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Opinion

Introducing the Outbreak Threshold in Epidemiology
Matthew Hartfield*, Samuel Alizon

Laboratoire MIVEGEC (UMR CNRS 5290, IRD 224, UM1, UM2), Montpellier, France

Abstract: When a pathogen is rare
in a host population, there is a
chance that it will die out because
of stochastic effects instead of
causing a major epidemic. Yet no
criteria exist to determine when the
pathogen increases to a risky level,
from which it has a large chance of
dying out, to when a major out-
break is almost certain. We intro-
duce such an outbreak threshold
(T0), and find that for large and
homogeneous host populations, in
which the pathogen has a repro-
ductive ratio R0, on the order of 1/
Log(R0) infected individuals are
needed to prevent stochastic
fade-out during the early stages of
an epidemic. We also show how
this threshold scales with higher
heterogeneity and R0 in the host
population. These results have im-
plications for controlling emerging
and re-emerging pathogens.

With the constant risk of pathogens

emerging [1], such as Severe Acute

Respiratory Syndrome (SARS) or avian

influenza virus in humans, foot-and-mouth

disease virus in cattle in the United

Kingdom [2], or various plant pathogens

[3], it is imperative to understand how

novel strains gain their initial foothold at

the onset of an epidemic. Despite this

importance, it has seldom been addressed

how many infected individuals are needed

to declare that an outbreak is occurring:

that is, when the pathogen can go extinct

due to stochastic effects, to when it infects

a high enough number of hosts such that

the outbreak size increases in a determin-

istic manner (Figure 1A). Generally, the

presence of a single infected individual is

not sufficient to be classified as an

outbreak, so how many infected individu-

als need to be present to cause this

deterministic increase? Understanding at

what point this change arises is key in

preventing and controlling nascent out-

breaks as they are detected, as well as

determining the best course of action for

prevention or treatment.

The classic prediction for pathogen

outbreak is that the pathogen’s reproduc-

tive ratio (R0), the number of secondary

infections caused by an infected host in a

susceptible population, has to exceed one

[4,5]. This criterion only strictly holds in

deterministic (infinite population) models;

in finite populations, there is still a chance

that the infection will go extinct by chance

rather than sustain itself [4–6]. Existing

studies usually consider random drift

affecting outbreaks in the context of

estimating how large a host population

needs to be to sustain an epidemic (the

‘‘Critical Community Size’’ [4,7,8]), cal-

culating the outbreak probability in gen-

eral [9–12], or ascertaining whether a

sustained increase in cases over an area

has occurred [13]. Here we discuss the

fundamental question of how many infect-

ed individuals are needed to almost

guarantee that a pathogen will cause an

outbreak, as opposed to the population

size needed to maintain an epidemic once

it has appeared (Critical Community Size;

see also Box 1). We find that only a small

number of infected individuals are often

needed to ensure that an epidemic will

spread.

We introduce the concept of the

outbreak threshold (denoted T0), which

we define as the number of infected

individuals needed for the disease to

spread in an approximately deterministic

manner. T0 can be given by simple

equations. Indeed, if the host population

is homogeneous (that is, where there is no

individual variability in reproductive rates)

and large enough so that depletion of the

pool of susceptible hosts is negligible, then

the probability of pathogen extinction if I

infected hosts are present is (1/R0)I ([6],

details in Material S.1 in Text S1). By

solving this equation in the limit of

extinction probability going to zero, we

find that on the order of 1/Log(R0)

infected hosts are needed for an outbreak

to be likely (black thick curve in Figure 1B),

a result that reflects similar theory from

population genetics [14–16]. Note that this

result only holds in a finite population, as

an outbreak in a fully susceptible infinite

population is certain if R0.1 ([4], see also

Material S.1 in Text S1).

This basic result can be modified to

consider more realistic or precise cases,

and T0 can be scaled up if an exact

outbreak risk is desired. For example, for

the pathogen extinction probability to be

less than 1%, there needs to be at least 5/

Log(R0) infected individuals. More gener-

ally, the pathogen extinction probability is

lower than a given threshold c if there are

at least 2Log(c)/Log(R0) infected individ-

uals. Furthermore, if only a proportion

p,1 of all infected individuals are detect-

ed, then the outbreak threshold order is p/

Log(R0). Also, if there exists a time-lag t
between an infection occurring and its

report, then the order of T0 is e2t(b-d)/

Log(R0), where b is the infection transmis-

sion rate and 1/d the mean duration of the

infectious period (Material S.1 in Text S1).

Finally, we can estimate how long it would

take, on average, for the threshold to be

reached and find that, if the depletion in

susceptible hosts is negligible, this duration

is on the order of 1/(b-d) (Material S.1 in

Text S1).

So far we have only considered homog-

enous outbreaks, where on average each

individual has the same pathogen trans-

mission rate. In reality, there will be a

large variance among individual transmis-

sion rates, especially if ‘‘super-spreaders’’

are present [17]. This population hetero-

geneity can either be deterministic, due to
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differences in immune history among hosts

or differences in host behavior, or stochas-

tic, due to sudden environmental or social

changes. Spatial structure can also act as a

form of heterogeneity, if each region or

infected individual is subject to different

transmission rates, or degree of contact

with other individuals [18]. In such

heterogeneous host populations, the num-

ber of secondary cases an infected indi-

vidual engenders is jointly captured by R0

and a dispersion parameter k (see Box 2).

This dispersion parameter controls the

degree of variation in individual transmis-

sion rates, while fixing the average R0. The

consequence of this model is that the

majority of infected hosts tend to cause few

secondary infections, while the minority

behave as super-spreaders, causing many

secondary infections. Host population

heterogeneity (obtained with lower values

of k) increases the probability that an

outbreak will go extinct, as the pathogen

can only really spread via one of the

dwindling super-spreading individuals. In

this heterogeneous case, we can find

accurate values of T0 numerically. As

shown in Figure 1B, if R0 is close to 1,

host heterogeneity (k) does not really

matter (T0 tends to be high). However, if

the pathogen has a high R0 and thus

spreads well, then host heterogeneity

strongly affects T0. Additionally, we find

that the heterogeneous threshold simply

scales as a function of k and R0
2 (see Box

2). As an example, if k = 0.16, as estimated

for SARS infections [11], the number of

infected individuals needed to guarantee

an outbreak increases 4-fold compared to

a homogeneous population (Material S.3

in Text S1).

The outbreak threshold T0 of an

epidemic, which we define as the number

of infected hosts above which there is very

likely to be a major outbreak, can be

estimated using simple formulae. Current-

ly, to declare that an outbreak has

occurred, studies choose an arbitrary low

or high threshold depending, for instance,

on whether they are monitoring disease

outbreaks or modeling probabilities of

emergence. We show that the outbreak

threshold can be defined without resorting

to an arbitrary cutoff. Of course, the

generality of this definition has a cost,

which is that the corresponding value of

T0 is only an order of magnitude.

Figure 1. The outbreak threshold in homogeneous and heterogeneous populations. (A) A schematic of pathogen emergence. This graph
shows the early stages of several strains of an epidemic, where R0 = 1.25. The black line denotes the outbreak threshold (T0 = 1/Log(R0) = 4.48). Blue
thin lines show cases in which the pathogen goes extinct and does not exceed the threshold; the red thick line shows an epidemic that exceeds the
threshold and persists for a long period of time. Simulations were based on the Gillespie algorithm [22]. (B) Outbreak threshold in a homogeneous
(black thick line) or in a heterogeneous population, for increasing R0. The threshold was calculated following the method described by Lloyd-Smith et
al. [11] and is shown for different values of k, the dispersion parameter of the offspring distribution, as obtained from data on previous epidemics [11].
If the threshold lies below one, this means that around only one infected individual is needed to give a high outbreak probability.
doi:10.1371/journal.ppat.1003277.g001

Box 1. Glossary of Key Terms

N The Basic Reproductive Ratio (R0) is the number of secondary infections caused by a single infected individual, in a
susceptible population. It is classically used to measure the rate of pathogen spread. In infinite-population models, a
pathogen can emerge if R0.1. In a finite population, the pathogen can emerge from a single infection with probability 1-1/R0

if R0.1, otherwise extinction is certain.

N The Critical Community Size (CCS) is defined as the total population size (of susceptible and infected individuals, or others)
needed to sustain an outbreak once it has appeared. This idea was classically applied to determining what towns were most
likely to maintain measles epidemics [7], so that there would always be some infected individuals present, unless intervention
measures were taken.

N The Outbreak Threshold (T0) has a similar definition to the CSS, but is instead for use at the onset of an outbreak, rather
than once it has appeared. It measures how many infected individuals (not the total population size) are needed to ensure
that an outbreak is very unlikely to go extinct by drift. Note that the outbreak can still go extinct in the long term, even if T0 is
exceeded, if there are not enough susceptible individuals present to carry the infection afterwards.
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Modifications are needed to set a specific

cutoff value or to capture host heteroge-

neity in transmission or incomplete sam-

pling.

These results are valid if there are

enough susceptible individuals present to

maintain an epidemic in the initial stages,

as assumed in most studies on emergence

[6,11–13], otherwise the pathogen may

die out before the outbreak threshold is

reached (Box 3 and Material S.2 in Text

S1). Yet the key message generally holds

that while the number of infections lies

below the threshold, there is a strong

chance that the pathogen will vanish

without causing a major outbreak. From

a biological viewpoint, unless R0 is close to

one, these thresholds tend to be small (on

the order of 5 to 20 individuals). This

contrasts with estimates of the Critical

Community Size, which tend to lie in the

hundreds of thousands of susceptible

individuals [3,7,8]. Therefore, while only

a small infected population is needed to

trigger a full-scale epidemic, a much larger

pool of individuals are required to main-

tain an epidemic, once it appears, and

prevent it from fading out. This makes

sense, since there tends to be more

susceptible hosts early on in the outbreak

than late on.

Estimates of R0 and k from previous

outbreaks can be used to infer the

approximate size of this threshold, to

determine whether a handful or hundreds

of infected individuals are needed for an

outbreak to establish itself. Box 4 outlines

two case studies (smallpox in England

and SARS in Singapore), estimates of T0

for these, and how knowledge of the

threshold could have aided their control.

These examples highlight how the sim-

plicity and rigorousness of the definition

of T0 opens a wide range of applications,

as it can be readily applied to specific

situations in order to determine the most

adequate policies to prevent pathogen

outbreaks.

Supporting Information

Text S1 PDF file containing the follow-

ing: Material S.1: Full derivations of

outbreak threshold formulae for a homo-

geneous outbreak; Material S.2: Calcu-

lations of limitations due to small host

population sizes; Material S.3: Finding

solutions for outbreak threshold formulae

for heterogeneous outbreaks.

(PDF)

Text S2 Same as Text S1, but in

Mathematica format.

(ZIP)
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Box 2. Heterogeneous Outbreak Threshold

In a heterogeneous host population (see the main text for the bases of this heterogeneity), it has been shown that the number
of secondary infections generated per infected individual can be well described by a negative binomial distribution with mean
R0 and dispersion parameter k [11]. The dispersion parameter determines the level of variation in the number of secondary
infections: if k = 1, we have a homogeneous outbreak, but heterogeneity increases as k drops below 1; that is, it enlarges the
proportion of infected individuals that are either ‘‘super-spreaders’’ or ‘‘dead-ends’’ (those that do not transmit the pathogen).
Lloyd-Smith et al. [11] showed how to estimate R0 and k from previous epidemics through applying a maximum-likelihood
model to individual transmission data.

Although in this case it is not possible to find a strict analytical form for the outbreak threshold, progress can be made if we
measure the ratio of the heterogeneous and homogeneous thresholds. This function yields values that are independent of a
strict cutoff probability (Material S.3 in Text S1). By investigating this ratio, we first found that for a fixed R0, a function of order
1/k fitted the numerical solutions very well. By measuring these curves for different R0 values, we further found that a function
of order 1/R0

2 provided a good fit to the coefficients. By fitting a function of order 1/kR0
2 to the numerical data using least-

squares regression in Mathematica 8.0 [19], we obtained the following adjusted form for the outbreak threshold T0 in a
heterogeneous population:

T0~
1

log R0ð Þ 0:334z
0:689

k
z

0:408

R0
{

0:507

kR0
{

0:356

R
02

z
0:467

kR
0
2

 !
ð1Þ

As in the homogeneous case, T0 only provides us with an order of magnitude and it can be multiplied by 2Log(c) to find the
number of infected hosts required for there to be a probability of outbreak equal to 1-c. A sensitivity analysis shows that
Equation 1 tends to be more strongly affected by changes in R0 than in k (Material S.3 in Text S1).

Box 3. Effect of Limiting Host Population Size

The basic result for the homogeneous population, T0,1/Log(R0), assumes that during the time to pathogen outbreak, there are
always enough susceptible individuals available to transmit to, so R0 remains approximately constant during emergence. This
assumption can be violated if R0 is close to 1, or if the population size is small. More precisely, if the maximum outbreak size in a
Susceptible-Infected-Recovered (SIR) epidemic, which is given by

N 1{
1zlog R0ð Þ

R0

� �
,

is less than 1/Log(R0), then the threshold cannot be reached. Since this maximum is dependent on the population size,
outbreaks in smaller populations are less likely to reach the outbreak threshold. For example, if N = 10,000 then R0 needs to
exceed 1.06 for 1/Log(R0) to be reached; this increases to 1.34 if N decreases to 100. Further details are in Material S.2 in Text S1.
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Box 4. Two Case Studies: Smallpox in England and SARS in Singapore

A smallpox outbreak (Variola minor) was initiated in Birmingham, United Kingdom in 1966 due to laboratory release. We
calculate a threshold such that the chance of extinction is less than 0.1%, which means that T0 is equal to 7 times Equation 1.
With an estimated R0 of 1.6 and dispersion parameter k = 0.65 [11], T0 is approximately equal to 9 infections. The transmission
chain for this outbreak is now well-known [20]. Due to prior eradication of smallpox in the United Kingdom, the pathogen was
not recognised until around the 45th case was detected, by which point a full-scale epidemic was underway. A second
laboratory outbreak arose in 1978, but the initial case (as well as a single secondary case) was quickly isolated, preventing a
larger spread of the pathogen. Given the fairly low T0 for the previous epidemic, early containment was probably essential in
preventing a larger outbreak.

The SARS outbreak in Singapore in 2003 is an example of an outbreak with known super-spreaders [21], with an estimated
initial R0 of 1.63 and a low k of 0.16 [11]. T0 is estimated to be around 27 infections. The first cases were observed in late
February, with patients being admitted for pneumonia. Strict control measures were invoked from March 22nd onwards,
including home quarantining of those exposed to SARS patients and closing down of a market where a SARS outbreak was
observed. By this date, 57 cases were detected, although it is unclear how many of those cases were still ongoing on the date.
This point is important, as it is the infected population size that determines T0.

Overall, very early measures were necessary to successfully prevent a smallpox outbreak due to its rapid spread. In theory, it
should have been ‘‘easier’’ to contain the SARS outbreak, as its threshold is three times greater than that for smallpox due to
higher host heterogeneity (k). However, the first reported infected individual was a super-spreader, who infected at least 21
others. This reflects that in heterogeneous outbreaks, although the emergence probability is lower, the disease spread is faster
(compared to homogeneous infections) once it does appear [11]. Quick containment of the outbreak was difficult to achieve
since SARS was not immediately recognised, as well as the fact that the incubation period is around 5 days, by which point it
had easily caused more secondary cases. However, in subsequent outbreaks super-spreaders might not be infected early on,
allowing more time to contain the spread.

For newly-arising outbreaks, T0 can be applied in several ways. If the epidemic initially spreads slowly, then R0 and T0 can be
measured directly. Alternatively, estimates of T0 can be calculated from previous outbreaks, as outlined above. In both cases,
knowing what infected population size is needed to guarantee emergence can help to assess how critical a situation is. More
generally, due to the difficulty in detecting real-world outbreaks that go extinct very quickly, experimental methods might be
useful in determining to what extent different levels of T0 capture the likelihood of full epidemic emergence.
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