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Abstract
Predicting the emergence of new pathogenic strains is a key goal of evolutionary epidemiol-

ogy. However, the majority of existing studies have focussed on emergence at the popula-

tion level, and not within a host. In particular, the coexistence of pre-existing and mutated

strains triggers a heightened immune response due to the larger total pathogen population;

this feedback can smother mutated strains before they reach an ample size and establish.

Here, we extend previous work for measuring emergence probabilities in non-equilibrium

populations, to within-host models of acute infections. We create a mathematical model to

investigate the emergence probability of a fitter strain if it mutates from a self-limiting strain

that is guaranteed to go extinct in the long-term. We show that ongoing immune cell prolifer-

ation during the initial stages of infection causes a drastic reduction in the probability of

emergence of mutated strains; we further outline how this effect can be accurately mea-

sured. Further analysis of the model shows that, in the short-term, mutant strains that en-

large their replication rate due to evolving an increased growth rate are more favoured than

strains that suffer a lower immune-mediated death rate (‘immune tolerance’), as the latter

does not completely evade ongoing immune proliferation due to inter-parasitic competition.

We end by discussing the model in relation to within-host evolution of human pathogens (in-

cluding HIV, hepatitis C virus, and cancer), and how ongoing immune growth can affect

their evolutionary dynamics.

Author Summary

The ongoing evolution of infectious diseases provides a constant health threat. This evolu-
tion can either result in the production of new pathogens, or new strains of existing patho-
gens that escape prevailing drug treatments or immune responses. The latter process, also
known as immune escape, is a predominant reason for the persistence of several viruses,
including HIV and hepatitis C virus (HCV), in their human host. As a consequence, the
within-host emergence of new strains has been the intense focus of modelling studies.
However, existing models have neglected important feedbacks that affects this emergence
probability. Specifically, once a mutated pathogen arises that spreads more quickly than
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the initial (resident) strain, it potentially triggers a heightened immune response that can
eliminate the mutated strain before it spreads. Our study outlines novel mathematical
modelling techniques that accurately quantify how ongoing immune growth reduces the
emergence probability of mutated pathogenic strains over the course of an infection. Anal-
ysis of this model suggests that, in order to enlarge its emergence probability, it is evolu-
tionary beneficial for a mutated strain to increase its growth rate rather than tolerate
immunity by having a lower immune-mediated death-rate. Our model can be readily ap-
plied to existing within-host data, as demonstrated with application to HIV, HCV, and
cancer dynamics.

Introduction
Parasites and pathogens pose a continuous threat to human, livestock, and plant health since
new strains can readily emerge, via mutation or recombination, from pre-existing strains. Gen-
erally, the focus has been on detection of emerging diseases at the population level, in order to
track and control their spread [1, 2]. Modelling approaches to predicting emergence have
therefore primarily concentrated on detecting infections arising between individual hosts [3,
4], and the contribution of within-host processes to pathogen emergence has often been over-
looked. It is now well known that within-host evolution has strong effects on the epidemiology
of many pathogens (reviewed in [5]), and can substantially affect the course of an infection, as
illustrated by the cases of HIV [6] and hepatits C virus (HCV) [7].

Each step of the within-host evolutionary dynamics consists of the emergence of a rare mu-
tant that takes over the pathogen population. Since mutated infections always initially appear
as a few copies, they are prone to extinction so their emergence is best captured using stochastic
dynamics (as opposed to deterministic approaches). Only a handful of previous models have
investigated this stochastic within-host process. A widespread use of within-host models in
static populations is to calculate the probability that infections will evolve drug resistance, and
what regime is needed to avoid treatment failure [8–11]. One exception [12] studied viral
emergence within a host, if most mutations were deleterious, in order to determine how differ-
ent viral replication mechanisms affected the establishment of beneficial alleles.

Parasite and pathogen evolution can radically affect the course of infections in hosts able to
mount immune responses. For instance, HIV is known to successfully fix mutations within in-
dividuals which enable it to evade immune pressures [6]. This is in line with evidence that tar-
get cell limitation cannot account for HIV dynamics, and that immune limitation also needs to
be present [13]. Arguably, this continual evasion of immunity prompts the chronic nature of
HIV infections (see [14, 15] for an illustration of these ‘Red Queen’ dynamics). In the case of
HCV, it has also been found that chronic infections were associated with higher rates of with-
in-host evolution [16]. Concerning a different chronic disease, it is now well-known that the
ability of malignant cells to rapidly expand in size, ignoring biological signals to arrest growth
(e.g. through mutating the p53 tumour suppression gene), and escaping the patient’s immune
system are key steps in cancer development [17]. All these scenarios can be analysed in the
larger framework of evolutionary rescue [18, 19], where a change in the environment (in this
case, the activation of an immune response) will cause the population to go extinct unless it
evolves (develops an increased replicative ability, then subsequently rise to a large enough size
to avoid stochastic loss). Although chronic infections are those most likely to evolve strains
that evade immune pressures, evidence exists that such immune escape also plays a role in
acute infections, like influenza [20]. Note that the latter evidence arises from serial passage
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experiments; although these tend to maximise selection at the within-host level, they still in-
clude a slight selective pressure for increased transmission.

Modelling mutant emergence in an immune evasion context raises a technical challenge, as
it is a non-equilibrium process. In most of the within-host models presented above [8–10, 12],
it is sufficient to know the initial state of the system to calculate emergence probability of im-
mune or treatment escape. A non-equilibrium model was studied by Alexander and Bonhoeffer
[11], who accounted for the reduction in available target cells when determining the emergence
of drug resistance using an evolutionary rescue framework. With immune-escape however, the
problem is that the immune state when the mutant infection appears is only temporary. In this
case, there will be an initial strain present within the host, which triggers immunity. This strain
can then mutate into a faster-replicating form, but if the mutated strain arises at a low frequen-
cy, immunity can destroy it before it has a chance to spread. This effect can be exacerbated by
the fact that the mutated strain also prompts an increased immune response, so the emerging
infection has a stronger defence to initially compete with (assuming immune growth is propor-
tional to the total size of the pathogen population). This feedback, where increased immune
growth prevents emergence of mutated strains with higher replication rates, can strongly affect
the appearance of mutated strains within-host, and needs to be accounted for. Existing emer-
gence models have not yet accounted for such within-host population feedbacks, especially
those arising from the immune system.

Recently, Hartfield and Alizon [21] tackled a related problem, regarding how epidemiologi-
cal feedbacks affect disease emergence at the host population level. In their model, a faster-rep-
licating strain emerged via mutation from a pre-existing infection; however, the continuing
outbreak caused by the initial strain removed susceptible individuals from the population,
which limited the initial spread of the mutated strain. It was shown that the ongoing depletion
of susceptible individuals due to the initial strain spreading has a stronger effect on reducing
pathogen emergence, than assumed by just scaling down the reproductive ratio by the frequen-
cy of susceptible individuals present when the mutated infection appears. That is, the feedback
produced by the first strain in removing susceptible individuals caused a drastic decrease in the
emergence probability of the mutated strain.

Building on this previous study, we derive here an analytical approximation for the proba-
bility that an immune-escape mutant will emerge and maintain itself within a host. We use ‘im-
mune-escape’ in the sense that while the mutated strain can be killed by immunity, it can
ultimately outgrow immune growth and chronically persist. Furthermore, we use an acute in-
fection setting, which are commonly used to study the within-host dynamics of ‘flu-like’ dis-
eases [22–28]. Analysis of the model demonstrates how the ongoing proliferation of immune
cells acts to decrease the emergence probability of mutated strains. Acute infection models are
also useful in studying the first stages of chronic infections, where one observes exponential
growth of the virus population, followed by a decline in the first weeks of infection. In addition,
there are two questions that are worth investigating with this model from a biological stand-
point. First, what is the fittest evolutionary strategy for an escape mutant: is it to overgrow the
immune response (that is, increase its inherent replication rate to enable its persistence, even
when immune cells are at capacity), or to tolerate it (prevent immunity from killing as many
pathogens per immune cell)? Both these actions will lead to an increase in the pathogen’s net
reproduction rate and can thus be described as immune evasion, but it is unclear if one process
is favoured over the other. In addition, note that disabling the immune response is not possible,
since the wild-type infection activates it. Second, to what extent do we need to account for the
ongoing proliferation of the immune response? In other words, if we calculate the emergence
probability based on the system state when the mutation occurs, how inaccurate would this
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estimate be? We end by discussing our results in the light of what is known about within-host
evolution for several human infections.

Materials and Methods

Model outline
In order to find an analytical solution for the within-host emergence of a mutated strain, we
follow the approach of Hartfield and Alizon [21], which investigated the appearance of a new
infectious pathogen from a pre-existing strain at the population level. To consider the within-
host case, we construct and subsequently analyse a specific scenario of acute, immunising in-
fections. Here, the first strain will go extinct because it does not replicate at a high enough rate.
However, before vanishing, it can mutate into a form that grows unboundedly; we are interest-
ed in calculating the probability of this event occurring. We focus on this case to cover a general
range of within-host evolution scenarios, which is important since there is yet no consensus on
how to best model within-host infections (reviewed in [29]). Although it is feasible that the mu-
tated strain has a maximum population size, mathematical analysis of pathogen emergence
only needs to consider the dynamics of mutants when they are present in a few copies, rather
than the long-term behaviour once they have already established. Therefore, the general results
outlined in this paper are also broadly applicable to cases where the infection population sizes
are bounded.

Our analytical approach involves using a set of deterministic differential equations to ascer-
tain pathogen spread in a stochastic birth-death process, where an infection (or immune cell)
can only either die or produce 1 offspring. This process is one of the most common ways of in-
vestigating stochastic disease spread [30]. A list of nomenclature used in the model is outlined
in Table 1. Assume there exists an initial pathogen, or infected cell-line, the size of which at
time t is denoted x1(t). This line grows in size over time according to the following equation,
which is well-used for within-host infection models [29]:

dx1
dt

¼ x1ðφ1 � s1yÞ ð1Þ

Table 1. Glossary of notation.

Symbol Usage

t Time (measured as number of generation since start of process)

φ1, φ2 Growth rate of initial, mutated infection

σ1, σ2 Immune-mediated death-rate of initial, mutated infection

x1, x2 Size of initial, mutated infection

xinit Size of x1 at time t = 0 (or y = yinit)

y Size of immune response

yinit Initial size of immune response at t = 0

K Maximum size of immune response

r Unscaled growth rate of immune response

R1, R2 Reproductive ratio of original or mutated infection, φi/σi
R* ‘Effective’ initial reproductive ratio in the presence of immunity, R − y0
ρ Scaled immune growth rate, r/σ1

μ Individual mutation rate from first to second infection

Π Emergence probability of second strain in an non-equilibrium population

P Overall emergence probability of second strain

P�
ext Extinction probability, given an ‘effective’ reproductive ratio

doi:10.1371/journal.pcbi.1004149.t001
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Here, φ1 is the growth rate of the infection, σ1 is the rate of destruction of the pathogen per im-
mune cell, and y(t) is the number of immune cells (i.e. lymphocytes). For simplicity, we assume
that there is complete cross-immunity between the various pathogen strains, so it is not neces-
sary to model immune cell diversity.

The growth of the immune cell population is modelled using a logistic-growth curve:

dy
dt

¼ rx1y 1� y
K

� �
ð2Þ

Here, r is the proliferation rate of immune cells, and K is the maximum population size they
can achieve. This formulation is an extension of the model developed by Gilchrist and Sasaki
[24] to study acute infections. The main difference in that in their model, the density of im-
mune cells is allowed to reach any value in order to clear the infection. Here, we impose that
immune density does not go above a maximum threshold K, which correspond to an intrinsic
limitation in the host resources allocated to immunity.

Profile plots of typical infection responses are shown in Section 1 of S1 Text. If φ1/σ1 < K,
then the first strain will increase in size until the immune-cells reach a maximum. After this
point, the infection will decrease towards eventual extinction, while the immune response will
be maintained at a non-zero size. However, if φ1/σ1 � K then the first strain will continue to ex-
pand. A formal rational for this behaviour will be shown below.

To proceed with finding an analytical solution for the emergence probability, we proceed as
in previous analyses [21, 24, 31], and note that since y is monotonically increasing, we can use
the immune cell population size as a surrogate measure of time. By dividing Equation 1 by
Equation 2, we obtain a differential equation for x1 as a function of y:

dx1
dy

¼ ðφ1 � s1yÞx1
rx1y 1� y

K

� � ð3Þ

To simplify subsequent analyses, we make the following substitutions. We define the repro-
ductive rate of the infection, where there is a single immune cell (y = 1) equals R1 = φ1/σ1. We
also set ρ = r/σ1 (this can be formally shown by rescaling time by τ = σ1t). We use the notation
R1 to draw parallels between the scaled pathogenic replication rate, and the reproductive ratio
R0 in population-level, epidemiological models [32]. After making the required substitutions,
Equation 3 can be rewritten as:

dx1
dy

¼ KðR1 � yÞ
ryðK � yÞ ð4Þ

Equation 4 formally shows that the infected cell line increases in size (dx1/dy> 0) if y< R1

= φ1/σ1, and decreases if y> R1. A corollary of this result is that if R1 of a infection exceeds K,
then it cannot go extinct in the long term.

This differential equation is straightforward to solve (Section 1 of S1 Text), and yields the
following function for x1(y):

x1 ðyÞ ¼ xinit þ
1

r
log

y
yinit

� �R1 K � y
K � yinit

� �ðK�R1Þ
" # !

ð5Þ

where xinit and yinit are, respectively, the number of pathogen and immune cells at the start of
the process (time t = 0), and log is the natural logarithm. It is clear from Equation 4 that the
maximum value of x1 occurs for y = R1. By substituting this value into Equation 5, we obtain

Within-Host Immune Escape

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004149 March 18, 2015 5 / 21



the maximum value of x1 (denoted xM) as:

xM ¼ xinit þ
1

r
log

R1

yinit

� �R1 K � R1

K � yinit

� �ðK�R1Þ
" # !

ð6Þ

Note that ρ has no effect on the position of the peak (that is, the value of y leading to the
maximal infection level). Since it affects the growth rate of the immune response (and therefore
also of the pathogen), it does determine the maximum value itself. As this maximum is inverse-
ly proportional to ρ, smaller immune growth rates lead to larger peaks. Finally, the maximum
infection time (as a function of y) needed for the first infection to go extinct can be determined
by solving x1(y) = 0 numerically (Section 1 of S1 Text).

Formulating emergence probability
Our goal is to calculate the probability of ‘evolutionary rescue’. That is, the initial strain has R1

< K so is guaranteed to go extinct in the long-term. However, a mutated form (with reproduc-
tive ratio R2) could arise with R2> K, and if it does not go extinct when rare, it can outgrow im-
mune proliferation. Previous theory on the emergence of novel pathogenic strains [21] showed
that if mutated strains arise at rate μ per time step, the overall emergence probability P is given
by:

P ¼ 1�exp �m
Z yM

yinit

x1 ðyÞPðyÞdy
� �

ð7Þ

for yM the maximum immune size for which it is possible for immune escape to arise, andP(y)
the emergence probability of an escape mutation were it to appear. The formulation of each of
these will be discussed in turn.

Emergence probability,P(y). The emergence probability of the new strain has to account
for both the increase in immune response before the mutation occurs, which reduces the ‘effec-
tive’ growth-rate of a mutated strain when it appears due to an heightened immune size (great-
er y in the model); and the continuing growth of immunity once it has appeared. Both these
points factor in how the overall immune strength affects emergence probabilities, but this
strength can increase over time. In theory, this emergence probability can be calculated from
first principles using a time-inhomogeneous branching-process equation, which accounts for
the birth and death of pathogens as the lymphocyte population size is changing (see [4, 21] for
examples of branching-process formulations in epidemiology). However, due to the complexity
of the model, specifically the non-linear form of the change in immune response (Equation 2),
it is not possible to derive an exact analytical solution forP (Section 1 of S1 Text).

We proceed by comparing a previously-found solution toP in a changing susceptible popu-
lation to our model, and adapting the result accordingly. When investigating a second strain
emerging from a pre-existing epidemic, Hartfield and Alizon [21] found that a good approxi-
mation forP is a function of the form:

P ¼ R�

rðx1 þ x2ÞyðK � yÞ þ R�

� �
1� P�

ext

� � ð8Þ

where R� is the ‘effective’ reproductive ratio of the mutated strain at the start of the process,
which is dependent on the size of a secondary resource (e.g. susceptible individuals, immune
cells); and P�

ext is the extinction probability in a birth-death model, given the ‘effective’ repro-
ductive ratio is reduced depending on the frequency of the same secondary resource. Equation
8 arose during analysis of pathogen emergence in an epidemiological SIR framework [21], by
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noting how for a single strain, the ratio of the rate of change of infected and susceptible individ-
uals over time reflected the emergence probability. This logic was then carried over to a two-
strain scenario, so it details how the ongoing spread of the first pathogen affected emergence of
mutated strains. To give an example, when applied to a model of pathogen emergence in an
SIR setting, the effective reproductive ratio R� would equal the standard reproductive ratio R0,
reduced by a factor S0/N, if there initially existed S0 susceptible individuals out of a total popu-
lation of size N. There would also be a term in the denominator that is proportional to the rate
of spread of the initial, unmutated strain.

However, in the current model, mutated pathogen lines have a reduced emergence probabil-
ity due to ongoing production of immunity triggered by the first strain. The rational behind
Equation 8 is that the ρ(x1 + x2)y(K − y) accounts for the reduction in emergence probability
due to the continuing onset of immunity, given a total infection size (x1 + x2). If it reaches a
steady-state [that is, ρ(x1 + x2)y(K − y)! 0] thenP collapses mathematically to ð1� P�

extÞ.
Hence Equation 8 accounts for how the presence of infection triggers immune responses that
restrict the emergence probability of mutated infections; this is the feedback not yet considered
in previous within-host evolution models.

We use Equation 8 in our model by setting R� = R2 − yinit, which is the rescaled growth rate
of the mutated strain, corrected for the fact that the baseline immunity rate will reduce its ini-
tial selective advantage. Note we use yinit instead of y(t) in this argument, since the R� term
should describe the baseline replication rate if the second strain is only present. For the emer-
gence probability, we first note that as with Equations 3 and 4, a single mutated cell has an ef-
fective birth rate of R2 and death rate of y. Standard results from birth-death models states that
the mean growth rate is equal to R2 − y, with variance equal to R2 + y [33]. We therefore deter-
mine the baseline emergence probability by substituting these terms into the classic result by
Feller [34]:

ð1� P�
extÞ ¼ 1�exp �2

ðR2 � yÞ
ðR2 þ yÞ

� �
ð9Þ

Note that Equation 9 is not constant over time since it is a function of y. Overall, we obtain
the following approximation forP:

PðyÞ ¼ R2 � yinit
rðx1ðyÞ þ 1ÞyðK � yÞ þ R2 � yinit

� �
1�exp �2

ðR2 � yÞ
ðR2 þ yÞ

� �� �
ð10Þ

Also note that we use x1(y)+1 in the denominator, since the total pathogen population
is accounted for by the initial pathogen size when the mutant appears, x1(y), plus a single
mutated individual.

Maximum value of y, yM. The emergence of mutated infections can be arrested in one of
two ways. Either the immune response becomes high enough so as to drive the first infection to
extinction (x1(y) = 0), or so that any further emergence is impossible (P(y) = 0). Therefore, yM
can be easily found by finding the smallest solution out of x1(y) = 0 orP(y) = 0. These equa-
tions have to be solved numerically (Section 1 of S1 Text).

Example plots of x1 andP. Fig. 1 give example behaviour of both x1 andP, as determined
by Equations 5 and 10 respectively. x1 exhibits an inverted-U shape, with the maximum size
decreasing if ρ increases, as expected from the form of Equation 5. From a biological stand-
point, it illustrates the fact that the parasite population grows until the immune response is ac-
tivated, at which point it decreases.P, on the other hand, demonstrates a U shape. Emergence
is initially high due to fewer immune cells being present, and again as the first strain dies out,
since the immune population is not proliferating as fast and is less likely to remove mutated
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strains as they appear. Results are qualitatively similar for different parameter values, withP
further decreasing with higher values of ρ (Section 1 of S1 Text).

Simulation methods
We verified our analytical solution by comparing it to simulation data. Simulations were writ-
ten in C and based on the Gillespie Algorithm with tau-leaping [35, 36]; source code has been
deposited online in the Dryad data depository (doi:10.5061/dryad.df1vk). The time step was set
to be very low: Δτ = 0.00005. This is because the tau-leaping algorithm is accurate only if the
expected number of events per time step is small [37]; since the growth rates of the pathogen
strains and the lymphocytes are both large, a small time step is needed to make the
simulation valid.

The growth of both the original and mutated strains are simulated using scaled parameter
rates. That is, the birth rate per time step for each pathogen is Poisson-distributed with mean
(Ri � xi � Δτ), and death rate with mean (xi � y � Δτ) for i = 1, 2. This is done to reduce the num-
ber of parameters in the model, and also enables accurate comparison with the scaled results.

The change in size of the immune response is determined by standard logistic-growth dy-
namics for the Gillespie algorithm. That is, the Poisson mean number of births per time step
equaled ρb(x1 + x2)y, for ρb is the birth rate parameter, and the mean number of deaths equalled

Fig 1. Sample behaviour of x1 and Π. Example plots of Equations 5 (A) and 10 (B), as a function of the immune-cell population y. Different line colours
reflect either different values of ρ in (A), or R2 in (B). Other parameters are K = 100, R1 = 60, xinit = 1, yinit = 20.

doi:10.1371/journal.pcbi.1004149.g001
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y(x1 + x2)(ρd + ρ(y/K)), where ρd is the death rate and ρ = ρb − ρd. Since there are no distinct ρb
and ρd terms in the model (just ρ), then we set ρd = 1 and varied ρb, so ρ = ρb − 1. The net
growth rate ρ was varied, generally between 0.5 and 19 depending on the size of the
other parameters.

Note that in the analytical solution, it is assumed that the immune response does not die off.
In order to maintain this assumption, we set yinit = 20 in the simulations. This also makes intui-
tive sense, because it is unlikely that the initial immune response is limited to just one cell. If
the immune response goes extinct before both infected strains go extinct, or the mutated strain
emerges, then that run is discarded, the simulation is reset and restarted.

In simulations, R1 is either set to 60 if K = 100, R1 = 100 if K = 250 or 1000, or R1 = 2,000 for
K = 10,000. R2 was varied, ensuring that R2 > K so the infected strain can outgrow the immune
response (see Equation 4). The mutation rate was also varied over several orders of magnitude.
The first strain is reintroduced (from an initial frequency of 1 cell) 10,000,000 times as separate
replication runs. Since the emergence probabilities were predicted to be low, a large number of
runs were needed in order to produced a meaningful estimate of emergence probability. The
second strain is said to have emerged once it exceeded 20 cells; since meaningful values of R2

were large, only a handful of cells would have been needed to guarantee emergence, hence a
low outbreak threshold could be used [38].

Results

Comparison of analytical results with simulations data
The first results we checked were individual profiles of the stochastic simulations, since these
can be used to demonstrate the behaviour of within-host emergence. In the majority of cases,
the first strain increase in size, but once immune proliferation also reaches its maximum then
the first strain goes extinct soon after (Fig. 2(a)). However, emergence of the mutated strain
can occur even if the immune cells are at their maximum size (Fig. 2(b)). This is to be expected,
given the form ofP (Equation 10), which demonstrates that emergence is likeliest once the im-
mune cells reach a steady-state, so ongoing proliferation does not restrict their establishment.
Conversely, emergence probability is reduced if the immune response is spreading; this is be-
cause when the mutated infection is rare, it is less likely to reproduce as immune cells increase
in number. Since the mutated infection population is only present in a few copies, this negative
effect this immune growth has on reproductive ability will be drastic (see also equivalent popu-
lation genetics results by Otto and Whitlock [39]).

Fig. 3 compares the full analytical solution (Equation 7, withP given by Equation 10)
against simulation data. If K = 100, R1 = 60, we see that there is an accurate overlap between
the two for a variety of mutation rates that span several orders of magnitude (Fig. 3(a) and (b)).
This match demonstrates how our analytical solutions can be used to accurately predict emer-
gence probabilities in the face of different scenarios, including antibiotic resistance and tumour
formation, as both these processes are characterised by high mutation rates.

We also tested a parameter set where the carrying capacity and initial growth rate was much
higher (K = 1,000 and R1 = 100, or K = 10,000 and R1 = 2,000). Fig. 3(c)-(f) demonstrates that
the analytical results slightly underestimate the simulation results to a small degree, especially
if the mutated strain’s growth rate is high and R2 is close to K, but becomes more accurate as R2

increases and generally provides a good approximation. These inaccuracies probably arise due
to our analytical solution not fully accounting for the increased variance in both infection and
immune growth rates that can arise if parameters are large, as in this model [30]. However, the
error does not appear to be great, so the model can still be used to provide accurate estimates of
emergence probability for this parameter set.
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Finally, we also tested how well analytical solutions work for cases where R1 < R2 < K. Al-
though such a mutated strain replicates more quickly, Equation 4 shows that it will die out in
the long-term. Hence our analytical solutions might not correctly reflect the emergence proba-
bility of these infections. Nevertheless, even in this case, Equation 7 accurately matches up with

Fig 2. Example of simulation runs. Profiles of example simulation runs over time. In (A), the first strain goes extinct before a mutated pathogen arises,
while in (B) emergence occurs. Blue dots represent the initial pathogen, red dots in (B) represent the mutated strain, while green dots show immune cell
proliferation. The constant stream of red dots in (B) indicate the mutated strain at zero copies. Parameters are K = 100, R1 = 60, R2 = 200, ρ = 0.5,
and μ = 0.01.

doi:10.1371/journal.pcbi.1004149.g002
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simulation results in this parameter range, although some inaccuracies arise for K = 1,000
(S1 Fig).

Effect of ongoing immunity on emergence
To exemplify why it is important to account for ongoing immune growth, we compared our
full solution for the emergence probability (Equation 7, withP equal to Equation 10), to a
‘naive’ estimate that does not assume ongoing immune proliferation (P = 1 − 1/R2). We see
that our result leads to a greatly reduced emergence probability, with values from our model
being*1,000 times lower than the naive estimate (Fig. 4, and Section 3 of S1 Text). Similar re-
sults apply if feedbacks only affect the mutant after it has arose (that is,P ¼ ð1� P�

extÞ as given
by Equation 9). Hence, as in previous non-equilibrium models [21], one needs to account for

Fig 3. Comparison of simulations with analytical solutions.Comparisons of the full analytical solution (Equation 7, with Π given by Equation 10) with
simulation results. Solid lines represent analytical solutions; points are simulation calculations. Graphs are plotted as a function of the reproductive ratio of
the second strain, R2. Note that the y axis is plotted on a log scale. Different colours denote different mutation rates, as shown in the accompanying legend.
Other parameters are (A and B) K = 100, R1 = 60; (C and D) K = 1000, R1 = 100; or (E and F) K = 10,000, R1 = 2000. In all panels, xinit = 1 and yinit = 20. ρ
equals either 0.5 (A, C, and E) or 9 (B, D, and F). All error bars, as calculated using binomial confidence intervals, lie within the points. Further results are
shown in Section 2 of S1 Text.

doi:10.1371/journal.pcbi.1004149.g003

Within-Host Immune Escape

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004149 March 18, 2015 11 / 21



dynamical feedbacks, both before and after the mutated strain appears, in order to account for
the reduced emergence probability in these scenarios.

Comparing pathogen growth against death rate
We next studied what process has a larger effect on pathogen emergence. Immune escape can
either be achieved by overgrowing the immune response (increasing the intrinsic pathogen
growth rate φ), or by tolerating it (reducing the immune-mediated death rate σ). One might ex-
pect that the two processes would lead to similar increase in escape probability, since both af-
fect the effective reproductive rate R�. However, this intuition need not hold in the face of
immune-mediated feedbacks. We commence with a heuristic analysis based on the determin-
istic model to predict general behaviour for a newly-emerging strain, then use numerical analy-
ses to check this reasoning.

If there are two strains spreading concurrently, the deterministic rate of change of immuni-
ty, y, and the second strain x2, is given by the following set of differential equations:

dx2
dt

¼ x2ðφ2 � s2yÞ ð11aÞ

dy
dt

¼ rðx1 þ x2Þy 1� y
K

� �
ð11bÞ

Further recall that that the basic pathogen growth rate with only one immune cell is
R2 = φ2/σ2. In order to augment its spread, the infection can either increase its intrinsic growth
rate by a certain factor (i.e. change φ2 ! φ2 c, where c> 1 is a numerical constant), or instead

Fig 4. Quantifying effect of population-level feedbacks. 3D plots comparing the total emergence
probability of a mutated strain with feedbacks (denoted PF), to one where feedbacks are not considered
(denoted PNF), as a function of mutation rate μ and R2. Other parameters are K = 100, R1 = 60, ρ = 5, xinit = 1,
yinit = 20.

doi:10.1371/journal.pcbi.1004149.g004
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tolerate the immune response (mathematically equivalent to the transformation σ2 ! σ2/c).
We can investigate the effect of both these rescaled variables on the rate of change of pathogen
spread by substituting them into Equation 4. After making the substitution φ2! φ2 c, the path-
ogen rate of change becomes:

dx2
dy

¼ KðcR2 � yÞ
ryðK � yÞ

x2
x1 þ x2

� �
s2

s1

� �
ð12Þ

The x2/(x1 + x2) term arises due to the presence of the pre-existing initial strain x1, and the
death-rate ratio σ2/σ1 appears since ρ was initially scaled by σ1; this term disappears if we as-
sume equal death rates. Apart from these terms, Equation 12 is conceptually the same as Equa-
tion 4, but with R scaled by a factor c, as expected. However, if we instead scale σ2 ! σ2 / c, a
different result emerges:

dx2
dy

¼ KðcR2 � yÞ
cryðK � yÞ

x2
x1 þ x2

� �
s2

s1

� �
ð13Þ

Here, not only is the reproductive ratio R2 scaled, but the immune growth term ρ is also al-
tered. Mathematically, this is a simple consequence of the fact that the growth rate is scaled by
1/σ1, so any rescaling of σ2 also affects ρ through its effect on the σ2/σ1 ratio. Biologically, this
outcome reflects the fact that a rescaling of immune-mediated death would not have the same
effect on the growth rate than changing φ2 by the same ratio, since pathogen death is also a
function of the immune population, y (see Equation 1). So although tolerating immunity might
increase the infection growth rate, it comes at a cost of increasing the effective growth rate of
immunity, as each immune cell would have a larger average impact on pathogen death.

Therefore, while a rise in growth rate (φ2) would only affect R2, reducing the death rate (σ2)
comes at a cost of increasing the effective proliferation rate of immune cells. Hence, one expects
that it is more advantageous for an infection to increase φ2 and outgrow the immune response,
instead of reducing σ2 and tolerating it. Furthermore, note that the emergence probabilityP in
the presence of epidemiological feedbacks contains a term of order 1/ρ (as with dx2/dy), so
the effective rise in immunity will further lead to a negative overall effect on emergence
probability.

We verified this intuition by comparing the analytical results for cases where φ2 is increased
by a set factor (so that only R2 is changed by this rescaling), to outcomes where σ2 is scaled
(which will not just affect R2 but will also increase ρ by the same factor, as outlined above).
Fig. 5(a) demonstrates how, for large parameter values, increasing φ2 only produces a higher
overall emergence probability. Qualitatively similar results arise if using different
parameter values.

Comparison with earlier results. These results appear to contradict a previous analysis by
Alizon [27]. Using nested models, it was shown that in order to maximise the epidemiological
(between-host) reproductive ratio R0, increasing the growth rate might not always be the best
option for a pathogen because it shortens the duration of the infection.

There are several changes between the models that could explain the different outcomes.
Principally, [27] aimed to determine the long-term R0 across a population, while our model
concerns the emergence of new strains intra-host. In addition, [27] used deterministic equa-
tions, and did not investigate the stochastic emergence of new strains (that is, whether those
with a smaller R0 are likely to emerge if they appear at a low frequency). However, one major
difference that is worthy of further investigation concerns the different immune-response func-
tions used in each model.
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Fig 5. Comparing pathogen growth against death rate. 3D plot comparing the emergence probability if the death rate σ is reduced by a factor 1/c = 1.01
(here denoted Pσ), to the case where the growth rate φ is increased by c = 1.01 (denoted Pφ). Plot (A) is for the case where immune response dy / dx = ρxy
(1 − y/K), as in our model, and (B) assumes dy / dx = ρφxy(1 − y/K) to enable comparison of our model with [27]. Other parameters are K = 1,000, R = 100,
xinit = 1, yinit = 20, μ = 0.025 and σ1 = 1 for (B).

doi:10.1371/journal.pcbi.1004149.g005
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In [27], the model assumed that the dynamics of the immune cell population took the form
dy / dt = rφb xy (Equation 3 in that paper). Hence, the immune response was not just stimulat-
ed by the presence of an infection, but is also dependent on pathogen replication. The reason
for this assumption is that the expression of pathogen peptides on the infected cell surface is
strongly dependent on the replication activity [40]. This is why latent viruses, such as herpes
virus, can go unnoticed from the immune system and persist for long periods of time. Interest-
ingly, if b = 1 then, according to this form of dy / dt, overgrowing and tolerating the immune
response will have equal effects on pathogen emergence. This can be seen by forming dx2 / dy
as before, and after substituting either φ2 ! φ2 c or σ2 ! σ2/c, one sees that each transforma-
tion results in the same rescaled differential equation (Section 3 of S1 Text):

dx2
dy

¼ KðcR2 � yÞ
cR2s1ryðK � yÞ

x2
x1 þ x2

� �
ð14Þ

Hence, if immunity is also linearly dependent on pathogenic growth, then increasing growth
and reducing death will have equal effects on long-term emergence in a static population. How-
ever, due to the ongoing spread of immunity in our model, increasing immune tolerance might
still cause the greatest negative impact on the emergence of mutated strains. This is due to its
ensuing effect of increasing the ‘effective’ immune growth, which can restrict new strains from
emerging (as reflected in the 1/ρ term inP). This is indeed what is observed; an example of
this behaviour is given in Fig. 5(b). Note that increasing ρ in this case leads to opposing behav-
iour than to what is seen for our model, in the sense that higher ρ reduces the advantage of in-
creased φ2. Presumably, this is due to the φ2 term affecting the immune growth-rate, which can
offset the reduction in emergence probability caused by the ongoing immune growth.

Discussion
Since infectious diseases can exhibit high mutation rates, infectious diseases always pose a
strong risk that they can evolve into new strains, especially ones that circumvent host defences.
While this question has been extensively studied at the epidemiological level, the question of
evolutionary emergence within hosts has received less scrutiny. Furthermore, few existing
models have accounted for population dynamics feedbacks that can impact and restrict the
emergence of mutated strains.

Here, we fill a key gap in existing modelling knowledge by deriving analytical methods for
determining the emergence of new strains via within-host evolution. To this end, we tailor a
broadly-applicable population dynamics model to the interaction between pathogens and im-
mune cells, a system which share similarities with predator-prey models [29]. As with previous
work studying feedbacks at the epidemiological level [21], we highlight how ongoing popula-
tion spread (in this case, of immune cells) can strongly limit the emergence of new strains. This
result is reflected in the fact that the emergence probability is greatly reduced due to ongoing
immune proliferation (Equation 10); accounting for this feedback shows how it strongly re-
stricts emergence of mutated strains (Section 3 of S1 Text).

After verifying the accuracy of the model, we subsequently determined whether it is more
advantageous for a new infection to increase its growth rate (φ), or instead increase tolerance
to the immune response (decrease σ), both of which will increase a pathogen’s reproductive
ratio R and hence qualifies as immune escape phenomena. We demonstrate that, rather sur-
prisingly, it always pays in the short-term for a pathogen to increase its replication rate, and to
try and outgrow the immune response. The rationale behind this behaviour is that if immune
tolerance rises by a certain factor, it will not cause an equal reduction on pathogen death since
immunity is still present at a high frequency. Intuitively, the presence of multiple strains will
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cause indirect competition between them, since the presence of both causes a higher spread of
immunity which reduces the mutated strain’s growth rate when rare. This phenomenon mani-
fests itself mathematically as an increase in the scaled immune growth rate, ρ. Since increasing
effective immunity would also reduce the emergence probability of new strains (Equation 10),
it is evolutionary advantageous for pathogens to evolve a higher growth rate instead (Fig. 5).

One elegant outcome of the modelling framework is that these general outcomes should be
robust to the function used to model immune-cell proliferation. It is a concern in epidemiologi-
cal modelling that key results are heavily dependent on the specific mathematical functions
used [41], and several models have been previously used to reflect immune growth [29]. How-
ever, most of these functions approximate to exponential growth when immunity initially ap-
pears; furthermore, the form of the emergence probability (Equation 8) makes clear that any
immune growth will feedback onto the emergence of the mutated strain, limiting its appear-
ance. For this reason, our conclusion that infectious diseases would benefit more from higher
growth rates should also be robust to how immunity spreads over time.

There exists evidence, in line with these findings, that HIV increases its growth rate over the
course of an infection [42]. However, the observed increase is small. A slight increase might
only be necessary if too large a growth rate would trigger a larger immune response, or kill off
the host too quickly and thus limit the epidemiological spread of the pathogen (both effects
have been previously investigated by [27]). It has been proposed that immune escape for HIV
becomes less efficient over time, which might be the cause of a low increase in replication rate
[15]. Hence it might be mechanistically more feasible for a pathogen to instead evade the im-
mune response, by mutating in or close to a virus epitope, so as to avoid recognition by lym-
phocytes that would otherwise neutralise it (a variant on the ‘immune tolerance’ scenario
outlined above). These type of escape mutations have been widely documented in HIV infec-
tions, which is one reason why the virus is able to persist for long periods of time, and also why
vaccination is so difficult [43, 44]. Similarly, although not a chronic illness, evidence exists
demonstrating that influenza A/H1N1 evades immunity via evolution causing increased virus
affinity to cell receptors, which enlarges its replication rate [20]. To further investigate this
issue, future models need to be created that combine short-term effects of pathogen emergence,
as used here, with long-term forecasts of the pathogenic steady-state (since our model only
deals with the initial, emergence stage).

More generally, the huge challenge exerted by the immune system on pathogen populations
de facto generates apparent competition between different infection strains (or even species)
co-infecting the same host [45]. In this case, it has been postulated that the faster-replicating
strain could persist in the long-term by sheer force of numbers [46], as predicted with our
model. Several empirical studies exist that support this intuition, as observed with malaria [47,
48] and schistosomes [49] (although competition for another resource, such as red-blood cells
for malaria infections, could have partly explained these results).

Implications of the model for different cases of immune escape
Our model can also be used to shed light on different processes of within-host emergence that
have been observed in clinical studies. Different diseases show varying outcomes with regards
to the production of immune-escape mutations. Two extensively-studied human diseases, HIV
and HCV, are both characterised by a successive emergence of new strains over time. In partic-
ular, HIV is well-known to produce ‘escape mutations’ that evade T cell-mediated immunity
[43, 44]. On a within-host phylogeny, this behaviour is characterised by creation of new sub-
clades [5–7]. This behaviour can be intuitively explained by noting that HIV has extremely
high mutation rates, estimated at*0.2 errors made per replication cycle and the ability to
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produce 1010 – 1012 virions per day [6] (although mutation creation might be limited by a
lower Ne, which has been estimated to lie between 1,000 [50] and 100,000 [51]). Furthermore, a
sizeable proportion of mutations are beneficial, with estimates of adaptive substitutions in the
env gene placed at*55% [52] (although the actual proportion of spontaneous beneficial muta-
tions will be less than this, as observed from mutagenesis studies with viruses [53, 54]). What
may seem surprising is that given this evolutionary potential, we do not see a more pronounced
increase in HIV replication rate throughout the course of an infection. Yet, conversely, immune
escape is very strongly selected for [14]. One possibility could be that given the constrains on
RNA virus genomes [55], evading the immune response might be easier to achieve than in-
creasing the replication rate. Furthermore, if the maximum immunity population size is high,
it could be too complicated mechanistically to outgrow it, rather than than simply evading it.

HCV also shows a similar propensity to produce immune-escape mutations, with an esti-
mated substitution rate of 1.2×10−4 per replication cycle and 1012 virions generated each day
[7] (although, as with HIV, the effective population size is greatly lower than this value [7]).
Acute hepatitis C infections are characterised by little diversity accumulating over time, except
in one specific genetic region (NS5B; [56]). Chronic infections accumulate much more diversi-
ty, in line with the hypothesis that they continuously evolve to evade the immune system [16].
These infections are also characterised by different immune profiles: acute infections
lead to a high, sustained immune response, which tends to be greatly lowered in chronic
infections [57]. Our model suggests that if the immune response naturally increased rapidly
(i.e. a higher intrinsic ρ in the model), it can greatly limit the emergence of new pathogens as it
rises, preventing immune escape and a chronic illness. There exists evidence that mutations in
hosts correlate with infection outcome, mainly due to SNPs at the IL28B loci, which could
cause this effect [58–60]. However, it remains controversial as to what determines virus
clearance, especially since there exist evidence for virus control over infection outcome [61].
Therefore, the effect on immune response on the creation of escape mutations requires
further study.

Other diseases are characterised by low probability of emergence despite frequent mutation,
for which immune feedbacks could be the cause. Cancer growth is characterised by evading
pre-programmed cell death and extremely rapid cell replication [17]. Furthermore, genomes
present in cancer cells usually carry ‘mutator’ alleles, causing additional cell instability [62].
Therefore, cell mutation can be extremely common, but can generally be stopped by the im-
mune response. Yet it is known that tumours can mutate immune-checkpoint networks to gen-
erate protection from the immune system. One prominent example is the up-regulation of
ligands for the programmed cell death protein 1 (PD1) pathway, which can block antitumour
immune responses [63]. Our model suggests that due to the rapid replication of tumour cells,
they could also strongly trigger a heightened immune rate, the increased spread of which will
greatly prevent cancer emergence. This mechanism could explain why tumour emergence is
rare relative to the potential mutation rate.

Overall summary
By accounting for the ongoing spread of immunity, we have quantified how this particular ef-
fect can feedback onto emergence of mutated pathogens intra-host, and inhibit the appearance
of mutated strains. Further analysis of the model demonstrates how it is beneficial for a patho-
gen to increase its replication rate and attempt to outgrow immunity, as opposed to tolerate it.
This model can therefore shed light on expected within-host evolutionary dynamics of infec-
tions, as well as determine why extremely rapidly replicating pathogens do not emerge as often
as expected.
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Supporting Information
S1 Fig. Simulation comparisons where R1 < R2 < K. Comparisons of the full analytical solu-
tion (Equation 7, withP given by Equation 10) with simulation results. Solid lines represent
analytical solutions; points are simulation calculations. Graphs are plotted as a function of the
reproductive ratio of the second strain, R2. Note that the y axis is plotted on a log scale. Differ-
ent colours denote different mutation rates, as shown in the accompanying legend. Other pa-
rameters are (A and B) K = 100, R1 = 60; (C and D) K = 1,000, R1 = 100; or (E and F) K =
10,000, R1 = 2000. In all panels, xinit = 1 and yinit = 20. ρ equals either 0.5 (A, C, and E) or 9 (B,
D, and F). Most error bars, as calculated using binomial confidence intervals, lie within the
points if they cannot be seen.
(EPS)

S1 Text. Contains additional information on derivations, and further comparisons against
simulation results (Mathematica NB format). The file is separated into three sections:

Section 1 Setting up the mathematical model. In-depth mathematical analyses of the differ-
ential equations used, and how to derive the emergence probability if affected by immune
growth (Equation 10 in the main text).

Section 2 Testing against stochastic simulations. Full list of analytical comparisons with sim-
ulation outcomes, which contributed to Fig. 3.

Section 3 Mathematical analysis of analytical solution. Further outline of mathematical anal-
ysis and numerical computation, demonstrating (i) how immune feedbacks affect popula-
tion growth, and (ii) how different φ and σ values affect mutated pathogen emergence.
(PDF)

S2 Text. Same as Text S1, but in PDF format.
(PDF)
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