrary, for more homogeneous networks (Fig. 2,
left panel), the assortativity correction is less needed. In the linear
case, the correction is not relevant (Fig. 2, bottom panel).

A particularly interesting observation is that epidemics spread
slower on networks with heterogeneous contacts if the network is
weighted than if the number of interaction events scales linearly
with the number of contacts for each individual (i.e. ‘classical’
linear networks). This is particularly true in networks where the
average weight per contact is inversely proportional to the number
of contacts an individual has. In our simulations, this effect is the
clearest when Pk follows a power law distribution and Pl a Poisson
distribution (Fig. 2 top panel, right side).

Capturing epidemic characteristics (expressions for r0

and R0)
There are different ways to assess the initial propagation of an

infectious agent in an otherwise fully susceptible population. One
possibility is to estimate the initial exponential growth rate in the
number of infected individuals (r0). Another possibility consists in
estimating the number of secondary cases created by a newly
infected host in a fully susceptible population, which is classically
referred to as the basic reproductive ratio R0 [1].

Subtle effects arise depending on whether we choose the
neighbourhood of a random individual as a reference or the
neighbourhood of a ‘typically’ infected individual. The first case
corresponds to what is usually referred to as a ‘mean field
approximation’ and captures well the very first infection events.
The second case (using a ‘typical’ infected individual) is more
appropriate to capture the next stages of early epidemic expansion
because it accounts for the fact that spatial structure has been
sensed or set by the epidemic process. We thus use it for the
derivation of R0.

The expressions for r0 and R0 for the SIR model are shown in
Table 2 and are derived in details in the Materials and Methods
and in Text S1, respectively. Note that these do not involve any
approximation beyond those implied in the model’s assumptions,
i.e. they are exact within the model framework. The derivation for
R0 when cw0 is the only case that requires some further
approximations to obtain an explicit formula (see Text S1, Section
C, The basic reproductive ratio R0).

In the expression for r0 and R0, all the occurrences of the
transmission probability (b) are weighted by the number of
interaction events per contact. This makes sense because this
corresponds to a transmission rate. Note that there is a slight
difference between r0 and R0 because in the former we have the

ratio of the means (SlT=SkT), whereas in the latter we have mean
of the ratios (Sl=kT). This is due to the fact that the averaging is
done at a different step in the calculations.

More interestingly, the expressions for r0 and R0 both scale with
the second moment SklT of the joint probability distribution Pkl .
This implies that the number of contacts (k) and the interaction
events (l) an individual maintains equally affect epidemic spread.
At the same time the correlation between these quantities is
relevant to model rapid epidemic spread: for epidemic control,
targeting individuals with most contacts or interaction events can
prove to be much less efficient than targeting those who maximise
both. The formulae in Table 2 are generalisations of formula 1b,
which corresponds to the linear case where the number of
interaction events scales with the number of contacts a person

maintains, i.e. SklT*Sk2T. Note that earlier approaches on
weighted networks correspond to the fully mixed situation in
formula 1 in which k is interpreted as the number of interaction
events [6].

Figure 2 shows epidemic expansion in different types of
simulated networks (grey, dotted lines) in comparison with
analytical approximations (red and orange lines). The insets in
logarithmic scale show that the exponential growth rate

r0~
SklT
SlT

{2

! "
SlT
SkT

b{c calculated for the early epidemic

expansion approximates well the simulation and analytical results.
The early exponential growth rate r0 can slightly underestimate
the dynamics if the contact network is homogeneous (Pk is Poisson
distributed), while the distribution of interaction events is
heterogeneous (Pl follows a power law). This underestimation is
due to the fact that weight assortativity generates a subnetwork of
individuals with many interaction events, which speeds up
epidemic expansion in its early phase (Fig. 2, middle panel, left
side).

Application of the model to epidemiological data
The knowledge of transmission networks along which an

infectious agent can spread within a host population is of great
importance to public health. These networks might be hard to
assess for air-borne infections because they are very dynamic
[25,26] but easier to infer for sexually transmitted infections (STI)
because they are more static. Such sexual contact networks have
been surveyed in many studies covering homosexual as well as
heterosexual populations and different societal contexts [27–29] to
understand and prevent the spread of STI. The National Survey of
Sexual Attitudes and Lifestyles (NATSAL [28]) provides detailed
data on the situation in the United Kingdom, including
distributions in the number of sexual partners (k) and sex acts
(interaction events, l) a person has within certain time frames.

Table 2. r0 vs. R0.

Early epidemic growth rate r0 Basic reproductive ratio R0

Epidemic expansion from randomly picked index
case, (mean field approximation) MSI&ISkT

_II&(bSlT{c)I

rMF
0 ~bSlT{c

RMF
0 ~

bSlT
c

Early epidemic expansion, structure set by

epidemic, MSI&I
SklT
SlT

{2

! " _II&
SklT
SlT

{2

! "
SlT
SkT

b{c

! "
I

r0~
SklT
SlT

{2

! "
SlT
SkT

b{c

R0&
S l

kTb

S l
kTbzc

SklT
SlT

{1

! "

b is the transmission probability, c the recovery rate, SlT the average number of interaction events an individual has, SkT the average number of contacts per individual,
SklT is the second moment of the joint probability distribution Pkl and Sl=kT is the average number of interaction events per contact. Note that the equation for R0 is
exact for c~0.
doi:10.1371/journal.pcbi.1003352.t002
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As shown in Fig. 3A, both the number of partners (contacts, k)
and sex acts (interaction events, l) an individual has are
heterogeneously distributed. However, their joint distribution Pkl

does not show a linear behaviour, implying that the number of sex
acts l does not scale linearly with the number of partners k an
individual has. This is also supported by Pearson’s correlation
coefficient which is 0.15, i.e. positive but not indicating a strong
linear relationship between k and l (see also Supporting Figure S3).
When they combine a linear relationship between number of
partners and number of sex acts with the observed broad
distributions of sexual contacts and sex acts, several models
predict extremely rapid early epidemic expansion and an epidemic
threshold that is potentially vanishing in the limit of infinite
network size [5–8,30,31], as can be seen from equation (1).

In our ‘Validation’ section we have shown that, regarding the
number of interaction events, a deviation from the linear

behaviour decreases epidemic expansion and peak prevalence,
especially for transmission networks that are characterized by a
heterogeneous distribution in the number of contacts per
individual k and regardless of whether the distribution of
interaction events/sex acts is homogeneous (Poisson) or heteroge-
neous (power law). This is also reflected more quantitatively in the
expression for R0, which is dominated by the second moment SklT
of Pkl . In other words, (as explained above when interpreting our
approximations) the more the number of partners (k) correlates
with their number of sex acts (l) the faster the early epidemic
expansion.

These differences between weighted and unweighted networks
are visible in Fig. 3, which shows the epidemic expansion of a
susceptible-infected (SI) epidemic with transmission probability
b = 0.01 per sex act in two scenarios. We chose to model SI
dynamics by setting c = 0 in order to simulate HIV spreading on a

Figure 3. Disease spread on a network inferred from data. A) Characteristics of the heterosexual contact network inferred from the NATSAL
contact tracing study [28]. The network shows a heterogeneous joint probability distribution Pkl , which is the probability for an individual to have k
contacts during the last 5 years and l sex acts during the last 4 weeks (higher values of Pkl are in red and lower values are in green). This
heterogeneity is also seen for the marginal distributions Pk (on the right) and Pl (on the top). B) Dynamics of an SI epidemic spreading on an
unweighted (black line) or a weighted sexual contact network. The results of simulations on the weighted network are in grey, the approximations of
our model are in red or in orange for the case with assortativity correction. The network has been reduced to nodes with k.0 and transmission
probability per sex act is b = 0.01. C) Dynamics of the average number of contacts SkT of susceptible (in green) and infected individuals (in red) over
the course of an epidemic spreading on the weighted network. The inset shows the probability of a host to be susceptible or infected at t = 10 years
conditioned to the number of contacts during the last 5 years (more or less than 3 contacts). D) Same as panel C but for the number of sex acts SlT. In
Panels B, C and D, the weighting is done using the Pkl shown in panel A. Individuals with more contacts tend to be disproportionally infected (panel
C). Individuals with more sex acts tend to be even more infected (panel D).
doi:10.1371/journal.pcbi.1003352.g003
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short time scale, but the model could be evaluated with analogous
results for SIR dynamics (see Text S1, Section G, Captions of the
Supplementary Figures, Figure S1). In the first scenario (black curve,
Fig. 3B), the number of sex acts grows linearly with the number of
contacts respecting the average number of sex acts (SlT~6:05
during 4 weeks). In the second scenario we use a weighted
network, where the joint probability distribution Pkl is obtained
from the NATSAL data (red curve, Fig. 3B) and can be
complemented by a correction for assortative effects (orange
curve, Fig. 3B).

The exponential growth rates of the epidemics are r0~0:021
per year for the linear, unweighted, network and r0~0:0034 per
year for the weighted network. This confirms that the ‘linear’
scenario supports faster epidemic expansion. The correction for
assortative effects underestimates the epidemic prevalence in the
network because in the NATSAL network heterogeneity in the
number of contacts and interaction events does not lead to a strong
network segregation, i.e. individuals with a single or few contacts
are not isolated (see Fig. 2 and the case in which both Pk and Pl

follow power law distributions). Although the survey data shown in
Fig. 3A only provide us with a rough picture of the real
transmission network and although relying on the number of
partners during 5 years overestimates the number of concurrent
partners, the data are sufficient to confirm a remarkable reduction
in the speed of epidemic expansion when shifting from a classical
unweighted transmission network towards a more realistic
weighted transmission network. This finding is in particular
consistent with an earlier simulation study on epidemic spreading
along a network of homosexual contacts [13].

The framework can also be used to follow the dynamics in the
epidemic subgroups and to identify risk groups along the course of
the epidemics (see Text S1, Section B, Conditional probabilities and risk
groups). Fig. 3C and D show that the average number of contacts
SkT and sex acts SlT per individual increases early on in the
infected population and decreases in the healthy population. This
reflects the over-representation of some individuals among those
being infected as sketched by the insets: during the epidemic (here
shown at t = 10 years) the probability of being infected grows with
the number of contacts k an individual has, and even more so with
the number of sex acts l (s)he has.

Discussion

Network theory has broadened our understanding of the spread
of infectious agents — or other entities such as information,
money, travellers or goods — in complex settings. In their simplest
form, network models do not consider that contacts may show
variability in their transmission capacity. However, the probability
of disease transmission along a contact strongly depends on the
intensity of the contact, transportation links vary in their
throughput and information may not be shared equally among
all possible channels. Although earlier studies have shown that this
weighting in terms of interactions between contacts has non-
negligible impact on the spreading dynamics, the modelling of
epidemics on weighted networks largely focuses on simulation
studies [13,16,32], regular networks [33], mean field approxima-
tions [34,35] or discrete time dynamics [20,36]. Therefore, explicit
expressions for epidemic characteristics such as the basic
reproductive ratio R0 are available only in special cases.

It is possible to simplify the epidemiology by using a Reed-
Frost model. For this, one needs to assume that infections take
place in discrete time steps, with non-overlapping generations and
that each infected individual recovers with certainty one time step
after infection. These simplifications allow to assess outbreak

probabilities using branching processes [20]. In this formalism, as

shown in [36], R0, denoted RRF
0 , can be derived as the dominant

eigenvalue of the mean offspring matrix (md,k§2), where md,k

represents the expected number of individuals with k contacts that
an individual with d contacts infects considering potentially
degree-dependent network weights. Importantly, it is only because
Britton et al. make strong simplifying assumptions in their model,
such as the independence between network weights and nodes’
degrees, that they can derive an explicit form of R0. In contrast to
our findings on NATSAL data, the Reed-Frost approach
systematically predicts negative exponential growth rates of the
epidemics for both scenarios (the network average of linear case is

SRRF
0 T~0:2 and that of survey data case is SRRF

0 T~0:1). The
discrepancy between our model and that of [20] stems from the
implicit assumption of the Reed-Frost model with discrete time
steps they use, which is that recovery occurs immediately after
infection and therefore that c&b.

We extend earlier results by developing a framework based on
partial differential equations that allows to model continuous time
SIR epidemic dynamics for general weighted networks defined
through the joint probability distribution for an individual to have
k contacts and l interaction events. From this we are able to derive
the full epidemic dynamics in terms of the number of susceptible,
infected and recovered individuals over time as well as explicit
expressions for the basic reproductive ratio R0 and the exponent of
early epidemic expansion r0. The application of the method to
epidemics on artificial and empirically-motivated networks
matches well with simulation results on these same networks.
Moreover, it also stresses the impact of assortative effects
introduced by contact weighting on epidemic dynamics; an aspect
that will need closer attention in future research.

One limitation to our approach is due to potential errors in the
inference of the network. There are known biases in the self-
reporting of number of partners (with different trends between
men and women [37]) and self-reported number of sex acts are
likely to exhibit similar biases. One extension of this study would
be to see how such noise in the network inference could affect
epidemic spread. Our intuition is that the consequences should be
less important than for non weighted networks because heteroge-
neity in the weights is already likely to dampen striking network
properties in terms of disease spread [13].

As many earlier methods, ours analyses model disease spread on
networks from a node centric summary statistics, by considering
the number of contacts and transmission events per time.
Therefore, it inherently neglects correlation between nodes. In
other words there is no consideration of assortativity between
individuals based on their number of contacts or transmission
events per time. At the same time, individuals share their activity
randomly among all their contacts (weights are homogeneously, or
multinomially, distributed among edges that leave a node), which
can enforce correlations among nodes in certain networks. Also
clustering is observed in many contact networks [38] and this issue
should be addressed in an extended version of our model.

Most analytical and numerical models predict disease spread on
network using only one summary statistics, the distribution of the
number of partners. We show that additional insights can be
gained, while maintaining some analytical results, by including
another summary statistics, such as the distribution of the number
of sex acts knowing the number of partners. These data are easier
to collect than full information of the contact network (especially
for a weighted network), which makes our framework widely
applicable. We demonstrate this applicability here using data from
the NATSAL study conducted in the UK. We note that for some
artificial distributions, our results begin to diverge from simulations
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on real networks. However, the framework has proven to be
applicable for empirical distributions and analysis of more
empirical data will allows us to further test the robustness of the
method using more realistic assumptions.

Supporting Information

Figure S1 Epidemic SIR dynamics on the network as presented
in Fig. 3 of the main manuscript. Transmission probability per sex
act is also b = 0.01 but recovery can occur at a rate c = 0.004 per 4
weeks, i.e. parameters corresponding to Fig. 2 of the main
manuscript. Different from the SI dynamics shown in Fig. 3 of the
main manuscript hosts may recover and do not spread infection
indefinitely.
(PNG)

Figure S2 Epidemic incidence or rate of infection

bpSI SG(0,1)
S (1,1,t)~bpSI SSlTS (cf. equation 3b) for SI dynamics

(grey line) and SIR dynamics (dark grey line) on the network as
presented in Fig. 3 of the main manuscript.
(PNG)

Figure S3 Relationship between a person’s total number of sex
acts and number of partners derived from the NATSAL data. In
Panel A, we plot the self-reported number of sex acts over the last
4 weeks vs. the self-reported number of sexual partners over the
last 4 years. In Panel B, we plot the self-reported number of sex
acts over the last 4 weeks vs. the self-reported number of sexual

partners over the last 3 months. In Panel C, we plot the self-
reported number of sex acts over the last 7 days vs. the self-
reported number of sexual partners over the last 3 months. In all
three cases, the data do not support a linear relationship (the
number of sex acts per partner decreases with the number of
partners/contacts).
(PNG)

Table S1 Model notations.
(PDF)

Table S2 Agreement between approximations and simulations.
(PDF)

Text S1 Supporting Information.
(PDF)
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