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abstract: The evolutionary emergence of new pathogens via mu-
tation poses a considerable risk to human and animal populations.
Most previous studies have investigated cases where a potentially
pandemic strain emerges though mutation from an initial mal-
adapted strain (i.e., its basic reproductive ratio R0 ! 1). However, an
alternative (and arguably more likely) cause of novel pathogen emer-
gence is where a “weakly adapted” strain (with R0 ≈ 1) mutates into
a strongly adapted strain (with R0 k 1). In this case, a proportion
of the host susceptible population is removed as the first strain
spreads, but the impact this feedback has on emergence of mutated
strains has yet to be quantified. We produce a model of pathogen
emergence that takes into account changes in the susceptible pop-
ulation over time and find that the ongoing depletion of susceptible
individuals by the first strain has a drastic effect on the emergence
probability of the mutated strain, above that assumed by just scaling
the reproductive ratio. Finally, we apply our model to the docu-
mented emergence of Chikungunya virus on La Réunion Island and
demonstrate that the emergence probability of the mutated strain
was reduced approximately 10-fold, compared to models assuming
that susceptible depletion would not affect outbreak probability.
These results highlight the importance of taking population feedbacks
into account when predicting disease emergence.

Keywords: epidemiology, evolution, outbreaks, pathogen emergence,
changing population sizes, Chikungunya virus.

Introduction

The emergence of new pathogens arising from preexisting
zoonotic or human strains poses a major worldwide health
risk. For humans, the most well-documented examples
include pathogens spilling over from zoonotic reservoirs
(Wolfe et al. 2007), but this is not the only mechanism
that can lead to emergence. An existing pathogen could
be contained with a low rate of spread but then create a
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stronger outbreak, either due to the pathogen mutating or
to environmental change. For example, there exists evi-
dence that following a vaccination program, new patho-
genic strains can arise that ave evolved so are resistant to
existing treatment (Gandon and Day 2008). Pathogen
emergence also poses a severe risk to livestock populations
(e.g., through foot and mouth disease; Woolhouse et al.
2012), and plant crop populations (Fargette et al. 2006).
It is therefore important to ascertain when spillovers and
emergence of new outbreaks are likely to occur, especially
from preexisting strains, in order to monitor and control
their spread (Arinaminpathy and McLean 2009; Pérez-
Reche et al. 2012).

Stochasticity has long been known to be at the heart of
emergence processes because in the initial stages of an
outbreak the number of infected hosts is very dlow. In a
deterministic model, the spread of a pathogen strain in a
host population is governed solely by the number of sec-
ondary infections it generates, which is the basic repro-
ductive ratio R0 (Anderson and May 1991). In stochastic
models, this is not the case as the number of secondary
infections caused by each infected host is drawn from a
distribution. For instance, if the duration of infection is
exponentially distributed and contacts follow a Poisson pro-
cess, then the probability of emergence equals 1 � 1/R0

(Diekmann and Heesterbeek 2000). Additionally, the role
of pathogen evolution and migration in causing new out-
breaks in novel populations has been recognized and
widely studied (recently reviewed in Gandon et al. 2013).
Previous models highlighted the important fact that even
benign strains can be dangerous, as even though they are
due to become extinct, they may persist in large popu-
lations long enough to give rise to well-adapted mutants
that can subsequently cause an outbreak (Antia et al. 2003;
Iwasa et al. 2003, 2004). The effect of pathogen life history
(André and Day 2005) and population structure (Alex-
ander and Day 2010; Kubiak et al. 2010) have also been
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Table 1: Nomenclature used for different epidemic states

Reproductive
ratio Name Properties

R0 ! 1 Maladapted Guaranteed to become
extinct unless mutation
occurs

R0 p 1 � y,
y K 1

Weakly adapted Can cause a large out-
break, but likely to be-
come extinct by drift

R0 k 1 Strongly adapted Almost certain to cause a
major epidemic in the
population

modeled, as well as the effect of host heterogeneity and
assortative mating (Yates et al. 2006).

Importantly, previous models have focused on the case
where the pandemic (well-adapted) strain, with an R0 1 1,
emerges through mutation from a maladapted strain, with
an R0 ! 1, which is bound to become extinct rapidly (see
table 1 for the nomenclature we use to denote general R0

values for different strains). However, this is not the only
scenario that can lead to a pandemic, nor arguably the
likeliest. An alternate scenario, which has received less at-
tention, is where an intermediately adapted strain would
first create an initial outbreak, which would be limited in
spread as it would have a low R0 close to 1. A mutation
could then arise in one individual that would subsequently
increase the R0 of the pathogen to a much higher level,
creating a more potent outbreak. This type of emergence,
from a limited to a large outbreak, plays an important role
in the transferring of zoonotic pathogens into complete
human agents (Wolfe et al. 2007). This scenario is also an
example of “evolutionary rescue” (Gonzalez et al. 2013),
where evolution is needed to prevent quick extinction of
the weaker strain, which can also be important regarding
the emergence of novel drug-resistant strains at the intra-
host, cellular level (Alexander and Bonhoeffer 2012).

Although this scenario is more likely to occur for many
microparasitic infections (because the initial and the mu-
tant strain are likely to be antigenically close), it is also
more difficult to capture mathematically because it leads
to the violation of one of the important simplifying as-
sumptions made by earlier models. When a pathogen mu-
tates from R0 ! 1 to R0 k 1, it is safe to assume that the
number of hosts infected by the initial (maladapted) strain
is negligible. However, if R0 1 1 initially, then the suscep-
tible population would, in general, reduce over time as
individuals become immune or die out. This reduces the
emergence probability of the second strain, as there are
fewer susceptible individuals available to transmit the
pathogen to. Furthermore, the initial strain might continue
to spread for awhile, hence further depleting the pool of
susceptible hosts available to the mutant strain. This pro-
cess is likely to arise due to infection by the first strain
rendering the host immune to the mutant strain (cross-
immunity), which is the basis for vaccination (Keeling and
Rohani 2007).

A model incorporating such population dynamics feed-
backs is needed to allow the analysis of several outbreaks.
For instance, mutations arising in the vector-borne Chi-
kungunya virus around the Indian Ocean caused a new
infection wave to arise, with a higher reproductive rate,
from an initially smaller one where viruses had a lower
reproductive rate (Schuffenecker et al. 2006). The first
strain, which created a minor outbreak in May–June 2005
at La Réunion (Renault et al. 2007), seemed to have an

R0 of around 1, because while it did not greatly increase
in frequency over time, it was maintained in the popu-
lation at a low frequency. The second strain, which appears
to consistently differ from the first by two point mutations
(Schuffenecker et al. 2006), created a major outbreak in
La Réunion over January and February 2006 (Renault et
al. 2007). Further analyses revealed that this mutated strain
was particularly well adapted to exploit the mosquito vec-
tor Aedes albopictus (Vazeille et al. 2007), the dominant
vector on the island, infecting it in around 90% of cases,
while experimental infections of vectors using the previous
strain only had a success rate of around 20%. This effect
most likely explains the increase in its R0. Additionally,
these virus mutations seem to have occurred indepen-
dently in several distant populations (de Lamballerie et al.
2008), which underlines the importance of virus evolution
in triggering further outbreaks. Finally, it is known that
recovering from a Chikungunya infection generates a
strong immunity, which seems to target both the initial
and the mutated strain (Renault et al. 2007).

Another example is the so-called Spanish flu of 1918,
which started with a mild first wave in summer 1918,
before a second wave was triggered in August that caused
millions of deaths (Frost 1919). However, it is unknown
whether the more virulent second wave was caused due
to the strain evolving or due to demographic or environ-
mental changes (Méthot and Alizon 2014). Again, cross-
immunity is thought to be strong for antigenically close
influenza viruses (Ferguson et al. 2003). Modeling this
evolutionary process can therefore provide insight into the
possible causes of the onset of the second strain.

Finally, in a modeling study of dengue fever, Lourenço
and Recker (2010) found that novel strains of the disease
had their highest emergence probability when existing
strains are at a low frequency. This is because invasion of
new genotypes can be hampered by competition from ex-
isting strains, exemplifying how population feedbacks can
prevent the spread of new strains, in a manner similar to
the above examples.
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Table 2: Glossary of notation

Symbol Usage

R0 Basic reproductive ratio of first outbreak
F0 Basic reproductive ratio of second (mutated)

outbreak
b1, b2 Transmission rate of first, second pathogen
d1, d2 Total removal rate of first, second pathogen
m Mutation rate from first to second strain
S Size of susceptible class (number of individuals)
I1, I2 Size of those infected with first, second

pathogen
R Size of removed class
N Total host population size (S � I1 � I2 � R)
Q Extinction probability in an nonequilibrium

population for a single strain
P Extinction probability in an nonequilibrium

population if a strain is already present
Pemer Overall probability of mutated strain emerging

A B

Figure 1: A schematic of the model and second-strain emergence possibilities. A, An adaptive mutation arises early on as the first strain
is emerging (denoted by X). As there are enough susceptible individuals present (denoted by gray shading; the plus sign (�) indicates
susceptible frequency when the second strain arises) then this strain can emerge into a stronger outbreak. B, The second strain appears
later on and has less chance of emerging due to fewer susceptible individuals present. Therefore it is more likely to become extinct.

Here, we outline an analytical model to investigate the
effect of epidemiological feedbacks on pathogen emer-
gence. We derive the probability that, given an initial
weakly spreading pathogen (R0 close to but exceeding 1),
it can mutate into a second pathogen with a much greater
rate of spread (R0). We form this probability via a two-
step model. In the first stage, the initial pathogen spreads
deterministically but can mutate into a new strain at any
time before it goes extinct. The second stage calculates the
probability that this second strain emerges, instead of be-
coming extinct by drift. We find that the ongoing depletion
of the susceptible population by the initial strain drastically
reduces the emergence probability, compared to classical
branching process results that assume that the susceptible
population remains fixed as the new strain emerges (Allen
2008). We produce analytical solutions for the probability
of emergence in this scenario, which we show to be ac-
curate when compared to stochastic simulations. Specifi-
cally, we derive an equation for the emergence probability
for the second strain, while accounting for the feedback
that causes continual depletion of the susceptible popu-
lation (an effect often overlooked in emergence modeling),
and show how this mechanism drastically decreases the
emergence probability. Our model therefore highlights
how epidemiological feedbacks can strongly affect emer-
gence probabilities of emerging strains. Finally, we apply
our model to the Chikungunya virus outbreak in La Ré-
union and show the severe reduction in emergence prob-
ability due to susceptible depletion, which could counter-

act the adaptive ability of the initial strain and limit the
possibility for future outbreaks to arise.

Model Formulation and Analysis

Model Outline

In order to produce the probability of emergence of a
mutated strain, we proceed as follows. A schematic of the
process is outlined in figure 1, and table 2 outlines the
notation used in this model. We first assume that an initial
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strain is spreading throughout the population with repro-
ductive ratio R0. Generally, this R0 will be close to but
exceeding 1; additionally, we assume that the epidemic is
not lost in its early stages and generates a small outbreak.
Therefore, the first strain will spread in a fairly determin-
istic manner and exists for long enough to potentially
mutate into a new strain. Second, at any point in time
during the emergence of this first strain, one of the hosts
infected by this initial strain can transmit a pathogen that
mutated into a more forceful strain (defined here as having
a larger reproductive ratio, F0 1 R0). The emergence of
mutated strains therefore depends on a balance between
the size of the initial outbreak at a certain time, which
determines the overall probability of mutation, and there
being enough susceptible hosts to enable the second strain
to spread, while the first strain is still transmitting
infection.

The second (mutated) strain can emerge in the host
population with probability P. In traditional epidemic
models, P is equal to 1 � 1/F0 (Allen 2008). However,
this result assumes that the underlying host population is
fully susceptible. This assumption is violated in this model
in two ways. First, the initial strain is still spreading as the
second strain emerges, using up the underlying susceptible
population. Additionally, the second strain can appear at
any time during the spread of the first strain (fig. 1); unless
the second strain appears as the first strain is emerging, then
the assumption of a fully susceptible population is also vi-
olated. Normally, the effects of a partially susceptible pop-
ulation are accounted for by using an “effective” repro-
ductive ratio, P p 1 � 1/F0, eff, where F0, eff p F0(S/N)
(McCallum et al. 2001; Lloyd-Smith et al. 2005a). How-
ever, this term does not take epidemiological feedbacks
into account due to ongoing susceptible depletion and will
therefore overestimate the actual emergence probability.
We will subsequently discuss an approximation for P that
can be used to provide an accurate emergence probability
in this case, which accounts for both the susceptible pop-
ulation present when a new strain emerges and how it is
affected by subsequent population feedbacks. Finally, by
integrating these probabilities over the entire course of the
initial epidemic, we obtain the overall probability of the
second strain emerging and causing a major outbreak.

Derivation of Model

Assume that the dynamics of the first strain are governed
by a traditional susceptible-infected-removed (SIR) model
(Anderson and May 1991), as given by the following set
of differential equations:

dS S
p � b I , (1a)1 1dt N

dI S1 p b � d I , (1b)1 1 1( )dt N

dR
p d I , (1c)1 1dt

where S, I1, and R are the absolute number of susceptible,
infected, and either recovered and/or immunized individ-
uals present at time t; N is the total population size; b1 is
the transmission rate of new infection on contact; and d1

is the recovery rate. Note that these equations sum to 0,
indicating that the population size N is constant over time
(as dN/dt p 0). Also note that in the long-term, the initial
and mutated pathogens will both become extinct, as I1

goes to 0 if the susceptible population becomes too low
to carry an epidemic. However, it still makes sense to
discuss pathogens emerging as there is a certain time frame
at the start of an epidemic when the pathogen reaches a
high-enough frequency and spreads in a fairly determin-
istic manner (Allen 2008; Hartfield and Alizon 2013b).

In order to track the deterministic spread of the first
pathogen strain, an analytical form for I1 as it changes over
time is needed. However, it is not possible to solve equa-
tion (1) analytically to find I1 as a function of t. To make
progress, we follow the approach used in Hansen and Day
(2011) and note that since the current number of suscep-
tible hosts S is a strictly decreasing function of time, then
we can rewrite equations (1) as functions of S instead.
Specifically, by dividing equation 1b by equation (1a), we
obtain:

dI N1 p � 1. (2)
dS SR 0

Here, R0 p b1/d1 and is the basic reproductive ratio of
the epidemic (Anderson and May 1991). Equation (2)
makes explicit that if the population is fully susceptible
(N p S), the epidemic can spread deterministically if
R0 1 1. We can solve this differential equation with the
condition I1(S p N) p I0 to obtain:

N N
I (S) p (N � S) � log � I . (3)1 0( )R S0

Normally, I0 p 0; that is, if the population is fully
susceptible, then no infected individuals exist. However,
this formalization does not take into account the fact that
if the epidemic escapes stochastic loss, then it will increase
in frequency faster than predicted by the deterministic rate
of change (eq. [2]). This is because there is a large sto-
chastic effect on trait frequency when it is rare, and cases
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where the trait increases in frequency faster than expected
are more likely to lead to the new trait emerging. This is
a well-known issue in population-genetic studies of emer-
gence of new adaptive traits (Maynard Smith and Haigh
1974; Otto and Barton 1997; Barton 2000). To correct for
this effect, it is sufficient to simply increase the initial
frequency of the pathogen I0, in order to account for this
oversampling (Barton 1994), and to minimize the effects
of drift while the trait is emerging. We set it to 5/log(R0),
which is the number of infected individuals needed to
make it unlikely (P ! .005) that the strain is lost by drift
in a large population (Hartfield and Alizon 2013b). Note
that when we compared our model to simulations, this
frequency was reduced to 1/log(R0) for N p 100, as oth-
erwise the previous threshold would exceed N if R0 was
small enough, due to this result primarily holding for large
populations.

For a specific number of susceptible hosts S, a current
infection can mutate with probability m into a new strain;
assuming that m K 1, so that it is rare for more than one
new mutant to appear per generation, then the probability
that a new strain appears by mutation is mI1(S). The new
strain can then fully emerge and overcome stochastic loss
with probability P(S). In order for this strain to never
emerge at all, then at each time step a mutant strain never
emerges; the probability of this at a single time point is
1 � mI1(S)P(S). One minus this probability, multiplied
for all time points, is the probability Pemer that a mutant
strain ultimately emerges. That is,

S0

P p 1 � (1 � mI (S)P(S)), (4)�emer 1
SpSmin

where Smin is the minimum susceptible population needed
to give a nonzero emergence probability of the mutant
strain. If each probability P(S) is small, then we can ap-
proximate this product function by an exponential integral
(see Hartfield and Otto 2011 for a similar derivation):

S0

P ≈ 1 � exp (�mI (S)P(S)) (5a)�emer 1
SpSmin

S0

p 1 � exp � mI (S)P(S) (5b)� 1( )
SpSmin

S0

≈ 1 � exp � mI (S)P(S) . (5c)� 1( )
SpSmin

To complete this derivation, we need to find an analytical
form for P(S) and Smin, which we will analyze in turn.

Probability of a Mutant Strain Emerging (P(S)).

In the appendix (and supplementary material S1, available
online), we derive the form for the emergence probability
of a mutant strain, given that the susceptible population
is being depleted by a preexisting strain (strain 1):

F N F � 10 0 �(F �1)/F0 0P(S) p 1 � 1 � e , (6)[ ( )]I (S)R � F S F1 0 0 0

where F0 is the reproductive ratio of the mutant strain.
This equation assumes that the rate at which an infection
ends are approximately equal for both strains; we will show
that for R0 close to 1, this solution remains accurate, even
if the recovery rates differ. The important thing to note
is that not only is part of this solution proportional to
N/S (reflecting the growth rate R0 decreasing by a fraction
S/N as susceptible individuals are removed), but it is also
proportional to 1/(I1R0 � F0). This highlights the fact that
even as the second strain appears by mutation and spreads,
the emergence probability is decreasing during this initial
phase, as the susceptible population is reduced due to the
continuing spread of the first strain. This formulation as-
sumes complete cross-immunity is present between the
original and mutated strains. It also assumes that the death
rates for both strains are approximately equal, so that the
final equation is only given as a function of reproductive
ratios, which are easier to measure from empirical data.
We will show that this equation to remain accurate if R 0

is close to 1, even if the death rates differ.

Minimum Susceptible Level (Smin)

The lowest limit of S for the emergence of the mutant
strain to be possible depends on which limit is attained
first. Either the first strain I1 exhausts itself (by running
out of hosts to infect), therefore there are no infected
individuals that can mutate into the second strain. This
arises when equation (3) equals 0, which holds for

N
� R (N�I )]/N[ ]0 0S p � W (�R e ), (7)min , 1 Z 0R 0

where WZ is the Lambert W function (Abramowitz and
Stegun 1970) and I0 the initial frequency of the first strain.
Note that this limit is determined solely by the reproduc-
tive ratio of the first strain (R0). Alternatively, S can drop
low enough so that P falls below zero; that is, there are
no longer enough susceptible individuals in the population
that can carry a new epidemic if it appears. In this case,
the lower limit for S is

F � 10 �(F �1)/F0 0S p N 1 � e . (8)min , 2 ( )F0
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In contrast, Smin, 2 is determined solely by the repro-
ductive ratio of the second, mutated strain (F0). Overall,
the lower limit of integration Smin is the maximum out of
Smin, 1 or Smin, 2; that is, either when the first epidemic ex-
hausts itself or when there are no longer susceptible in-
dividuals present to carry a new infection, whichever limit
is reached first.

Figure 2 displays Smin as a function of the reproductive
ratios of both strains (R0 and F0). In general, we see that
as R0 increases, the limitation on emergence is caused by
the burnout of the susceptible population by the first
strain. What is unexpected is that the increase in the
boundary between Smin, 1 and Smin, 2 is nonlinear as a func-
tion of R0. This is due to the fact that not only are sus-
ceptible individuals being removed after the first strain
clears (reducing emergence probability by a factor of S/N
at a set timepoint) but also that the susceptible population
continues to decrease as the second strain emerges because
the first strain is still spreading. This nonlinearity with
increased R0 clearly illustrates how ongoing feedbacks,
which are usually neglected in epidemiological models,
lead to a larger, negative effect on pathogen emergence.

Note also that if R0 is very close to 1 (less than 1.04
with the default parameter used in fig. 2), Smin, 2 becomes
more likely to determine the the minimum susceptible
population size Smin (i.e., Smin p Smin, 2 in this parameter
space), even though the first infection should not spread
for a long time. This is due to the fact that our assumption
of an increased I0 value has important consequences for
these small R0 values, as the maintenance of weakly spread-
ing strains by drift can create more opportunities for
emerging strains to arise, compared to deterministic mod-
els where these pathogens quickly become extinct. How-
ever, this does not appear to make the analytical results
inaccurate compared to simulations, as the high I0 com-
pensates for the fact that the infected population size drifts
at low frequency (if it does not become extinct), which
can create more frequent opportunities for adaptation.
Furthermore, the maintenance of this weak strain at a low
frequency, rather than having it rapidly spread, will not
create large feedbacks that can deplete existing susceptible
populations, which can be the case if initial R0 is higher.
This effect dissipates with increased population size, as
drift effects are reduced in larger populations (see fig. S1
and supplementary material S2 for a similar plot but with
N p 100,000).

Simulation Methods

In order to test the accuracy of these solutions, we compare
the analytical solution, as derived above in equation (5c),
with simulation data produced using the Gillespie algo-
rithm with tau-leaping approximations (Gillespie 1977,

2001) and a step size of Dt p 0.05. We chose this step
size since it was accurate for larger population sizes; that
is, the results did not significantly change with a smaller
step size (see also Keeling and Rohani 2007), and it was
not too expensive in terms of computational time. The
step size was reduced to Dt p 0.01 if N p 100, as larger
step sizes in small populations can overestimate the rate
of change of each compartment (Keeling and Rohani
2007); simulations results were not strongly affected for
N p 1,000 if Dt p 0.01 (see Mathematica, supplementary
material S2). Simulation data was obtained based on
1,000,000 reintroductions of the first strain into a fully
susceptible population (increased to 10,000,000 reintrod-
uctions for N p 50,000 and Nm p 0.001). We looked at
the case where the initial R0 is low, ranging between 1 and
1.2, and can mutate into a more adapted strain with F0

equal to 1.2, 1.5, 1.8, or 2.5. For simplicity (unless stated
otherwise), the removal rates for both strains (by this we
mean the recovery rate) was set to 1, therefore the trans-
mission rate was equal to the reproductive ratio. Since the
long-term probability of extinction for both strains is 1
with SIR dynamics, we say that the second strain has
“emerged” if it reaches its outbreak threshold, here set to
5/log(F0) infected hosts. This threshold means that it sub-
sequently has less than a 0.5% probability of becoming
extinct by stochastic drift (Hartfield and Alizon 2013b).
Note that the analytical solution (eq. [5c]) gives the emer-
gence probability of a second strain given that the first
strain has emerged. Therefore, we scale down our analyt-
ical solution by 1 � 1/R0, the emergence probability of
the first strain in a fully susceptible population (Allen
2008), in order to account for the first strain emerging in
the simulations. Simulations were written in C, and source
code was deposited in the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.kj238 (Hartfield and Ali-
zon 2013a).1

Comparison of Analytical Solutions with
Simulation Data

Plots of the main comparisons are provided in figure 3
(and fig. S2, supplementary material S2). For N p 10,000
and N p 50,000, it is seen that the analytical solution
generally provides an accurate solution of emergence prob-
ability, although it slightly underestimates simulation re-
sults when R0 1 1.1. This is because integration over all
extinction probabilities as the first strain spreads as well
as the second strain emergence probability P both assume
that these values change by a small amount per time step.
This assumption is valid for R0 close to 1 but is slightly

1 Code that appears in the American Naturalist is provided as a convenience

to the readers. It has not necessarily been tested as part of the peer review.
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Figure 2: Contour plot of the minimum susceptible population needed for the original strain to mutate into a faster-spreading strain.
Below this proportion, emergence of a new strain is impossible. The overall population size is N p 10,000. Contour labels indicate the
minimum susceptible proportion. The red contour shows where the transition from where emergence is prevented due to the first strain
becoming extinct (Smin, 1, above the red line), to where emergence is limited due to the first strain burning out the existing susceptible
population (Smin, 2, below the red line).

violated if larger due to the increased rate at which the
first pathogen spreads and therefore by the increased pro-
pensity to mutate into a fitter strain. For smaller host
population sizes (N p 1,000), results are generally accurate
but tend to consistently slightly underestimate simulation
results. This is probably due to increased stochastic effects
affecting the spread of both the original and second path-
ogen due to the small population size. To account for these
factors a fully stochastic analytical treatment should be
implemented (Karlin and Taylor 1981), but this is complex
for an SIR-type infection and appears to be intractable if
considering more than one strain spreading (see Allen and
Burgin 2000 for an example of how to formulate a fully
stochastic model for a one-strain SIR epidemic). We also
investigated the case where the transmission rates bi were
fixed at 1 and the recovery rates varied to define the re-
productive rates. We observed that simulation results were
generally the same for R0 ! 1.1, where the original model
is most accurate (figs. S3, S4; supplementary material S2).

It was also of interest to determine whether the solutions
were accurate if the mutation rate m was large, as this
might have violated the assumption that only a single new
strain can appear at a given time. Figure 4 shows results
for Nm p 10 with N p 10,000 and 50,000. As with smaller

m results, the analytical solution is accurate yet slightly
underestimates simulation values for large R0 values. Sim-
ilar results were obtained for Nm p 0.1 or 1 (fig. S5).
However, the analytical solution consistently underesti-
mates simulations for N p 1,000 (for Nm p 0.1 and 1),
creating a large discrepancy in very small populations
(N p 100; fig. S6). We interpret this result as arising due
to stochastic forces (population drift) dominating over
deterministic ones in driving the size of the infected pop-
ulation, so both strains can reach high frequencies by
chance. Additionally, the mutation rate is high enough so
as to consistently introduce the second strain purely
through mutation, which is not accounted for in the model
formulation.

In general, the analytical solution appears to be accurate
as long as the population size is not too small (N ≤ 1,000)
and the mutation rate is not extremely high. Considering
that most outbreaks arise over large areas, where N is large,
and point mutation estimates (for beneficial, neutral, and
deleterious mutations) for viruses and bacteriophages sel-
dom exceed 1 # 10� 4 (Sniegowski et al. 2000), then these
assumptions should not be greatly violated when consid-
ering real-world cases.
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Figure 3: Plots of the analytical solution for emergence probability of second strain (eq. [5c]; solid lines) in comparison with simulation
data (points; error bars are 95% confidence intervals). The first strain mutates into a new strain with F0 equal to 1.2 (red lines/points),
1.5 (green), 1.8 (blue), or 2.5 (purple). Population sizes are 1,000 (A, B), 10,000 (C, D) or 50,000 (E, F), with compound mutation rate
Nm equal to 0.001 (A, C, E) or 0.01 (B, D, F). Plots covering R0 between 1 and 1.1 only are shown in figure S2, available online.

Application to a Two-Wave Outbreak of Chikungunya
Virus, La Réunion Island

We will now apply our model to the two-wave outbreak
of Chikungunya virus on La Réunion. Over 2005, the virus
was present at a low frequency in the population of La
Réunion Island, peaking at 500 reported cases and sta-
bilized at 100 until the end of September. Afterward, a
secondary wave emerged in December 2005, causing nearly
a 100-fold increase in the number of cases, peaking at
more than 45,000 (Renault et al. 2007). More than 90%
of viruses in the secondary outbreak harbored two novel
substitutions in the structural region (Schuffenecker et al.

2006). Viruses harboring these substitutions also replicated
faster, compared to ancestral variants (Vazeille et al. 2007).
Therefore, it is clear that the secondary outbreak was al-
most surely caused by adaptive mutation increasing the
replication rate of the pathogen. Here, we use our ana-
lytical results to provide estimates of the emergence prob-
ability of this pathogen and how it compares to models
where emergence probabilities are not affected by deple-
tion of susceptible individuals by the first strain. Specifi-
cally, given that a first strain already appeared in the pop-
ulation, was there a high probability that a second strain
would appear over time, due to the large susceptible pop-
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A

B

Figure 4: Plots of the analytical solution for emergence probability
of second strain (eq. [5c]; solid lines) in comparison with simulation
data (points; error bars are 95% confidence intervals). Color scheme
is the same as in figure 3. Term Nm p 10, and N p 10,000 (A) or
50,000 (B). In this plot, error bars lie within individual points.

A

B

Figure 5: Three-dimensional plots of emergence probability of a
mutated strain of the Chikungunya virus in La Réunion. A, Results
predicted by our model (PS), as scaled to the emergence probability
for a de novo strain. B, Results scaling our model to one that assumes
that emergence of new pathogens are not affected by limitation of
the susceptible population. Values are given as a function of the
reproductive ratio of the mutated strain F0 and the advantageous
mutation rate m. See “Application to a Two-Wave Outbreak of Chi-
kungunya Virus, La Réunion Island” for the other parameters used.

ulation size? Alternatively, would susceptible depletion
greatly restrict the emergence of secondary strains, making
the appearance of mutated strains unlikely?

The population size of La Réunion is around 776,000
individuals (Renault et al. 2007). We assume that the sus-
ceptible population size before infection would cover the
whole island. This seems a reasonable assumption since
infection did not seem to be located at any one location
on La Réunion (Renault et al. 2007). It is also generally
assumed that cross-immunity between Chikungunya
strains is extremely strong, due to the onset of strong
innate immunity (both with Chikungunya virus, and al-
phaviruses in general; Wauquier et al. 2011; Volk et al.
2010), combined with the fact that Chikungunya virus
strains are antigenically similar, which forms the basis of
vaccine creation against it (Akahata et al. 2010; Wang et
al. 2011). The estimated substitution rate for the virus was
8.8 # 10�4 substitutions per site per year (Cherian et al.
2009). However, what is of interest for our model is the
advantageous mutation rate. While the substitution rate
is equal to the neutral mutation rate (Kimura 1983), the
advantageous mutation rate is generally greatly lower than
this, as advantageous mutations only make up a tiny pro-
portion of all mutations (Eyre-Walker and Keightley 2007).

However, if we consider the per-genome mutation rate (as
opposed to the per-site rate), then this would increase the
adaptive mutation rate. Again, to be conservative, we in-
vestigate m varying between 10�5 and 10�7. Finally, we
estimated the reproductive ratios by comparing epidemic
data from (Renault et al. 2007) with those produced from
analytical results. It appears that a good fit for R0 is 1.04,
while that for F0 is higher at approximately 1.4 (supple-
mentary material S3). We therefore fix R0 at 1.04 and vary
F0 between 1.05 and 1.5 to determine to what extent F0

affects emergence probability.
Figure 5A shows the probability of emergence according

to our model, PS, scaled to that expected for a single in-
fected individual in a fully susceptible homogeneous pop-
ulation (that is, 1 � 1/F0). We see that, unless the mutation
rate is very low, the scaled probability of emergence gen-
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erally lies between 0.2 and 0.4. Therefore, the need to
mutate from a preexisting strain reduces the probability
of emergence only by two- to fivefold, compared to the
emergence of a single strain in a fully susceptible popu-
lation. This is due to the fact that, even though the mu-
tation rate is low, the susceptible population in La Réunion
is assumed to be very large, creating multiple opportunities
for the first strain to mutate into a faster-spreading strain.

We can also determine how saturation of the susceptible
population affected the emergence probability. Figure 5B
compares PS to a model that assumes that susceptible de-
pletion does not affect the emergence probability of new
strains (that is, the emergence probability of a single strain
is 1 � 1/F0). The overall probability of emergence is de-
noted as PNS. We clearly see that the ongoing depletion of
the susceptible population greatly reduced the emergence
probability of mutated strains in this epidemic, with a 10–
20-fold reduction in probability observed. Similar values
are obtained if the pathogen emergence probability is set
to the naive expectation using an “effective” reproductive
rate that does not account for feedbacks, 1 � N/(SF0) in
PNS; that is, susceptible dilution affects pathogen emer-
gence when it first appears but not in subsequent gener-
ations (result not shown). This result give a clear indication
as to how susceptible depletion strongly affects the emer-
gence of new mutated strains from preexisting ones. It
could also explain why observing mutated strains arising
in the field is uncommon, as the change in the underlying
population size would impact their appearance.

However, we wish to stress that this is a basic analysis,
based on broad-scale parameters used. These results are
likely to be qualitatively robust because we used conser-
vative estimates for the parameters. Nevertheless, in order
to make it more accurate, we need a detailed knowledge
of population structure, so as to determine the initial sus-
ceptible population size, as well as improved knowledge
of the beneficial mutation rate.

Discussion

The evolution of infectious diseases, especially causing
spillovers from zoonotic reservoirs into human popula-
tions, is a major health threat. Due to this hazard, there
has been a substantial research focus on determining the
likelihood of pathogens mutating into more virulent
strains. However, most previous research has focused on
cases where the initial pathogen is maladapted and is
bound to become extinct rapidly unless it mutates. Here,
we investigate a related but overlooked scenario, where a
weakly emerging strain (with R0 ≈ 1) can mutate into a
faster-spreading strain before dying out, causing a second
outbreak that has the potential to be maintained for a
longer period of time. Studying emergence of pandemic

strains originating from intermediately adapted strains of-
fers more applications for monitoring outbreaks than
searching for strains originating from maladapted ones,
because the initial strain is present in the population for
a longer time. It also opens a new perspective for predicting
the pandemic risk for pathogens that are known to be
emerging (or re-emerging) but generate only localized out-
breaks (e.g., with avian influenza or ebola).

We have derived an analytical formulation for the emer-
gence probability of the second strain from the first, by
tracking the population trajectory over time and calcu-
lating the emergence probability at each time point (eq.
[5c]). One of the most important insights from our der-
ivation is that even though the first strain’s R0 is low
enough to ensure that, in general, a large susceptible pop-
ulation remains for the second strain to spread through,
the decreasing susceptible population would still act to
reduce the emergence probability of the second strain. This
finding reflects similar results on how a reduced popu-
lation size reduces emergence probabilities in evolutionary
genetics (Otto and Whitlock 1997) and evolutionary res-
cue models (Martin et al. 2013).

By applying our model to a well-documented case of
pathogen reemergence, that of the Chikungunya virus in
La Réunion Island, we provide a stark example of how
the ongoing depletion of the susceptible population has a
strong negative effect on the emergence probability of the
mutated virus strain. However, the overall emergence
probability is only slightly lower than that for a single
strain in a fully susceptible population. Overall, this ex-
ample highlights that while susceptible depletion can
strongly limit the emergence of mutated strains, the risk
remains on the order of that expected for completely new
strains emerging, meaning that there is still a nonnegligible
risk of emergence. This model was based on broad-scale
estimates of mutation rates, population sizes, and popu-
lation structure, for which most of the finer details are
unknown. Therefore, we hope that this model, as well as
others, would encourage further investigations into adap-
tive mechanisms and rates of pathogens, in order to aid
the application of emergence models to understanding the
risk of secondary outbreaks emerging through evolution
of the pathogen.

Our model assumes that both pathogens are apparent
in a large homogeneous population. However, most real
populations of interest are heterogeneous, due to either
the presence of subpopulations (Alexander and Day 2010;
Kubiak et al. 2010) or differences in immune history or
contact structure. Specifically, most outbreaks show the
presence of “super-spreaders” that cause a greater amount
of secondary infections than average (Galvani and May
2005). Super-spreaders have also been detected in vector-
borne disease outbreaks (Woolhouse et al. 1997), which
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could also affect the dynamics of the Chikungunya ex-
ample, although the degree of heterogeneity with this out-
break is unknown. The presence of host heterogeneity is
known to decrease the emergence probability of new out-
breaks, as an increased proportion of the population are
unlikely to spread the initial pathogen and trigger a full
outbreak (Lloyd-Smith et al. 2005b). However, Yates et al.
(2006) concluded that the presence of super-spreaders only
has a minute impact on emergence probabilities, if the
initial strains have R0 ! 1. Therefore, implementing host
heterogeneity and spatial structure in addition to epide-
miological feedbacks would be an important next step in
increasing the realism of the model.

The application of our model to the Chikungunya out-
break also poses the question as to how population feed-
backs in pathogen vectors would affect the emergence
probability. The likelihood of emergence could be further
decreased if the preexisting pathogen confers immunity to
a large fraction of the vector population, as with the host
population studied here. Furthermore, immunity can be
conferred on vectors by having their immune system
“primed” by a weaker version of a pathogen (reviewed in
Little and Kraaijeveld 2004). Alternatively, priming can
arise due to the presence of a competing pathogen (e.g.,
with Wolbachia preventing infection in Aedes aegypti mos-
quitos from a variety of infections; Moreira et al. 2009).
Immunity can also be transgenerational in invertebrates
due to this “immune priming,” of which there are several
cataloged examples (Little et al. 2003; Sadd et al. 2005;
Sadd and Schmid-Hempel 2007) that could maintain im-
munity in a vector population, even if it has a high turn-
over. However, this reduction may be offset by different
replication rates in the vector; for example, the mutated
strain of the Chikungunya virus had a greatly higher rep-
lication rate in Aedes albopictus, compared to the ancestral
strain (Vazeille et al. 2007). It is clear that this intriguing
question requires further study using an extended model,
in order to quantify the effect of differences between the
host and vector populations.

Since it can be tricky to infer the effect of mutation and
population feedbacks from real-world epidemic data, ex-
perimental bacterial systems might be useful in testing the
predictions of the model (as discussed in Dennehy 2009;
Martin et al. 2013). For example, Benmayor et al. (2009)
found that phages could evolve to infect novel host bacteria
only if seeded at initial frequencies between 0.1% and 1%.
It was argued that lack of adaptation occurred at higher
initial frequencies due to increase costs of host switching
and lack of mutation supply. However, our results also
suggest that a decrease of susceptible individuals, caused
by seeding the initial strain at too high a frequency, could
also prevent new types from appearing. We therefore hope
that our model would motivate further experimental work

on the relative impact of demographic effects and evo-
lutionary effects on pathogen emergence.

In summary, we have produced a model for the prob-
ability that a second, stronger outbreak can be caused from
an initial weaker one, which is accurate if the population
size N is large and R0 is close to 1. This study highlights
how to implement information about changing population
sizes (specifically the susceptible population size) into an-
alytical models to determine the probability of a new strain
emerging, without relying solely on numerical simulations.
By applying the model to a well-known example of disease
reemergence, we have shown that these population feed-
backs can drastically reduce the emergence of new, mu-
tated strains arising from preexisting outbreaks. These
findings therefore have implications in public health man-
agement and also highlight how competition between new
strains can prevent the subsequent emergence of new out-
breaks once a preexisting epidemic has established itself.
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André, J.-B., and M. E. Hochberg. 2005. Virulence evolution in
emerging infectious diseases. Evolution 59:1406–1412.

Antia, R., R. R. Regoes, J. C. Koella, and C. T. Bergstrom. 2003. The
role of evolution in the emergence of infectious diseases. Nature
426:658–661.

Arinaminpathy, N., and A. R. McLean. 2009. Evolution and emer-
gence of novel human infections. Proceedings of the Royal Society
B: Biological Sciences 276:3937–3943.

Barton, N. H. 1994. The reduction in fixation probability caused by
substitutions at linked loci. Genetics Research 64:199–208.

———. 2000. Genetic hitchhiking. Philosophical Transactions of the
Royal Society B: Biological Sciences 355:1553–1562.

Benmayor, R., D. J. Hodgson, G. G. Perron, and A. Buckling. 2009.
Host mixing and disease emergence. Current Biology 19:764–767.

Cherian, S. S., A. M. Walimbe, S. M. Jadhav, S. S. Gandhe, S. L.
Hundekar, A. C. Mishra, and V. A. Arankalle. 2009. Evolutionary
rates and timescale comparison of Chikungunya viruses inferred
from the whole genome/E1 gene with special reference to the 2005–
07 outbreak in the Indian subcontinent. Infection, Genetics and
Evolution 9:16–23.

de Lamballerie, X., E. Leroy, R. Charrel, K. Ttsetsarkin, S. Higgs, and
E. Gould. 2008. Chikungunya virus adapts to tiger mosquito via
evolutionary convergence: a sign of things to come? Virology Jour-
nal 5:33.

Dennehy, J. J. 2009. Bacteriophages as model organisms for virus
emergence research. Trends in Microbiology 17:450–457.

Diekmann, O., and J. Heesterbeek. 2000. Mathematical epidemiology
of infectious diseases: model building, analysis and interpretation.
Wiley, Chichester.

Eyre-Walker, A., and P. D. Keightley. 2007. The distribution of fitness
effects of new mutations. Nature Reviews Genetics 8:610–618.
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Pérez-Reche, F. J., F. M. Neri, S. N. Taraskin, and C. A. Gilligan.
2012. Prediction of invasion from the early stage of an epidemic.
Journal of the Royal Society Interface 9:2085–2096.

Renault, P., J.-L. Solet, D. Sissoko, E. Balleydier, S. Larrieu, L. Filleul,
C. Lassalle, et al. 2007. A major epidemic of Chikungunya virus
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