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Abstract

Infection by hepatitis C virus (HCV) leads to one of two outcomes; either the

infection resolves within approximately 6 months or the virus can persist indefi-

nitely. Host genetics are known to affect the likelihood of clearance or persis-

tence. By contrast, the importance of the virus genotype in determining infection

outcome is unknown, as quantifying this effect traditionally requires well-charac-

terized transmission networks, which are rare. Extending phylogenetic

approaches previously developed to estimate the virus control over set-point viral

load in HIV-1 infections, we simulate inheritance of a binary trait along a phylo-

genetic tree, use this data to quantify how infection outcomes cluster and ascer-

tain the effect of virus genotype on these. We apply our method to the Hepatitis

C Incidence and Transmission Study in prisons (HITS-p) data set from Australia,

as this cohort prospectively identified incident cases including viraemic subjects

who ultimately clear the virus, thus providing us with a unique collection of

sequences from clearing infections. We detect significant correlations between

infection outcome and virus distance in the phylogeny for viruses of Genotype 1,

with estimates lying at around 67%. No statistically significant estimates were

obtained for viruses of Genotype 3a.

Introduction

The hepatitis C virus (HCV; family Flaviviridae, genus

Hepacivirus) is estimated to infect around 170 million peo-

ple worldwide, and is a major cause of chronic liver disease

(Simmonds 2004). Due to the ensuing health burden

caused by HCV, there is a considerable research focus on

understanding how the host and the virus genetics shape

the infection outcome (Ploss and Dubuisson 2012). There

is also a vast array of new therapies being developed that

target both host (e.g. cyclophilin inhibitors, microRNA an-

tagomirs (Janssen et al. 2013)) and viral phenotypes

(direct-acting antiviral agents targeting the HCV protease

and polymerase; Ploss and Dubuisson 2012).

If untreated, acute HCV infections mostly result in one

of two infection outcomes. Either the virus is eliminated

within 6 months (a ‘cleared’ infection) or it develops into a

‘chronic’ infection that generally persists for life unless

cured by antiviral therapy. Spontaneous clearance can

occur after 6 months, albeit with a very low probability

(much <1% overall; Micallef et al. 2006; Grebely et al.

2012, 2014). Genetic polymorphisms in the promoter

region of the host IL28B gene that correlate with an

increased probability of HCV clearance have been detected

(Ge et al. 2009; Thomas et al. 2009; Rauch et al. 2010). It

is clear that certain regions of the viral polyprotein are tar-

geted by the host immune responses and are therefore

involved in clearance. Specifically, the envelope (E) region

of the HCV genome harbours a hypervariable region,

which is a target for neutralizing antibody response, which

in turn has been associated with driving viral evolution

(Weiner et al. 1992; Kumar et al. 1993; Fafi-Kremer et al.

2010; Liu et al. 2010). There are also multiple epitopes

within the nonstructural (NS) region of the genome that

are targeted by cellular immune response (CD8 cytotoxic T

cells), giving rise to virus escape variants (Kuntzen et al.
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2007; Osburn et al. 2010). These findings argue that an

optimal host immune response clears HCV quickly, leading

to a progressive purging of virus variants during acute

infection. It is currently unclear to what extent strains iso-

lated from cleared or chronic infections differ in their evo-

lutionary dynamics. Farci et al. (2000) found that HCV

strains detected during the chronic phase tend to have

higher genetic diversity in the E region compared with

strains detected in subjects who cleared the infection, lead-

ing to clustering of similar infection outcomes along a phy-

logeny. However, a recent study (Liu et al. 2012) observed

the opposite result, with clearing strains exhibiting higher

evolutionary rates in the E2-HVR1 region than chronic

strains.

Hepatitis C virus is divided into six major genotypes (1–
6) and several closely related subtypes (for example, 1a or

1b) that differ approximately by 30% in nucleotide and

amino acid sequences (Simmonds et al. 2005). The six

genotypes vary in predominance and are dependent upon

geographical location (Simmonds et al. 2005). For exam-

ple, Genotype 1 is most prevalent in the USA and Europe,

while Genotype 3 is more common in Asia and South

America, and Australia has both genotypes 1 and 3. There

also exist epidemiological differences between the geno-

types, with Pybus et al. (2001) showing that the 1a and 1b

subtypes of HCV spread faster than others.

Overall, it appears likely that specific HCV infection out-

comes result from the interlinked effects of the individual

virus genome, host genetics and immune response status.

However, the relative effects of all of these factors, espe-

cially virus genetics, are poorly known. It is hard to investi-

gate the relative impact of each of these effects, especially

the impact of genetically similar transmitted viruses, as

acute infection is predominantly asymptomatic and the

incubation period may be up to several months. Hence, the

transmission chain is typically poorly characterized.

Recently, phylogenetic methods have been used to deter-

mine the effect of a virus genome on the value of infection

traits, such as viral load. The power of these methods lies in

the fact that a phylogeny built on the sequences from

viruses sampled from different individuals can approximate

the transmission network between these hosts (Leitner

et al. 1996; Hu�e et al. 2004). Even though this was only an

approximation of the real transmission network, Alizon

et al. (2010) were able to show using phylogenetic compar-

ative methods that up to 59% of the set-point viral load in

HIV infections was attributable to virus genetics effects;

this estimate is higher than some estimates obtained from

known transmission pairs (Tang et al. 2004; Hollingsworth

et al. 2010), but consistent with others (Hecht et al. 2010).

In general, phylogenetic methods have been of consider-

able use in elucidating the epidemiological history of HCV

infections. By estimating the population size of an HCV

epidemic in Egypt, it was shown that the outbreak coin-

cided with mass parenteral antischistosomal therapy

(Pybus et al. 2003; Drummond et al. 2005; Stadler et al.

2013), validating earlier epidemiological evidence (Frank

et al. 2000). Similarly, a phylogenetic analysis of the

recombinant HCV form 2k/1b suggests that this variant

has spread via infected blood transfusions in the former

Soviet Union (Raghwani et al. 2012). However, there is

very little work using the phylogenetic comparative

approach to determine the genetic effects of the infection

itself.

Here, we extend the methods used in Alizon et al. (2010)

to HCV, to measure the degree of clustering of discrete

infection outcomes along a phylogeny. We describe a

method to measure the virus control over the infection

outcome for genetically similar HCV strains, which also

accounts for phylogenetic and transmission uncertainty.

Our virus control value is analogous to heritability in quan-

titative genetics (Visscher et al. 2008) but applied to cate-

gorical traits. That is, the control value measures to what

degree a virus genotype influences the probability that a

specific infection outcome will be cleared or not, and also

that this trait is passed on to its recipient. Our method

functions by simulating a set of phylogeny tips (each of

which corresponds to an infection outcome) by assuming

different virus effects on trait outcomes. We then compare

the tip distribution we observe with real data to the simu-

lated tipset, to determine whether there is a virus effect on

infection outcome. We additionally describe how the

method can take into account confounding effects such as

host genetics. These findings have applications in elucidat-

ing the causes of an HCV infection outcome, as well as pro-

viding evolutionary insights as to the selective forces

behind specific infection outcomes.

Materials and methods

Ethics statement

Ethical approval was obtained from Human Research Eth-

ics Committees of Justice Health (reference number GEN

31/05), New South Wales Department of Corrective Ser-

vices (reference number 05/0884) and the University of

New South Wales (reference number 05094), all located in

Sydney, Australia. The project was approved by the relevant

institutional review boards. All subjects provided written

informed consent.

Subjects analysed in study

Hepatitis C virus genome data used in this study were

obtained as part of the Australian ‘Hepatitis C Incidence

and Transmission Study in prisons (HITS-p) cohort
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(Dolan et al. 2010; Teutsch et al. 2010). From September

2005 to May 2009, adult prison inmates were recruited at

19 of 30 correctional centres housing adult male or females

in New South Wales (NSW). The conditions to join the

study were to report a lifetime history of injecting drug use

(IDU); to be imprisoned within the last 12 months; and to

have a serological test documenting negative anti-HCV

antibody status during that time. Of the 500 subjects

enrolled in HITS-p, this analysis included subjects who

were HCV-RNA negative at enrolment and had completed

at least one prospective follow-up visit while in prison

(having either been continuously imprisoned or visited

upon re-imprisonment after a period of release). A venous

blood sample was collected at each interview to screen for

HCV antibodies and viraemia (HCV-RNA test), as previ-

ously described (Dolan et al. 2010). The average follow-up

time between two consecutive interviews was 6 months.

Natural viral clearance was defined as two RNA-negative

tests, while antibody-positive status in the subsequent

12 months following the last HCV-RNA-positive test.

Within the HITS-p cohort, 134 subjects were found HCV

antibody-positive, 94 at baseline and the remaining during

the 5 years follow-up period.

Generally, it is hard to obtain virus sequences from sub-

jects who ultimately cleared the infection, as the acute

phase of the infection is typically asymptomatic. The HITS

cohort therefore provides a unique opportunity for blood

sampling in the acute phase, allowing detection of early vi-

raemia in clearing infections. The number of sequences

from clearing infections used in this study is therefore one

of the highest number to have been analysed. There are

only a limited number of publications reporting viral

sequences and known disease outcome, including a similar

number of clearers (Kasprowicz et al. 2010; Liu et al.

2012). However, these studies have not provided a large

cohort of HCV-infected subjects with a closely related

transmission network. Rather, these studies match case

control samples for specific analyses, which are unsuitable

for the measurement of phylogenetic relatedness between

viral sequences. The HITS-p cohort is a prospective cohort

of individuals infected with the same transmission route in

closed setting. Hence, it is likely that the IDUs sampled in

this cohort are infected by related viruses, which is though

to improve the accuracy of phylogenetic models to approx-

imate the transmission network. HITS-p also collects sub-

stantial risk behaviour data on each enrolled individual at

each time point, as well as their genotype at the IL28B loci.

Sequences of E1-HVR1

The region encoding the last 171 bp of core, E1 and HVR1

(882 bp; nucleotides 723–1604, with reference to HCV

strain H77; GenBank accession number AF009606) was

amplified by nested RT-PCR as previously described (Pham

et al. 2010). In brief, viral RNA was extracted from 140 lL
of plasma using the QIAmp Viral RNA kit according to

manufacturers’ instructions (Qiagen, Venlo, Limburg, the

Netherlands). Five microlitres of extracted RNA was added

to a 15 lL reaction mixture containing 10 lL of RT-PCR

reaction mix (iScript One-Step RT-PCR with SYBR Green;

Bio-Rad, Hercules, CA, USA), 500 nM of each primer

(GV32 and GV33 in Pham et al. (2010)) and 0.4 lL of 50x

iScript reverse-transcriptase enzyme (Bio-Rad). Cycling

conditions included a 10-min reverse transcription step at

50°C; reverse-transcription inactivation at 95°C for 5 min;

15 cycles at 95°C for 30 s, 55°C for 30 s and 72°C for

1 min, followed by a final extension of 72°C for 7 min.

The second-round PCR was prepared by adding 2 lL of

first-round product to 18 lL of reaction mix containing iQ

SYBR Green Supermix (Bio-Rad) and 500 nM of each pri-

mer (GV34 and GV35/GV36). The second-round cycling

conditions included 95°C for 5 min and 40 cycles of 95°C
for 30 s, 60°C for 30 s and 72°C for 1 min. The amplified

products were identified by agarose gel electrophoresis.

PCR products were purified and sequenced directly on an

ABI 3730 DNA Analyzer (Applied Biosystems, Carlsbad,

CA, USA) using dye-terminator chemistry.

Initial analysis of HCV genetic data

Sequences of the E1-HVR1 region of the HCV genome

were available for 92 subjects infected with genotype 1a, 1b

or 3a viruses. Of these, 19 were from subjects who ulti-

mately naturally cleared the HCV infection (sequencing

was difficult in clearing infections due to lower viral loads).

For the study, we only used the earliest-obtained HCV

sequence for each patient and discarded subsequent

sequences. Preliminary analysis showed that within-host

evolution contributed minimally to the phylogenetic relat-

edness between subjects, as all the longitudinal samples

present in the cohort clustered with the subject itself (result

not shown). Due to some incomplete sequencing, subse-

quent phylogenies were built using a 657 bp length of

sequence, covering the core and E1 regions. Although Gray

et al. (2011) found that this segment was hypervariable

within hosts, they also showed that it evolved at a similar

rate to the rest of the genome at the between-host level, so

phylogenies should not reflect within-host selection at this

segment.

We performed an initial analysis on the complete data

set. However, to prevent confounding of any detected

genetic signal with the HCV genotype, we subsequently

extracted the genotypes from the two major observed sub-

types and performed analysis on these separate data sets,

which we denoted as ‘Genotype 1’ (containing viruses of

subtype 1a and 1b) and ‘Genotype 3’ (subtype 3a; Fig. 1).
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The application of these selection criteria resulted in 31

subjects in the Genotype 1, and 42 subjects in the Genotype

3 category with confirmed sequences amenable for further

analyses. We decided to combine sequences of subtype 1a

and 1b into the same data set, given their similarity and

also because we did not find significant association of acute

infections with subtype (P = 0.0619, Fisher’s exact test).

Creation of phylogenetic trees

For each data set, we used BEAST v1.7.3 (Drummond et al.

2012) to create a set of phylogenetic trees for use in our

Bayesian analysis, to account for sampling error in the phy-

logeny. As the inference of phylogenetic signal for a trait

can be very sensitive to the underlying phylogeny, then by

sampling from the posterior distribution and performing

the analysis over several trees, we minimized the influence

that phylogenetic sensitivity had on the final result (Parker

et al. 2008). The collection date of the HCV sample, as

obtained from the HITS-p cohort, was used to align tree

tips. Using the JMODELTEST software (Guindon and Gascuel

2003; Darriba et al. 2012), it was found that a GTR nucleo-

tide model with estimated base frequencies, invariable sites

and a Gamma site heterogeneity model with four categories

(GTR + I + Γ) gave the lowest Bayesian information crite-

rion (BIC) score.

We estimated phylogenies by comparing outputs consist-

ing of a constant population size coalescent model; expo-

nential population growth; or a Bayesian Skyline model

with 10 groups. Using the Path-O-Gen software (version

1.4, available from http://tree.bio.ed.ac.uk/software/patho-

gen/), we did not find a positive correlation between the

sampling date and root-to-tip divergence for either sub-

type. Both estimates were not significantly different from

zero (correlation coefficient for Genotype 1 was �0.220,

P = 0.398; for Genotype 3, it was �0.0863, P = 0.600).

Therefore, it appeared that no molecular clock signal is

present in the data. We therefore proceeded using a strict

clock model as the simplest possible scenario and checked

afterwards that the estimated substitution rates were in line

with previous findings for HCV. The outputs seemed to

make sense, as substitution rate estimates that we found

lied around 10�3, as found by Gray et al. (2011). The log-

likelihoods of the exponential model and the Bayesian Sky-

line models were not significantly different when individu-

ally compared with the constant-size model, as inferred

(A)

(B)

Figure 1 Phylogenies of the two HCV data sets. ‘Genotype 1’ (part A) consisted of viruses of subtype 1a or 1b, as denoted on the graph. ‘Genotype

3’ (part B) consisted of viruses of subtype 3a. Short-term acute outcomes are denoted with an A, chronic outcomes with a C. Grey labels indicate

strains where the host had the homozygous IL28B-917 SNP corresponding to increased clearance rate. A scale bar is also included that shows the

number of substitutions per site. Phylogenies were compiled for this figure using PhyML (Guindon et al. 2010), with a GTR model, gamma-distributed

site heterogeneity, empirical nucleotide frequencies and invariable sites. See main text for further details.
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using a likelihood ratio test. Therefore, we used the outputs

from the constant-size coalescent population model for

subsequent analyses.

There could be a concern that since we sampled from a

densely infected population, then using a coalescent model

would provide a skewed phylogeny with branches that are

more closely related than they actually are. As a precaution,

we also produced phylogenies using a birth–death model,

as opposed to a coalescent model (Stadler et al. 2012). We

will compare results obtained from different methods

where necessary; however, we generally found the same

quantitative results as those obtained from a coalescent

tree.

We set each MCMC to run for 109 iterations, with

parameters logged every 100 000 runs. Each parameter in

the MCMC analysis exceeded an effective sampling size of

600.

Generating simulation data of categorical trait control

In this study, we were interested in estimating how likely it

is for a binary trait, such as infection outcome, to be corre-

lated between related virus strains. There currently exists

several Bayesian methods to infer genetic relatedness

between different tip outcomes from a phylogenetic tree

[summarized in Parker et al. (2008)]. While these methods

can infer the likelihood of whether a trait is clustered in a

phylogeny, they cannot currently quantify the degree to

which categorical infection traits are ‘inherited’ by the

infection recipient, as well as account for confounding fac-

tors. Theoretically, if a trait of interest is more likely to be

‘inherited’ from one infection to the next, then it should

cluster around specific tips in the tree. To this end, we con-

structed a method to simulate inheritance of a trait along

the phylogeny, and then link these predicted outcomes to

existing statistics that determine the correlation between

tip outcomes and phylogenetic distance.

A schematic of these simulations is shown in Fig. 2. For

the simulations, we chose 500 trees at random from the

posterior distribution as produced by the BEAST analysis for

a certain genotype, to make the simulations tractable. For

each of these trees, we randomly simulated the trait values

for the tree, based on 20 different correlation values

(denoted c) that were chosen from a uniform distribution

between 0 and 1. A value of c = 0 means that there is no

trait correlation between related strains, so daughter infec-

tions are assigned a trait value at random. On the other

hand, a value of c = 1 means that the ‘offspring’ of an

infection caused by a specific strain is certain to retain the

same outcome as its ‘parent’ infection. For each of these 20

chosen values of c, we started by either assigning the trait of

interest (such as HCV infections that clear rapidly) to the

root with probability p, where p is the observed frequency

of the trait in the actual data set or the alternative trait

(such as chronic HCV infection) with probability 1–p.
From this tip, we went through each node of the tree in

turn. At each new node, we assigned a trait to this node.

This trait is either that of its ancestor with control proba-

bility c. With probability 1 – c, the outcome is unrelated to

its ancestor, so instead the trait was chosen from a Ber-

noulli distribution with mean p (that was observed in the

real data) and subsequently assigned to the node. For each

branch, we repeated this process for generations, which

were chosen from the following distribution:

g = 1 + Poisson (L/Tg)

Here, L is the length of the branch between a parent and

daughter node in years, and Tg the average length of infec-

tion, which was set to 3 years, as based on estimates using

surveillance data and molecular sequences (Magiorkinis

et al. 2013). Therefore, at least one generation was assumed

per branch, along with an estimated number of subsequent

transmissions that were not captured by the existing phy-

logeny (Shirreff et al. 2013). This process was repeated

until all nodes had been assigned values, including all tree

tips. Simulations were executed using R (R Development

Core Team 2008).

After we simulated infection outcomes, we calculated the

associated clustering statistics for a simulated outcome. To

(A)

(B)

Figure 2 Schematic of the virus control simulations. The root has an

initial state assigned to it; this state is certainly passed on to one of the

offspring genotypes with probability c (case A), or is not passed on with

probability 1 – c (case B). In this latter case, the offspring state is

assigned a value drawn from a Bernoulli trial, where p is the observed

frequency of the trait of interest from the data set.
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achieve this, we used the ‘ace’ function, provided as part of

the ‘ape’ package (Analyses of Phylogenetics and Evolu-

tion) for R (Paradis et al. 2004). This function implements

Pagel’s maximum-likelihood method (Pagel 1994) for esti-

mating the rate of correlated evolution between several dis-

crete traits along a phylogeny. It does so by estimating the

transition probabilities q0,1 and q1,0 between the two traits;

the probability that a ‘clearer’ genotype will switch to being

a chronic genotype, and vice versa. There are two probabili-

ties because it can be easier to switch from one state to the

other, hence, q0,1 is not necessarily equal to q1,0. After esti-

mating these transition probabilities, the inputted control

value was saved, along with estimates of the switching rates

(with standard errors) and the log-likelihood for the esti-

mates. Note that in order for the analysis to proceed, there

needed to be heterogeneity in trait outcomes. That is, there

has to be at least one tip of each category present at the end

of the simulation, to cause transitions between the two

traits. If all the simulated tips were of one type only, we

artificially introduced an outcome of the opposite type at a

random tip on the phylogeny.

Overall, we ended up with 500 trees 9 20 trait control

values = 10 000 simulated outcomes for each genotype of

interest. Generally, the final outcome corresponded well

with actual data; with simulations along the Genotype 1

coalescent phylogeny, the average final number of clearers

equalled 6.99, which was not significantly different from

the true value of 7 (two-sided t = �0.298, P = 0.766). The

total number of clearers appeared to fluctuate around 7 for

most correlation values, but if the correlation value used as

an input approached 1, then this total number could reach

high values (so all tips would be assigned the infrequent

trait), or more likely to go to zero. This behaviour is due to

the final trait allocations being more likely to reflect the ini-

tial state assigned to the tree root (Fig. S1A). After remov-

ing extremely high outlier values (those that lie outside the

97.5% upper quartile), the estimated switching rates were

found to be significantly negatively correlated with the

input trait correlation values (for q1,0, F1,9748 = 135.7,

P < 2.2 9 10–16; for q0,1, F1,9748 = 177.4, P < 2.2 9 10–16;

see also Fig. S1B,C). This supported our intuition that with

high levels of virus control on trait outcomes, similar out-

comes tended to congregate around closely related tips.

These results were quantitatively similar for the Genotype 3

data set, and also to results produced using a birth–death
phylogeny.

Using simulation data to quantify virus control over traits

To estimate the control of the HCV virus genotype over

the infection trait, we estimated the switching rates for the

true data set, for 200 trees sampled from the BEAST analysis.

This gave us a range of true switching rates for the actual

data. These transition values are important in their own

right, as they notify to what degree infection outcomes

cluster on the phylogeny. Yet they are different from the

main quantity of interest, which is the extent to which the

trait is controlled by the virus. Therefore, using these esti-

mates, we then selected simulation data that jointly gener-

ated the same switching rates and then obtained the

associated correlation values that were used to generate

these same values (Fig. 3). This methodology shares many

similarities with the Approximate Bayesian Computing

(ABC) approach. In both cases, we first simulate many

response values (here, the switching rates and log-likeli-

hoods) using many sets of input values (here the virus con-

trol values), and then, when we observe such response

values in nature, work our way back to infer what the input

values are. One difference though is that in ABC the preci-

sion has to be set, whereas here we use the quantiles of the

real data to generate the confidence intervals for our esti-

mated data.

To test for significance, we randomized the tips 1000

times and obtained the estimated control value for each

random tipset. We denoted a control value as being signifi-

cant if more than 95% of the randomizations were lower

than the true value, as randomization should break up

associations between tips, thereby decreasing the expected

virus control over the trait. The fact that significance was

determined using maximum-likelihood estimates of the

switching rates meant that these values were optimized

based on the underlying phylogenetic tree. Therefore, the

randomization procedure tested for clustering between

Figure 3 Schematic showing how to estimate virus control c from sim-

ulation data. After estimating the switching rate (q1,0) from the true

data set (y-axis), the simulation points are found that also lie within this

range (grey horizontal lines). The associated control values are then

found from these points, so the median virus control value is then

obtained along with confidence interval limits (black lines on the x-axis).

Note that for this figure, we only plot a sample of all points on a log

scale for clarity of presentation.
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similar traits, while accounting for potential confounding

effects of the tree size and shape.

Testing for virus control over infection outcome while

conditioning on host’s IL28B status

Estimates of infection outcome correlation could have been

confounded by the presence of SNPs at the IL28B locus that

correlate with increased clearance rate. In these cases, we

wanted to obtain estimates of the trait correlation while

accounting for external factors. To achieve this, we calcu-

lated switching rates and log-likelihood values using the

BAYESTRAITS package (available from www.evolution.rdg.ac.uk),

which executes the maximum-likelihood analysis of Pagel

(1994) while accounting for secondary traits that can affect

the evolution of the main trait. We first checked that the

same results as the ‘ace’ package for R were obtained for

the switching rates if we only investigate one trait, which

they did. BayesTraits can thus be used to calculate the esti-

mated transition rates of infection outcome, given that

there is a possible covariation with the host’s IL28B genetic

status.

From these estimates, we recalculated the estimated virus

control over the trait, given the new transition probabili-

ties, from the simulation data as outlined above. We then

tested for significance by randomizing the tips 1000 times,

while ensuring that the infection outcome and host IL28B

factor for a specific tip remain linked together. Trait corre-

lation estimates were then recalculated for each of these

1000 new tip sets and tested for significance as before.

Results

Correlation between virus genomes and infection outcome

for all genome sequences

Genetic data obtained from the HITS-p cohort mostly

resolved itself into one of the two clades, specifically HCV

genotypes 1 (including subtypes 1a and 1b), and subtype 3a

(Fig. 1). These data sets are labelled as ‘Genotype 1’ and

‘Genotype 3’, respectively. As a first test of our method, we

investigated whether we could detect evidence of virus con-

trol over infection outcome for both genotypes analysed

together (a joint phylogeny is shown in Fig. S2). Results are

presented in Fig. 4A, which shows that a fairly high level of

virus control was observed (0.63), which was significant

(P = 0.044 following a randomization test). A lower value

(0.59) was observed for the birth–death model, which was

also marginally significant (P = 0.046; Fig. S3A).

The high level of virus control found for randomized tips

likely reflects that, although the log-likelihood of the

switching rates decreases with increased virus control, the

likelihood surface can be flat for a broad range of control

values. This effect can reduce the power of the method to

detect low levels of signal (see Fig. S1D for log-likelihood

values obtained over the Genotype 1 phylogeny). We will

investigate the power further in the section ‘Power calcula-

tions and analysis of simulated data’.

For this first analysis, it was assumed that infection out-

comes change independently of other factors. This is not

quite true, as there are known host polymorphisms that

can affect infection outcome. If these host effects cluster on

the virus phylogeny, then this host clustering may mask

any virus signal that would otherwise be expressed. There-

fore, we next investigated the phylogenetic signal of host

genetic effects.

Phylogenetic signal for host’s IL28B status

It is known that several polymorphisms near the IL28B

gene in humans correlate with increased clearance rate

of acute HCV infection. Those with a homozygous C/C

mutation at the rs12979860 SNP (hereafter IL28B-860)

are much more likely to achieve clearance (Ge et al.

2009; Thomas et al. 2009; Tillmann et al. 2010). Simi-

larly, those with a T/T genotype at the rs8099917 SNP

(hereafter IL28B-917) are more likely to clear the virus

(Rauch et al. 2010).

In theory, as these mutations are present in the host gen-

ome and not the virus, and we were analysing virus phylog-

enies, we should not have detected phylogenetic signal for

the host’s IL28B status. We therefore controlled whether

there was evidence of clustering for specific IL28B geno-

types on the virus phylogeny, as a clustering of host traits

could have masked expression of virus control on infection

outcome clustering.

Figure 4B,C outlines results when using the SNP that

maximized clearance rates for HCV (C/C for IL28B-860;

T/T for IL28B-917) as the trait of interest instead of the

chronic/clearer outcomes. No significant correlations were

obtained, although p values tended to be close to signifi-

cance for the IL28B-917 SNP (Fig. 4C; phylogenetic signal

value = 0.646; P = 0.054). Results were quantitatively simi-

lar if using a birth–death phylogeny (Fig. S3B,C).

The near-significant result for IL28B-917 SNP highlights

a possibility of nonrandom clustering of host genetic effects

on the phylogeny, which could have affected our previous

analysis on infection outcome status.

Correlation in infection outcome, accounting for host

status

As there could have been potential confounding effect from

the host in determining potential influence of the virus

control on infection outcome, we repeated the first analysis

while accounting for the host’s IL28B status. To this end,
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we used BAYESTRAITS (available from www.evolution.rdg.ac.uk)

to recalculate estimated transitions rates of the infection

outcome, given that they could be affected by a secondary

trait (in this case, the host’s IL28B-917 genotype). We did

not investigate the effect of IL28B-860 SNP as a co-factor as

we did not find nearly significant evidence of this trait clus-

tering on any of the phylogenies. This second analysis

essentially removed the variance in infection outcomes

solely caused by host differences and focused on the virus

control on the residual variance. We then used these new

rates to calculate estimates of virus control from the simu-

lated data set of infection outcomes.

The results from the repeated analysis are outlined in

Fig. 4D. A significant (P = 0.015) and high virus control

value of 0.87 was obtained if infection outcome covaried

with the IL28B-917 SNP. The control value obtained using

the birth–death phylogeny was slightly lower (0.84) but

remained strongly significant (Fig. S3D).

This initial analysis demonstrates how, over our entire

data set, there appears to be a strong effect of the virus

(A)

(C) (D)

(B)

Figure 4 Estimate of control signal for a single trait, based on a coalescent phylogeny for all sequences. Control signal estimates as inferred from the

actual data set of interest (black), and of the 1000 median values of virus control estimates obtained from randomized tipsets (grey). P values listed

above each pair of box plots show significancy of true control value based on randomization test; bold values indicate P < 0.05. Data analysed were

the infection outcome (A); the status of the IL28B-860 SNP (B) or IL28B-917 SNP (C); or the the infection outcome covarying with the IL28B-917 SNP

(D).
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genotype on infection outcome, especially after correcting

for host genotype. However, this analysis does not deter-

mine whether this signal is driven by effects of one specific

genotype. This could be true if the genotypes respond dif-

ferently to treatment (Lauer and Walker 2001). In addition,

it could be argued that the high level of phylogenetic signal

was instead caused by the large phylogenetic distance

between the two genotype clades (Fig. S2). There may also

be uncertainty about whether the two subclades are from

different transmission networks. To this end, we subse-

quently repeated this analysis but on the separate Genotype

1 and Genotype 3 data sets.

Separate analysis of genotypes

For this analysis, we first tested whether a model that

had different transition rates for each clade provided a

better fit than one using the same transition rates for

each subclade. Initially, we compared four switching rates

(different q0,1 and q1,0 values for the Genotype 1 and 3

subclades), as opposed to two rates (same q0,1 and q1,0
for each subclade). We found that the four-rate model

provided a better fit, as determined by a lower BIC value,

irrespective of whether we used a coalescent or a birth–
death phylogeny (data not shown). This result reflects

the large phylogenetic distance between Genotype 1 and

3 clades (Fig. S2).

We next investigated whether we could detect evidence

of a significant level of virus control over infection out-

come for the two data sets of interest. The results of our

analysis are presented for Genotype 1 (Fig. 5A) and Geno-

type 3 (Fig. 6A). For Genotype 1, a significantly high con-

trol value of 0.67 was obtained (P = 0.012). However, for

Genotype 3, a close but nonsignificant value of 0.573

(P = 0.099) was found. Phylogenetic signal for the birth–
death phylogeny remained significant for Genotype 1 (Figs

S4A and S5A).

It was then determined whether there was any potential

clustering of host genotypes along these subclades (Fig. 5B,

C for Genotype 1; Fig. 6B,C for Genotype 3). As for the

complete data set, we did not obtain any significant results

(Fig. 5C; see also Fig. 1 to see clustering of the IL28B-917

SNP on the phylogenies).

Note that the degree of observed clustering does not say

anything about the correlation between the infection out-

come and the IL28B SNP. It instead measures whether

more related viruses tend to be found in similar host types.

One possible reason for signal could be due to selection

acting on the hypervariable segment within hosts during

infection. To test for this effect, we repeated the analysis

with phylogenies built using third codon positions only,

which should be largely (but not completely) free from

selection. This analysis produced essentially the same esti-

mates of phylogenetic signal as found using a phylogeny

built using the whole genetic region (Table S1). Therefore,

host clustering does not seem to arise due to selection act-

ing on the hypervariable segment. We will come back to

the phenomena of host clustering in further detail in the

Discussion.

Finally, we investigated the phylogenetic signal for infec-

tion outcome over each subclade, as it covaried with the

IL28B-917 SNP (Fig. 5D for Genotype 1, 6D for Genotype

3). We found a significant virus control value of 0.63 for

Genotype 1; this estimate was not significantly different

from the value obtained without correcting for host effects

(two-sided t = 1.66, P = 0.0961). However, despite a

higher control value being obtained for Genotype 3 than

before (0.64), it was nonsignificant following the randomi-

zation test. The estimated control value using the birth–
death phylogeny was higher for Genotype 1 (0.69) and

remained significant. Although a similarly high value was

found for the Genotype 3 birth–death phylogeny (0.66), it

was not significant due to the high estimates obtained from

randomized tips (Figs S4D and S5D).

Overall, this analysis suggests that the phylogenetic signal

obtained for the complete data set was strongly driven by

viruses of Genotype 1. After correcting for IL28B status, the

Genotype 1 estimate was lower than that for the total data

set (0.63, compared with 0.87 for all data), implying that

the level of virus control could have been inflated when we

pooled all samples due to the extra phylogenetic structure

caused. We further investigated this result using power

simulations, to verify that our estimates for Genotype 1 are

accurate.

Power calculations and analysis of simulated data

In the previous analysis, one of the more glaring outcomes

is that even randomized tips gave rather high estimates of

virus control, lying at around 40%. The randomization test

determined that our data from Genotype 1 showed evi-

dence of phylogenetic signal compared with randomized

tips, but the question remained as to whether the magni-

tude of the estimates of virus control we obtained are

meaningful.

To determine the accuracy and the potential power of

our method, we simulated 100 different tip outcomes along

the Genotype 1 phylogeny, for a known virus control value

(c), with each outcome produced along a separate tree from

the posterior distribution. We then used our method to

estimate the level of virus control from these simulated

data sets as before, except that we tested for significance

using 100 randomized tips as these tests were computation-

ally intensive.

Figure 7 shows the results of this analysis. We see that

as the level of simulated virus control c increases, the
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number of significant runs, and thus the power of the

method, also increases. However, the power is generally

quite low (ranging from 2/100 runs being significant if

simulated c equals 0.55, to 17/100 if c = 0.85). In addition,

the estimated level of virus control from the significant

estimates increases with the input value (the slope of the

linear fit is 0.35). Although error estimates are quite large

for inputted c = 0.55, we see that the estimated values are

fairly accurate in estimating the actual input by comparing

mean points to the y = x line. However, if the input value

is very large, then the control value is underestimated

(when we set c = 0.85, the estimated level of phylogenetic

signal is 0.73).

Overall, these power simulations showed that given a

result is significant, the obtained estimate of virus control

is likely to lie close to the actual level of phylogenetic signal

that is present. However, this method also shows that our

method can be prone to noisy estimates, which reduced the

(A) (B)

(C) (D)

Figure 5 Estimate of control signal for a single trait, based on a coalescent phylogeny, for sequences from Genotype 1. Control signal estimates as

inferred from the actual data set of interest (black), and of the 1000 median values of virus control estimates obtained from randomized tipsets

(grey). P values listed above each pair of box plots show significancy of true control value based on randomization test; bold values indicate P < 0.05.

Data analysed were the infection outcome (A); the status of the IL28B-860 SNP (B) or IL28B-917 SNP (C); or the the infection outcome covarying with

the IL28B-917 SNP (D).
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power of the analysis. This result makes clear the need for

future work to increase the precision of phylogenetic infer-

ence (Shirreff et al. 2013).

Discussion

While there are known host factors that can determine the

infection outcome of an HCV infection (Ge et al. 2009;

Thomas et al. 2009; Rauch et al. 2010; Tillmann et al.

2010), there currently exists very little information on how

virus genetics affect the infection outcome. Using a phylo-

genetic method combined with data from an Australian

prisoner cohort, we showed that diversity in the virus geno-

type could partly explain diversity in the infection out-

come.

In our initial analysis, we detected a high level of phylo-

genetic signal once correcting for the host’s IL28B-917

SNP, indicating that a virus genomic effect could be pres-

ent (Fig. 4). We then analysed each subclade separately as

the high signal level could have been caused by general dif-

(B)(A)

(C) (D)

Figure 6 As Fig. 5, but with sequences from Genotype 3.
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ferences between genotypes. When investigating only the

phylogenetic distance correlation between virus sequences

and infection outcomes, we found a significant signal for

Genotype 1 (Fig. 5A) but not for Genotype 3 (albeit our

result was close to significance; Fig. 6A). We then repeated

this analysis while accounting for the host’s IL28B genotype

as a co-factor to explain non-IL28B clearance effects and

found that the virus control value equalled 0.63 for Geno-

type 1 (Fig. 5D), which was not statistically different to the

estimate without the correction (0.68).

Therefore, our analyses suggest that for Genotype 1 of

HCV, a substantial component of clearance that is not due

to the IL28B genotype is likely to be explained by the simi-

larity of viral sequences infecting the host. However, we did

not detect a significant effect for Genotype 3. The most par-

simonious explanation for not detecting signal is probably

that it is too weak to be picked up by the current method:

our power calculations suggest that the signal has to lie at

about 50% to be detected (see also Shirreff et al. (2013)).

In addition, the coalescent effective population size is much

higher for Genotype 3 (~223 for Genotype 1, compared to

~1398 for Genotype 3), suggesting that this clade has been

undersampled so as to lose phylogenetic signal. The addi-

tion of more sequences could therefore help to detect sig-

nificant signal for Genotype 3.

While the clustering of infection outcomes suggests that

there is an effect of virus genetics on infection outcome for

Genotype 1, caution should be taken in interpreting the

magnitude of these estimates as phylogenetic signal could

also arise due to the action of an unknown co-variate that

has an effect on virus persistence, such as age or gender.

Additionally, it could be argued that infection outcomes

cluster due the effect of a different disease that is co-trans-

mitted with HCV. With the HITS-p cohort, the over-

whelming majority of transmissions are caused via

contaminated injecting or tattooing equipment (Dolan

et al. 2010; Teutsch et al. 2010), so co-transmission of

other pathogens is unlikely. This is because other blood-

borne pathogens that could be transmitted, notably HIV

and Hepatitis B, are present at low frequencies in the pris-

ons (<1% for HIV and 5% for HBV). Furthermore, entry

into the cohort is only permissible to those not already

infected by HIV, so outcome clustering is not due to the

effect of HIV co-transmission.

Host clustering on a virus phylogeny

An important discussion point is why we detected relatively

high and near-significant rates of correlation amongst the

host IL28B genotypes when we pooled all the data, as theo-

retically there should not have been any magnitude of host

genetic outcomes clustering along the phylogeny, which

was built based using virus genotypes only. One explana-

tion is that host clustering arose due to a quirk of host sam-

pling, if hosts were genetically related (for example, if they

were twins) and also shared the same transmission history.

In this regard, no known first-degree relatives were enrolled

in the cohort, so this type of sampling bias should not exist.

A more exciting explanation is that there was an interac-

tion between the lineage of the virus and the host genetics.

This effect could have arisen if the host acts as a virus filter,

so only some HCV viruses can infect hosts that have IL28B

genotypes that increase clearance rate. Another explanation

is that the host IL28B genotype selects for specific virus

mutations from amongst the quasispecies shortly after the

infection has occurred, explaining their genetic similarity.

This would be a case of parallel evolution (organisms that

have evolved in similar environmental conditions and face

the same challenges tend to look alike). However, as phylo-

genetic signal was nearly significant for only one host SNP

(IL28B–917) for the complete data set only, and the same

degree of signal was also present on a third-site phylogeny

(where most selective effects of the virus should be absent),

then these findings do not strongly suggest that there is

major selection acting by the host. Importantly, this signifi-

cant interaction we detected between the virus phylogeny

and the host genetics should not be mixed with the known

correlation between host genetics and infection outcome

Figure 7 Phylogenetic signal estimated from simulated data with

known control value (c), along the Genotype 1 phylogeny. 100 tipsets

were simulated per input value, with the number of estimates that are

significant listed in the x-axis. Each point shows the mean value of the

significant estimates, with error bars representing 95% confidence

intervals. The dotted line shows the y = x line; the dashed line shows a

linear regression fit, with slope 0.35 (adjusted R2 = 0.88, P = 0.0392).
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(Thomas et al. 2009). However, one interesting extension

would be to determine the effect of the virus phylogeny on

inferring the correlation between host IL28B polymor-

phism and infection outcome. This has been done for HIV

(Bhattacharya et al. 2007), but to achieve this for HCV, a

larger data set is required.

Perspectives

It is becoming increasingly recognized that the variance in

viral infection outcomes is not just due to host genetics;

differences in the virus also plays an important role

(Alizon et al. 2011). While there is now substantial work

investigating how infection outcomes correlate amongst

related strains in HIV [reviewed in M€uller et al. (2011)],

little work has been undertaken for other viruses of

humans, including HCV. The results of this study show

that there is a correlation in HCV infection outcome

between related strains, for Genotype 1 at least. These

findings have important implications in the prognosis of

HCV infections in general and can be used to improve

and potentially generate new virus-specific or host-specific

therapies.

These findings also shed some interesting light on the

process of virus evolution. Superficially, it seems baffling as

to why HCV infections that clear immediately after the

acute stage should be maintained by the virus genotype, as

their presence appears to reduce opportunities to spread

the pathogen. It could be that ‘clearer’ HCV genotypes are

weakly deleterious, as reflected in the low frequency of clea-

rers that are observed. These weakly deleterious genotypes

could be maintained between hosts at low frequencies via

recurrent mutation (Wright 1931), which could lead to

clearer HCV infections having similar genotypes, if muta-

tion is required at specific sites to cause a clearing infection.

This mechanism could also be an example of ‘short-

sighted’ evolution of HCV, in which clearing outcomes

evolve due to a within-host benefit, but at a cost of reduced

transmission (Levin and Bull 1994). We therefore antici-

pate that these results will motivate further work into eluci-

dating the interactions between virus and host genotypes,

and also into how these interactions affect the evolution of

virulence and pathogen transmission. A phylogenetic

analysis of ancestral ‘founding’ variants could be used to

investigate this hypothesis; if clearing variants were delete-

rious in the long term, then they would become extinct

over short timescales. Otherwise, they would persist and

form distinct subclades.

Our method is able to elucidate correlations between

virus genetics and categorical infection outcomes that

may not be detectable using standard clustering statistics

(Parker et al. 2008). In contrast with earlier methods, this

method also provides a quantitative estimate of virus

control over a categorical trait, as well as taking into

account uncertainty in phylogenetic sampling, which is a

common issue (Parker et al. 2008). However, the method

can be inherently noisy, as reflected in the high signal

levels detected for randomized tips and the fact that we

did not detect significant signal for Genotype 3, even

after correcting for the host’s genotype (see also power

simulations, Fig. 7). We anticipate that if more sequences

were available, then the method would be less affected by

its inherent noise. Secondly, phylogenies were constructed

based on genetic data of only a part of the HCV genome,

as opposed to whole-genome sequences. Analysing longer

sequences or different regions of the HCV genome might

result in phylogenies that more accurately reflect the

complete set of virus variants. Some areas of the genome

have minimal host interactions, whereas other regions

strongly interact with the innate and adaptive elements of

the host immune response. Therefore, phylogenies based

on other parts of the virus genome could also reveal

different interaction effects with host genetics. Finally, we

hope that future research would refine methodology,

so that it would be more likely to detect low levels of

phylogenetic signal.

Conclusion

In summary, by creating a method to simulate inheritance

of a binary trait along a set of phylogenetic trees, we have

found that the HCV phylogeny controls 67% of the phylo-

genetic signal of acute HCV infection for Genotype 1. This

outcome could have arisen due to an inherited or transmit-

ted trait within the HCV genome. Overall, this finding not

only suggests that the virus genotype can affect infection

outcome, but this is also dependent on the specific subtype

of HCV, and host genetics. These findings should motivate

further research into host–parasite interactions that affect

virus evolution.
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Figure S1. Plots of how various simulation statistics vary with
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Figure S2. Phylogeny of the joint Genotypes 1 and 3 data set.

Figure S3. Estimate of control signal for a single trait, based on a

birthdeath phylogeny for all sequences.

Figure S4. Estimate of control signal for a single trait, based on a

birthdeath phylogeny, for sequences from Genotype 1.

Figure S5. As Fig. S4, but with sequences from Genotype 3.
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