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This appendix provides all the technical background and mathematical analyses that support the

formal infection pattern definition and counting (section A), the investigated within-host model (sec-

tions B, C and D) and the identification of the infection patterns it generates (section E).
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As we consider two parasite types we label 1 and 2, we often have to deal with label-dependent

quantities or objects for which the general form can be advantageously given using dummy indices.

Thus, unless stated otherwise, i represents 1 and 2 while k respectively represents 2 and 1, and holds

for their corresponding bold labels. j and ` are instead used for all couples of {1,2}2. Hence, unless

stated otherwise, the quantifications ∀ (i,k) ∈ {1,2}2 , i 6= k and ∀ ( j,`) ∈ {1,2}2 are most often implied.

A Formal infection patterns

A.1 Host and inoculum classes

We define a host class as the set of parasite genotypes that steadily infect a host. With two parasite

genotypes, there are four host classes: susceptible ; (uninfected host), singly infected by either geno-

type, {1} and {2}, and doubly infected {1,2}, which we denote by 0,1,2 and 3 respectively.

We define an inoculum class as a set of parasite genotypes an infected host can simultaneously

transmit. The inoculum classes associated to each infected host class are given in Table S1. Note that

contrary to most studies on multiple infections we allow hosts to transmit any non-empty subset of the

set of genotypes they are infected with, namely the doubly infected host can transmit genotype 1 alone,

genotype 2 alone and both genotypes at the same time (which is inoculum class 3).

infected host class 1 2 3
potential inoculum classes 1 2 1, 2, 3

Table S1: Infected host classes and subsequent inoculum classes.

Note that for further formal completeness, we also consider the empty inoculum class 0 that denotes

the absence of inoculum.

A.2 Mapping

Formally, an infection pattern is a discrete map that associates inoculation outcomes to all the couples

of host and inoculum classes. Importantly, for the following mapping framework to apply, we need to

assume that the inoculation outcome is unique (an inoculation can only result in one host class). We

denote by n2 the number of infection patterns for 2 genotypes. Let φ be a map from the domain Dφ that

contains all possible couples of host and inoculum classes to the codomain of all possible host classes

Hφ (φ : Dφ→Hφ). The domain Dφ can be seen as the product set of a host class set Hφ and an inoculum

class set Iφ, that is Dφ = Hφ× Iφ where × denotes the Cartesian product. The biological meaning of a

map φ is such that ∀ (h, p) ∈ Dφ,φ (h, p) is the outcome host class of the inoculation of a host of class h
by an inoculum of class p. Importantly, φ may not be surjective.

If the domain and the codomain of each map are assumed to be as large as possible, then an upper

bound for n2 can easily be found. Indeed, the set of all classes A = {0,1,2,3} contains all host and

inoculum classes so that for any map φ, Hφ ⊂ A ,Iφ ⊂A and Cφ ⊂ A . Using classical combinatorial

formula, we have

n2 ≤Card
{
φ : A ×A →A

}= (CardA)CardA ·CardA = 416 = 4,294,967,296.
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This calculation is certainly very rough but it nevertheless shows that listing all possible maps and

checking their biological relevance as an infection pattern is not an option. Therefore, we need to define

necessary conditions for a map φ : Dφ→Cφ to be an infection pattern.

Before proceeding, we need to mention the infection pattern where no parasite genotype ever reaches

a stable within-host steady state. As chronic infection then never occurs, this map φ0 is degenerate

(with =Hφ0 = {0} ,Iφ0 =;,φ0 (0,0)= h). Because one can see this case as the trivial no infection pattern,

it should be counted as one, but it will be ignored in the rules and counting shown hereafter and only

added in the final sum.

A.3 Infection pattern requirements

The following rules stem from commonplace biological conceptions of inoculation and infection pro-

cesses.

Rule 1 (type coherence). The inoculation of a host cannot result in an outcome class containing

genotypes that belong neither to the inoculated host class nor to the inoculum class. Formally, ∀ (h, p) ∈
Dφ,φ (h, p) ⊂ h∪ p. This may seem trivial (genotypes do not come out of nowhere) but note that it

implies that we do not allow for within host mutation alone to modify the class a host belongs to.

Rule 2 (host class stability). The inoculation of a host with parasite genotypes it is already

infected with results in no change in the host class. Formally, ∀h ∈ Hφ,∀p ⊂ h,φ (h, p) = h. This is

justified by the assumptions that inoculum sizes are at least one order of magnitude below parasite

loads and that the dynamics within the inoculated host are at stable equilibrium (otherwise the host

class would not be an argument of φ). As ∀h ∈ Hφ,0 ⊂ h, a remarkable consequence of this rule is that

∀h ∈Hφ,φ (h,0)= h.

Rule 3 (infecting type insensitivity). The outcomes of inoculations with or without genotypes

that are already infecting the host must be identical. Formally, ∀ (h, p) ∈Dφ,φ (h, p)=φ (h, p \ h). As in

rule 2, adding few individuals to an already-established parasite genotype does not qualitatively change

the system, but the introduction of a previously absent genotype does.

Rule 4 (epidemiological connectivity). There has to be at least one sequence of inoculation

and/or recovery events initiated from the susceptible host class that leads to each infected host class.

The recovery process only matters here if singly infected hosts can be generated only through the re-

covery of doubly infected hosts and not by an inoculation event. We assume that a doubly infected host

can always become singly infected through recovery if the corresponding singly infected class belongs

to the host class set. It is straightforward that, due to the uniqueness of inoculation outcomes, any

inoculation/recovery sequence starting from the susceptible class can lead to any infected host class in

one, two or three steps. Therefore, by considering all sequences, one can easily show that this rule is

formally equivalent to

∀ (i,k) ∈ {1,2}2 , i 6= k,

for singly infected hosts: i ∈Hφ⇐⇒ (
φ (0, i)= i

)∨ (
φ (0,3)= i

)∨ (
φ (0,3)= 3

)
∨(((

φ (0,k)= k
)∨ (

φ (0,3)= k
))∧ ((

φ (k, i)= i
)∨ (

φ (k, i)= 3
)))

,

for doubly infected hosts: 3 ∈Hφ⇐⇒ (
φ (0,3)= 3

)
∨(((

φ (0, i)= i
)∨ (

φ (0,3)= i
))∧ ((

φ (i,k)= 3
)∨ ((

φ (i,k)= k
)∧ (

φ (k, i)= 3
))))

,

where ∧ and ∨ stand for logical conjunction (and) and logical disjunction (or) respectively. A remarkable

consequence of this rule is that there has to be at least one inoculum that induces infection in susceptible

hosts. Formally, ∃p ∈ Iφ :φ (0, p) 6= 0. This makes sense because parasites are not vertically transmitted.
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We call the number of determining images of a map φ the lowest number of images φ (a,b) that com-

pletely determine a map that satisfies all infection pattern requirements. Combining these four rules al-

lows us to reduce the number of determining images to five, namely φ (0,1) ,φ (0,2) ,φ (0,3) ,φ (1,2) ,φ (2,1).

According to rule 1, φ (0,1) ∈ {0,1}, φ (0,2) ∈ {0,2} and φ (0,3) ,φ (1,2) ,φ (2,1) ∈ A . Therefore, there are

“only” 2 · 2 · 43 = 256 different maps left to consider (including the trivial infection pattern discussed

above).

A.4 Redundancies

The count based on the maps that follow all 4 rules suffers from two kinds of redundancy. The first

one is due to unnecessary distinction of maps according to their epidemiological meaning. The previous

calculation indeed assumes that Hφ = Iφ =A , that is all hosts and inoculum classes are possible, which

may not be true for all biological settings. For example, if genotype 1 requires the presence of genotype

2 to infect, then φ (1,2) is not defined. Therefore, maps that only differ from other maps because of

this particular value which has no epidemiological relevance should be discounted (see Sofonea et al.

(2015) for more details about “epidemiological classes”). The second kind of redundancy is induced by

the symmetry between genotypes. We say that maps φ and φ′ are twins if one can build φ′ from φ by

swapping 1 and 2 in both H and I , and conversely. More precisely, let us define the swapping function

χ : {0,1,2,3} → {0,1,2,3} such that χ (0) = 0, χ (3) = 3, χ (1) = 2 and χ (2) = 1. Then, φ and φ′ are twins

if and only if ∀ (h, p) ∈ Dφ = Dφ′ ,φ (h, p) = χ
(
φ′ (χ (h) ,χ (p)

))
. A map φ that is its own twin is said

label-symmetric. Note that if a map is not label-symmetric, then there always exists a distinct twin

map φ′ 6= φ (one can simply build it using the χ function). If φ is an infection pattern, then it is not

relevant to count φ′ as well as an infection pattern since their difference only lies in the contingency of

the genotype labelling.

A.5 Constrained counting

In the following, we introduce a way of counting all maps that satisfies the infection pattern require-

ments and takes care of these redundancies. The first kind of redundancy is managed through parti-

tioning according to the possible domains Dφ, while the second kind is avoided through the use of i and

k indices, with (i,k) ∈ {1,2}2 , i 6= k.

As defined above, the domain Dφ of a map φ is the product set of the possible host class and the

possible inoculum sets Hφ and Iφ. Because the contents of Hφ completely determine the contents of Iφ
and consequently Dφ (Table S1), a partition is given by the possible host class sets Hφ, as shown in

Table S2. Note that for the sake of generality, we also considered simultaneous inoculations to occur

which explains why the inoculum set in the case where Hφ = {0, i,k} is Iφ = {i,k,3} and not just {i,k}

(this is only the consequence of relaxing the assumption of non-overlapping inoculations). In Table S2,

we list the determining images that are left in each case after eliminating those whose argument does

not belong to Dφ and those constrained by rule 4 to a single value.
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host class set Hφ {0, i} {0,3} {0, i,3} {0, i,k} {0, i,k,3}
inoculum class set Iφ {i} {i,k,3}
φ (0, i) set {i} {0} {0, i} {0, i} {0, i}
φ (0,k) set ; {0} {0} {0,k} {0,k}
φ (0,3) set {3} {0, i,3} {0, i,k} {0, i,k,3}
φ (i,k) set ; {0, i,3} {0, i,k} {0, i,k,3}
φ (k, i) set ; {0, i,k} {0, i,k,3}

Table S2: Host class set partition and associated inoculum class set and determining image sets.

A.5.1 Hφ = {0, i} and Hφ = {0,3}

If i or 3 is the only infected host class, their determining images are already determined so that there

is only one infection pattern for each case.

A.5.2 Hφ = {0, i,3}

If one single infection type (let us say k) is impossible, then there are three free determining images,

namely φ (0, i) ∈ {0, i} ,φ (0,3) ∈ {0, i,3} ,φ (i,k) ∈ {0, i,3}. Table S3 explores all combinations for these free

images and checks the infection pattern requirements.

φ (0, i) φ (0,3) φ (i,k) is φ an infection pattern?

0 0 0, i,3 no (susceptible hosts never get infected)
i 0, i no (double infected hosts cannot be generated)

3 yes
3 0, i,3 yes

i 0 0, i no (double infected hosts cannot be generated)
3 yes

i 0, i no (double infected hosts cannot be generated)
3 yes

3 0, i,3 yes

Table S3: Free determining image combinations and satisfaction of the infection pattern requirements
in the case of Hφ = {0, i,3}.

It follows from Table S3 that there are 9 different infection patterns produced by this host class set.

A.5.3 Hφ = {0, i,k}

If double infection is impossible, there are five free determining images, namely φ (0, i) ∈ {0, i} ,φ (0,k) ∈
{0,k} ,φ (0,3) ∈ {0, i,k} ,φ (i,k) ∈ {0, i,k} ,φ (k, i) ∈ {0, i,k}.

Let us first count the number of label-symmetric infection patterns in this case. This implies that

φ (0, i) = χ
(
φ (0,k)

)
,φ (i,k) = χ

(
φ (k, i)

)
and φ (0,3) = χ

(
φ (0,3)

)
. Moreover, from the last condition it

comes that φ (0,3) has to be one of the two fixed points of the χ function which are 0 and 3, but since

3 ∉ Hφ, φ (0,3) = 0 necessarily. Table S4 explores all possible combinations for these free determining

images and checks the infection pattern requirements.
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φ (0, i) ⇔φ (0,k) φ (i,k) ⇔φ (k, i) is φ an infection pattern?

0 0 0, i,k 0,k, i no (susceptible hosts never get infected)
i k 0 0 yes

i k yes
k i yes

Table S4: Free determining image combinations and satisfaction of the infection pattern requirements
for label-symmetric maps in the case of Hφ = {0, i,k}.

Thus, there are 3 label-symmetric infection patterns for Hφ = {0, i,k}.

With computational help, we listed all non label-symmetric maps sharing this host class set and

found that 60 of them satisfy rule 4 (data not shown). Hence, there are 30 distinct non label-symmetric

infections patterns for Hφ = {0, i,k}.

A.5.4 Hφ = {0, i,k,3}

If all host classes are possible, there are five free determining images, namely φ (0, i) ∈ {0, i} ,φ (0,k) ∈
{0,k} ,φ (0,3) ∈ {0, i,k,3} ,φ (i,k) ∈ {0, i,k,3} ,φ (k, i) ∈ {0, i,k,3}.

Let us first count the number of label-symmetric infection patterns in this case. This implies that

φ (0, i)= χ
(
φ (0,k)

)
,φ (i,k)= χ

(
φ (k, i)

)
and φ (0,3)= χ

(
φ (0,3)

)
. Moreover, the last condition implies that

φ (0,3) has to be one of the two fixed points of the χ function, which are 0 and 3.

Table S5 explores all possible combinations for these free determining images and checks the infec-

tion pattern requirements.

φ (0, i) ⇔φ (0,k) φ (0,3) φ (i,k) ⇔φ (k, i) is φ an infection pattern?

0 0 0 0, i,k,3 0,k, i,3 no (susceptible hosts never get infected)
3 0, i,k,3 0,k, i,3 yes

i k 0 0, i,k 0,k, i no (double infected hosts cannot be generated)
3 3 yes

3 0, i,k,3 0,k, i,3 yes

Table S5: Free determining image combinations and satisfaction of the infection pattern requirements
for label-symmetric maps in the case of Hφ = {0, i,k,3}.

Thus, there are 9 label-symmetric infection patterns for Hφ = {0, i,k,3}.

With computational help, we listed all non label-symmetric maps sharing this host class set and

found that 120 of them satisfy rule 4 (data not shown). Hence, there are 60 distinct non label-symmetric

infections patterns for Hφ = {0, i,k,3}.

A.5.5 Counting summary and total

Table S6 sums up all the infection patterns we found for each host class set.

Hφ {0} {0, i} {0,3} {0, i,3} {0, i,k} {0, i,k,3}

label-symmetric 1 0 1 0 3 9
non label-symmetric 0 1 0 9 30 60

total number of infection patterns 114

Table S6: Summary of the infection pattern counting.
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To conclude, we find that, following our definition and related assumptions presented above, there

are exactly 114 different infection patterns, all represented below (Figure S1).
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(panel 2/2)

Figure S1: Exhaustive list of infection patterns for two parasite genotypes (according to requirements
given in A.3).
The quintuple below each infection pattern graph gives the associated values of(
φ (0, i) ,φ (0,k) ,φ (0,3) ,φ (i,k) ,φ (k, i)

)
, and is denoted by − if undefined. Circled labels represent

host classes and arrows transitions between host classes through inoculation or recovery. Full blue
arrows represent inocula of genotype i alone, full red arrows represent inocula of genotype k alone, full
purple arrows represent inocula of both genotypes, blue and purple dashed arrows represent inocula of
genotype i and possibly genotype k, and red and purple dashed arrows represent inocula of genotype k
and possibly genotype i. Green dashed arrows represent recovery from the doubly infected host class
to singly infected host classes. For the sake of clarity, recovery arrows from infected host classes to the
susceptible host class and looping inoculation arrows (when φ (h, p)= h) are not shown.
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B The within-host dynamics

B.1 Vectorial formulation

We recall the equations of the within-host dynamics for the focal genotype i:


dX i
dt = (

%i +ηi,i X i +ηi,k Xk +γi,iYi +γi,kYk −σi,iZi −σi,kZk
)
X i ,

dYi
dt = υ (ui X i −Yi) ,

dZi
dt = υ (vi X i −Zi) .

(1)

Let us denote by W := {
w ∈R6}

the space where all possible variable vectors lie, hereafter referred

to as the “double inoculation space” (DIS). Any variable vector in the DIS can also be seen as a con-

catenated vector w =
[

wi wk

]
, where wi is the genotype i restricted variable vector of the form

wi =
[

X i Yi Zi

]
.

The single inoculation case is characterised by the absence of genotype k, that is Xk = Yk = Zk = 0

for all times t ∈ R+. Therefore the variable vector is restrained to the following subspace of the DIS,

Wi := {
w ∈W : Xk =Yk = Zk = 0

}
, which we call the “single inoculation space i” (SISi), Wi (W .

For the sake of concision, r i hereafter denotes the instantaneous growth rate defined such that

fx,i (w) = r i (w) X i, that is r i (w) := %i + ∑
j∈{1,2}

(
ηi, j X j +γi, jY j −σi, jZ j

)
. Moreover, defining concatenated

functions as fi :=
[

fx,i fy,i fz,i

]T
and f :=

[
fi fk

]T
, system (1) can be written under the vectorial

form as ∀t ∈R+,
dwT

dt
(t)= f (w (t)) . (2)

We call solution of (1) the set of values taken by the variables X1,Y1, Z1, X2,Y2, Z2 through time,

from t = 0 to a potentially infinite T > 0. Except on a set of measure zero, such a solution always exists

and is unique for a given initial condition. Consequently, for any initial condition a ∈ W , w[a] denotes

the solution of (1) that started in a. Note that in most biologically relevant parameter sets, the solution

is defined for all T > 0. Nonetheless, for the sake of completeness, we also address cases where parasite

loads explode (see section D).
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B.2 Jacobian matrices

The Jacobian matrix associated to (1) in single infection, denoted by Ji, is only evaluated in Wi and is

equal to

∀w ∈Wi,Ji (w) = ∂fi

∂wi
(w) ,

=


%i +γi,iYi −σi,iZi +2ηi,i X i γi,i X i −σi X i

υui −υ 0

υvi 0 −υ

 , (3)

while its double infection counterpart, denoted by J3, is evaluated in W and is equal to

∀w ∈W ,J3 (w) = ∂f
∂w

(w) ,

=



r i (w)+ηi,i X i γi,i X i −σi,i X i ηi,k X i γi,k X i −σi,k X i

υui −υ 0 0 0 0

υvi 0 −υ 0 0 0

ηk,i Xk γk,i Xk −σk,i Xk rk (w)+ηk,k Xk γk,k Xk −σk,k Xk

0 0 0 υuk −υ 0

0 0 0 υvk 0 −υ


. (4)

All the notations related to the within-host dynamics and their vectorial formalism are given in

Table S7.
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B.3 Notation table

symbol set or value meaning
time-dependent variables

X i ∈F (R+,R) parasite load
Yi ∈F (R+,R) public goods concentration
Zi ∈F (R+,R) spite concentration

constant parameters

%i ∈R? basic growth rate
ui ∈R?+ public goods production rate
vi ∈R?+ spite production rate
η j,` ∈R? parasite-load dependent effect
γ j,` ∈R?+ public goods effect
σ j,` ∈R?+ spite effect
υ ∈R?+ public production standard clearing rate

vectorial notations

wi = [
X i Yi Zi

]
genotype restricted variable vector

w = [
X1 Y1 Z1 X2 Y2 Z2

]
variable vector

Wi = {
w ∈W : wk = 03

}
single inoculation space i (SISi)

W = {
w ∈R6}

double inoculation space (DIS)

system dynamics notations

w[a] ∈F
(
R+,W

)
: w (0)= a within-host dynamics solution

for initial condition a
fx,i, fy,i, fz,i ∈F

(
W ,R

)
within-host dynamics functions

r i = %i + ∑
j∈{1,2}

ηi, j X j +γi, jY j −σi, jZ j instantaneous growth rate

fi = [
fx,i fy,i fz,i

]T ∈F
(
W ,R3)

genotype restricted within-host
dynamics function vector

f = [
fi fk

]T ∈F
(
W ,R6)

within-host dynamics function vector
Ji = ∂fi

∂wi
∈F

(
W ,M3 (R)

)
single infection Jacobian matrix

J3 = ∂f
∂w ∈F

(
W ,M6 (R)

)
double infection Jacobian matrix

Table S7: Within-host dynamics notations.
R denotes the set of real numbers (−∞,+∞) while .+, .− and .? and their combination denote restric-
tion to non-negative, non-positive and non-zero numbers respectively. Note that F denotes the set of
functions over the argument sets.
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C Fixed point analysis

Although we could not prove it analytically for all parameter sets, the within-host dynamics of our

model seems not to generate behaviours such as sustained oscillations or chaos. All simulations done

so far show either asymptotic convergence to fixed point or finite time explosions (see next section).

Because they govern the long-term behaviour of the system, the analysis of these fixed points is thus

the unavoidable step to investigate the within-host outcomes.

C.1 Determination

The set of fixed points of (1) is the intersection set of the nullclines, or zero-growth isoclines, that is the

parts of the space over which a variable is stationary (Simonyi and Kaszás, 1968). In our within-host

model, respectively these are


Xi := {

w ∈W : fx,i (w)= 0
}
,

Yi := {
w ∈W : fy,i (w)= 0

}
,

Zi := {
w ∈W : fz,i (w)= 0

}
.

(5)

It is straightforward that the public production nullclines can be expressed as

Yi : (Yi = ui X i) ,

Zi : (Zi = vi X i) .
(6)

Then,

wi ∈Yi ∩Zi ⇐⇒wi = X ici, (7)

where ci :=
[

1 ui vi

]
is the direction vector of the the Yi ∩Zi space.

Since fx,i (w) = r i (w) X i, the parasite load nullcline Xi can be partitioned into two subsets: Xi =
X ◦

i ∪X ?
i , with X ◦

i ∩X ?
i =;, where they respectively correspond to the absence, X ◦

i : (X i = 0), and presence,

X ?
i :

(
X i = −1

ηi,i

(
%i +γi,iYi +γi,kYk −σi,iZi −σi,kZk +ηi,k Xk

) 6= 0
)
, (8)

of genotype i. Note that Wi =X ◦
k ∩Yk ∩Zk.

Because of (7), the stationary parasite loads constrain the stationary values of public productions.

Owing to the partition of the parasite load nullcline, the set of all fixed points is thus

Ŵ := Xi ∩Yi ∩Zi ∩Xk ∩Yk ∩Zk,

= (
X ◦

i ∪X ?
i
)∩ (

X ◦
k ∪X ?

k
)∩ (Yi ∩Zi ∩Yk ∩Zk) ,

= ((
X ◦

i ∩X ◦
k
)∪ (

X ?
i ∩X ◦

k
)∪ (

X ◦
i ∩X ?

k
)∪ (

X ?
i ∩X ?

k
))∩ (Yi ∩Zi ∩Yk ∩Zk) .

It is straightforward that there are exactly four different fixed points.

The first one is simply the origin of R6 and corresponds to the absence of infection. We denote it by

ŵ0 and call it the “uninfected fixed point” (UFP),

ŵ0 = 06.
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The next two correspond to the case where only one genotype persists, while the other vanishes. The

“singly infected fixed point i” (SIFPi), denoted by ŵi, is thus the fixed point for which genotype i infects

alone. It is easy to show that

ŵi =
[
x◦i ci 03

]
, x◦i := −%i

ηi,i +γi,iui −σi,ivi
∈R?, (9)

where x◦i denotes the non-zero stationary parasite load of the SIFPi.

The last fixed point corresponds to the stationary coexistence of both parasite genotypes within

the host, so we call it the “doubly infected fixed point” (DIFP). Let us denote by xi the parasite load

of genotype i associated to this fixed point. Finding a non-zero solution (xi, xk) 6= (0,0) comes down to

solving the following linear system

r1 (ŵ)= 0,

r2 (ŵ)= 0,

(6)⇐⇒
%1 +γ1,1u1x1 +γ1,2u2x2 −σ1,1v1x1 −σ1,2v2x2 +η1,1x1 +η1,2x2 = 0,

%2 +γ2,1u1x1 +γ2,2u2x2 −σ2,1v1x1 −σ2,2v2x2 +η2,1x1 +η2,2x2 = 0,

⇐⇒ M

[
x1

x2

]
=−

[
%1

%2

]
, (10)

where M = (
m j,`

)
( j,`)∈{1,2}2 . We call M the stationary interaction matrix. Its elements, the stationary

interaction effects, are defined as

m j,` := η j,`+γ j,`u`−σ j,`v`. (11)

More precisely, m j,` is the sum of the interaction effects over genotype j from genotype `, where the

parasite loads of genotypes j and ` ( j might be equal to `) are at their non-zero stationary values.

The linear system (10) has a unique solution almost everywhere over the parameter space and it is

given by

[
x1

x2

]
= −M−1.

[
%1

%2

]
= 1

m1,1m2,2 −m1,2m2,1

[
m1,2%2 −m2,2%1

m2,1%1 −m1,1%2

]
.

The DIFP is therefore the following vector

ŵ3 =
[

xici xkck

]
, xi =

mi,k%k −mk,k%i

mi,imk,k −mi,kmk,i
∈R?. (12)

Finally, note that the ŵ0 and ŵi belong to Wi while ŵ j and ŵ3 do not.

As a conclusion, the stationary values of the parasite loads in single infection, x◦i , and in double

infection, xi, are governed by the elements of the stationary interaction matrix M= (
m j,`

)
( j,`)∈{1,2}2 .
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C.2 Feasibility

Hereafter, the comparison symbols º and Â are the element-wise versions of ≥ and >, that is for instance

A = (
a j,`

)º b ⇐⇒∀ ( j,`) ,a j,` ≥ b. Due to the biological meaning of its components, a variable vector w
is said to be “feasible” if none of its elements is negative, that is w º 0. The subset of feasible variable

vectors is denoted by W+ = {
w ∈W : w≥ 0

}
.

Let us show that W+ is positively invariant, that is a ∈ W+ =⇒ ∀t ∈ R+,w[a] (t) ∈ W+. From dX i
dt =

r i X i, it comes that

X i (t)= X i (0) e
∫ t

0 r i X i(τ)dτ,

so X i (0)≥ 0=⇒∀t ∈R+, X i (t)≥ 0.

Applying this result to dYi
dt = υ (ui X i −Yi), we get the following inequality

dYi

dt
≥−υYi.

Let Yi be the solution of


dYi

dt =−υYi

Yi (0)=Yi (0)≥ 0
, that is Yi (t) = Yi (0) e−υt ≥ 0. Thus, dYi

dt ≥ dYi

dt implies

Yi (t)≥Yi (t)≥ 0,∀t ∈R+. The same holds for Zi. By symmetry with j, we conclude that W+ is positively

invariant.

Using the same reasoning, it is straightforward that W+∩Wi is positively invariant as well. As a

consequence, the within-host variables always have feasible values if they start from a feasible value

and we ignore solutions that do not lie in W+.

For the sake of simplicity and biological relevance, we do not consider subsets of the parameter space

with measure zero, meaning that x◦i and xi cannot be equal to 0. Since υ represents a clearing rate and

ui and vi production rates, these parameters are positive. We therefore have the following feasibility

condition on the non trivial fixed points owing to the fact that ci Â 0,

(ŵi º 0) ⇐⇒ x◦i > 0,

⇐⇒ sgn
(
%i

) 6= sgn
(
mi,i

)
, (13)

and

ŵ3 º 0 ⇐⇒ (xi > 0)∧ (xk > 0),

⇐⇒ sgn
(
mi,imk,k −mi,kmk,i

)= sgn
(
mi,k%k −mk,k%i

)= sgn
(
mk,i%i −mi,i%k

)
, (14)

where sgn is the sign function (sgn(x) := x
|x| ,∀x 6= 0 and sgn(0) := 0) and ∧ is the logical conjunction

(and). Condition (13) states that in order for one genotype to show a feasible stationary parasite load in

single infection, either reproduction can be achieved without any public good (%i > 0) and is restrained

by some density-dependence effects (mi,i < 0), or reproduction is public-good dependent (%i < 0,mi,i > 0).

Condition (14) has no straightforward interpretation.
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C.3 Local asymptotic stability

A fixed point ŵ is said to be locally asymptotically stable (LAS, but simply ’stable’ in the main text)

in a given space Ω if any trajectory w[a] (t) on Ω, with a close enough to ŵ, remains close to ŵ for all

later times and w[a] (∞) := lim
t→∞w[a] (t)= ŵ (see Wiggins (2003) for a more formal definition). A necessary

and sufficient condition for a fixed point to be LAS in a given space Ω is that all the eigenvalues of its

associated Jacobian matrix evaluated in Ω have a negative real part (Wiggins, 2003). Otherwise, the

fixed point is unstable in Ω.

Local asymptotic stability is a useful property to predict the behaviour of the system in a close

neighbourhood of one of its fixed points. After a small perturbation, the system returns to the fixed

point if stable and moves away from it if unstable.

Local asymptotic stability of a fixed point may be effective in one space but not in another. An

interesting biological consequence of this is that the inoculation by genotype j of a host already singly

infected by genotype i can result in the persistence of genotype j and in the elimination of genotype

i from the host. Recall that the UFP and the SIFP belong to Wi (W ; we thus have to distinguish

between being LAS in Wi and being LAS in W .

C.3.1 Necessary and sufficient condition for UFP to be LAS in W and Wi

Let us study the the stability of the UFP ŵ0 in W . The Jacobian matrix evaluated in this point is

J3 (ŵ0)=



%i 0 0 0 0 0

υui −υ 0 0 0 0

υvi 0 −υ 0 0 0

0 0 0 %k 0 0

0 0 0 υuk −υ 0

0 0 0 υvk 0 −υ


,

the eigenvalues of which are simply Sp(J3 (ŵ0)) = {
%i,%k,−υ}, because it is a lower triangular matrix.

Therefore, we have

ŵ0 is LAS in W ⇐⇒ (
%1 < 0

)∧ (
%2 < 0

)
. (15)

Obviously, Ji (ŵ0) is equal to the upper left 3× 3 block of J3 (ŵ0) and is also a lower triangular

matrix, so

ŵ0 is LAS in Wi ⇐⇒ %i < 0. (16)

C.3.2 Necessary and sufficient condition for SIFPi to be LAS in Wi

Let us study the stability of the SIFPi ŵi in Wi, that is when there is only one genotype in the system.

The Jacobian matrix evaluated at this point is

Ji (ŵi)=


ηi,ix◦i γi,ix◦i −σix◦i
υui −υ 0

υvi 0 −υ

 ,

the eigenvalues of which are the roots of the following polynomial
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|Ji (ŵi)−λI3| =

∣∣∣∣∣∣∣∣
ηi,ix◦i −λ γi,ix◦i −σi,ix◦i

υui −υ−λ 0

υvi 0 −υ−λ

∣∣∣∣∣∣∣∣ ,

= (−υ−λ)2 (
ηi,ix◦i −λ

)− (−σi,ix◦i
)
(−υ−λ)υvi − (−υ−λ)γi,ix◦iυui,

= − (υ+λ)
(
(λ+υ)

(
λ−ηi,ix◦i

)+υσi,ivix◦i −υγi,iuix◦i
)
.

A first obvious eigenvalue is λ0 =−υ< 0. The remaining eigenvalues are the roots of the polynomial

λ2 + (
υ−ηi,ix◦i

)
λ−υx◦i

(
ηi,i +γi,iui −σi,ivi

) (9)= λ2 +
(
υ+ %iηi,i

ηi,i +γi,iui −σi,ivi

)
λ+υ%i,

the discriminant of which is

∆ =
(
υ+ %iηi,i

ηi,i +γi,iui −σi,ivi

)2
−4υ%i,

= υ2 + 2υ%iηi,i

ηi,i +γi,iui −σi,ivi
+

(
%iηi,i

ηi,i +γi,iui −σi,ivi

)2
−4υ%i,

= υ2 − −2υ%iηi,i

ηi,i +γi,iui −σi,ivi
+

(
%iηi,i

ηi,i +γi,iui −σi,ivi

)2
− 4υ%i

(
γi,iui −σi,ivi

)
ηi,i +γi,iui −σi,ivi

,

=
(
υ− %iηi,i

mi,i

)2
− 4υ%i

(
γi,iui −σi,ivi

)
mi,i

.

In order to simplify the calculus, we make two assumptions without significant loss of biological

relevance. First, we assume that the public goods production rate (ui) has the same order of magnitude

than the spite production rate (vi). Note that otherwise the slowest public production dynamics could

be assumed constant. Second, we assume that a parasite genotype benefits much more from its own

public good than it is affected by its own spite, in absolute value (γi,i À σi,i). By formally combining

these two assumptions, we assume from now on that

γi,iui >σi,ivi. (17)

If we use this inequality and (13) (we are only interested in the stability of feasible fixed points), it

is straightforward that ∆> 0. The remaining two eigenvalues are then the following real numbers

λ1,2 = −1
2

(
υ+ %iηi,i

mi,i
±

√(
υ+ %iηi,i

mi,i

)2
−4υ%i

)
.

Two cases must be considered according to (13) because either %i < 0∧mi,i > 0 or %i > 0∧mi,i < 0.
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In the first case,

%i < 0 ⇐⇒ −4υ%i > 0,

⇐⇒
(
υ+ %iηi,i

mi,i

)2
−4υ%i >

(
υ+ %iηi,i

mi,i

)2
> 0,

⇐⇒
√(

υ+ %iηi,i

mi,i

)2
−4υ%i >

∣∣∣∣υ+ %iηi,i

mi,i

∣∣∣∣> 0,

⇐⇒ −
∣∣∣∣υ+ %iηi,i

mi,i

∣∣∣∣+
√(

υ+ %iηi,i

mi,i

)2
−4υ%i > 0,

=⇒ −1
2

(
υ+ %iηi,i

mi,i
−

√(
υ+ %iηi,i

mi,i

)2
−4υ%i

)
> 0,

so one of the eigenvalues is positive, meaning that ŵi is unstable in Wi.

In the second case,

mi,i < 0 ⇐⇒ ηi,i +γi,iui −σi,ivi < 0,
(17)=⇒ ηi,i < 0, (18)

and

%i > 0 ⇐⇒ −4υ%i < 0,

⇐⇒ 0<
(
υ+ %iηi,i

mi,i

)2
−4υ%i <

(
υ+ %iηi,i

mi,i

)2
,

⇐⇒ 0<
√(

υ+ %iηi,i

mi,i

)2
−4υ%i <

∣∣∣∣υ+ %iηi,i

mi,i

∣∣∣∣ ,

⇐⇒
∣∣∣∣υ+ %iηi,i

mi,i

∣∣∣∣−
√(

υ+ %iηi,i

mi,i

)2
−4υ%i > 0,

⇐⇒ −
∣∣∣∣υ+ %iηi,i

mi,i

∣∣∣∣−
√(

υ+ %iηi,i

mi,i

)2
−4υ%i <−

∣∣∣∣υ+ %iηi,i

mi,i

∣∣∣∣+
√(

υ+ %iηi,i

mi,i

)2
−4υ%i < 0,

(18)⇐⇒ −1
2

(
υ+ %iηi,i

mi,i
+

√(
υ+ %iηi,i

mi,i

)2
−4υ%i

)
<−1

2

(
υ+ %iηi,i

mi,i
−

√(
υ+ %iηi,i

mi,i

)2
−4υ%i

)
< 0,

that is both eigenvalues are negative.

To conclude on the local asymptotic stability in Wi of the SIFPi,

ŵi is LAS in Wi ⇐⇒ (
%i > 0

)∧ (
mi,i < 0

)
. (19)
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C.3.3 Necessary and sufficient condition for SIFPi to be LAS in W

Let us study the local stability of the SIFPi ŵi in W , that is when there are two parasite genotypes in

the system.

The Jacobian matrix evaluated at this point is

J3 (ŵi)=



ηi,ix◦i γi,ix◦i −σi,ix◦i ηi,kx◦i γi,kx◦i −σi,kx◦i
υui −υ 0 0 0 0

υvi 0 −υ 0 0 0

0 0 0 rk (ŵi) 0 0

0 0 0 υuk −υ 0

0 0 0 υvk 0 −υ


.

It appears that this matrix can be written as a block matrix using the single infection Jacobian

matrices the definition of which can be extended to W as follows:

J3 (ŵi)=
[

Ji (ŵi) A
0 Jk (ŵi)

]
.

Thus, the eigenvalues λ of this matrix cancel

det(J3 (ŵi)−λI6)= det(Ji (ŵi)−λI3)det(Jk (ŵi)−λI3) .

By definition, the roots of det(Ji (ŵi)−λI3) are the eigenvalues of Ji (ŵi). From the previous results,

we know that these roots are all negative iff %i > 0∧mi,i < 0. Put differently, the stability of ŵi in Wi is

a necessary condition of the stability of ŵi in W .

By definition, the roots of det(Jk (ŵi)−λI3) are the eigenvalues of Jk (ŵi) =


rk (ŵi) 0 0

υuk −υ 0

υvk 0 −υ

.

This matrix is a lower triangular matrix so its spectrum is straightforwardly Sp(Jk (ŵi))= {−υ, rk (ŵi)}.

Expliciting the instantaneous growth rate, we find that

rk (ŵi) = %k +γk,iuix◦i −σk,ivix◦i +ηk,ix◦i ,

= %k +mk,ix◦i ,

= %k −
mk,i

mi,i
%i,

which is negative iff mi,i%k > mk,i%i.

In conclusion, and owing to symmetry, the necessary and sufficient condition for the EFPs to be LAS

is the following

ŵi is LAS in W ⇐⇒ (
%i > 0

)∧ (
mi,i < 0

)∧ (
mi,i%k > mk,i%i

)
. (20)

Note that
(
%i > 0

)∧(
mi,i < 0

)∧(
mi,i%k > mk,i%i

)=⇒ (
%k < 0

)∨(
mk,i < 0

)
. A consequence of this result,

which proves to be useful later on, is that

ŵi LAS in W =⇒ rk (ŵi)< 0. (21)
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C.3.4 Necessary and sufficient condition for DIFP to be LAS in W

The double infection Jacobian matrix evaluated in ŵ3 is

J3 (ŵ3)=



ηi,ixi γi,ixi −σi,ixi ηi,kxi γi,kxi −σi,kxi

υui −υ 0 0 0 0

υvi 0 −υ 0 0 0

ηk,ixk γk,ixk −σk,ixk ηk,kxk γk,kxk −σk,kxk

0 0 0 υuk −υ 0

0 0 0 υvk 0 −υ


,

the eigenvalues of which are too large to be shown and no parametric condition for local asymptotic

stability can easily be extracted from them. Therefore, stability of the DIFP has to be addressed either

numerically, either through a more restrictive condition that provides its global stability.

C.4 Summary

Table S8 sum ups the notations and results related to fixed points analysis.

symbol value meaning
ci = [

1 ui vi
]

public productions nullcline direction vector i
m j,` = η j,`+γ j,`u`−σ j,`v`, stationary interaction effect of ` over j
x◦i =− %i

mi,i
stationary parasite load in single infection

xi = mi,k%k−mk,k%i
mi,i mk,k−mi,kmk,i

stationary parasite load in double infection

ŵ0 = 06 uninfected fixed point (UFP)
ŵi = [

x◦i ci 03
]

singly infected fixed point i (SIFPi)
ŵ3 = [

xici xkck
]

doubly infected fixed point (DIFP)

Ŵ = {ŵ0,ŵ1,ŵ2,ŵ3} fixed point set

Table S8: Fixed points analysis notations and result summary.

The results of the local stability analysis in both spaces are given in Table S9 along with the feasi-

bility conditions.

fixed point feasibility condition local asymptotic stability condition if feasible
in Wi in W

ŵ0 (UFP) always %i < 0
(
%1 < 0

)∧ (
%2 < 0

)
ŵi (SIFPi) sgn

(
%i

) 6= sgn
(
mi,i

) (
%i > 0

)∧ (
mi,i < 0

) (
%i > 0

)∧ (
mi,i < 0

)
∧(

mk,i%i < mi,i%k
)

ŵ3 (DIFP) sgn
(
mi,imk,k −mi,kmk,i

)
none (ŵ3 ∉Wi) not shown

= sgn
(
mi,k%k −mk,k%i

)
= sgn

(
mk,i%i −mi,i%k

)
Table S9: Fixed points analysis notations and result summary.
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D Finite time explosion solutions

D.1 Preliminary result

Let us define the following quantity Pi := viYi −uiZi, the time derivative of which is

dPi

dt
= vi

dYi

dt
−ui

dZi

dt
,

= υvi (ui X i −Yi)−υui (vi X i −Zi) ,

= −υYi −υZi,

= −υPi.

It follows from this that ∀t ∈ R+,Pi (t) = Pi (0) e−υt. Two cases are then to be distinguished. Either

genotype i is newly inoculated in the host, which means no public production of its kind is already

present, that is Yi (0) = Zi (0) = 0, yielding Pi (0) = 0. Or genotype i is already present in the host when

the dynamics are followed up and it is usually at some fixed point, where Yi = ui X i and Zi = vi X i, also

yielding Pi (0) = viui X i − uivi X i = 0. In both cases, Pi (t) = 0 yielding a time independent correlation

between public production concentrations,

∀t ∈R+,viYi = uiZi. (22)

Note that even if different initial conditions than the above are taken, this correlation is reached

exponentially (all the more fast as the standard clearing rate υ is high).

D.2 In singly inoculated hosts

Here we show that when there is no feasible and LAS fixed point in the SISi, formulated as $i =; (see

definition in next section), genotype i parasite load explodes in finite time in a singly inoculated host.

From Table S9, assuming the emptiness of $i implies that %i > 0 and mi,i > 0, that is ηi,i +γi,iui >
σi,ivi hence ηi,i > 0. Considering a newly singly inoculated host, we have X i (0) = ε > 0, all other vari-

ables being 0 at t = 0. Using (22), it follows that

dX i

dt
= (

%i +ηi,i X i +γi,iYi −σi,iZi
)
X i,

=
(
%i +ηi,i X i +

(
γi,i −σi,i

vi

ui

)
Yi

)
X i,

yet γi,i −σi,i
vi
ui

> 0 because of assumption (17), the following inequality holds

dX i

dt
≥ (

%i +ηi,i X i
)
X i > 0.

Let X i satisfy
dX i

dt =
(
%i +ηi,i X i

)
X i, X i (0)= X i (0)= ε. Defining f := 1

X i
, f satisfies the following ODE,

d f
dt

= −%i f −ηi,i,
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the solution of which is

f (t) =
(
f (0)+ ηi,i

%i

)
e−%i t − ηi,i

%i
,

i.e.
1

X i (t)
=

(
1
ε
+ ηi,i

%i

)
e−%i t − ηi,i

%i
,

yielding

X i (t)= %iε(
%i +ηi,iε

)
e−%i t −ηi,iε

.

But X i (t) is not defined for t∗ such that

(
%i +ηi,iε

)
e−%i t∗ −ηi,iε = 0,

i. e.

t∗ = 1
%i

log
(
1+ %i

ηi,iε

)
∈R?+.

Therefore lim
t→t∗

X i (t)=+∞.

Because dX i
dt ≥ dX i

dt and X i (0) = X i (0) = ε > 0, it follows that lim
t→t∗

X i (t) = +∞ as well. To conclude, if

the parasite traits are such that neither the UFP nor the SIFPi are feasible and LAS in the SISi, then

the parasite load of genotype i explodes in finite time.

D.3 In doubly inoculated hosts

Here we show the existence of scenarios when both parasite genotypes reach their SIFP in singly inocu-

lated hosts but their parasite load explodes in finite time when they occur together in doubly inoculated

hosts.

First, this requires that the two SIFPs are feasible and LAS in their respective SIS, $1 = {ŵ1} ,$2 =
ŵ2} and that there is no feasible and LAS fixed point in the DIS, that is $ = ; (see notations in next

section). From Table S9, it follows that ∀ ( j,`) ∈ {1,2}2 , j 6= `,% j > 0,m j, j < 0,m`, j% j > m j, j%`.

Let us follow the total parasite load in the host (X := X1+X2), starting from the moment when both

parasite genotypes are present (either due to a co-inoculation or to a secondary inoculation). We have

dX
dt

= dX1

dt
+ dX2

dt
= r1X1 + r2X2.

Let us focus on the instantaneous growth rate

r1 = %1 +η1,1X1 +η1,2X2 +γ1,1Y1 −σ1,1Z1 +γ1,2Y2 −σ1,2Z2.

Applying (22) on both genotypes, we have

r1 = %1 +η1,1X1 +η1,2X2 +
(
γ1,1 −σ1,1

v1

u1

)
Y1 +

(
γ1,2 −σ1,2

v2

u2

)
Y2.
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Because of assumption (17), γ1,1−σ1,1
v1
u1

> 0. If we assume as well that γ1,2−σ1,2
v2
u2

> 0, the following

inequality holds:

r1 ≥ %1 +η1,1X1 +η1,2X2.

Using the same arguments for r2, we have

dX
dt

≥ (
%1 +η1,1X1 +η1,2X2

)
X1 +

(
%2 +η2,2X2 +η2,1X1

)
X2,

= %1X1 +%2X2 +η1,1X2
1 +η2,2X2

2 +
(
η1,2 +η2,1

)
X1X2.

By defining X := min(X1, X2) ≥ 0 (which is a continuous function of time), % := min
(
%1,%2

) > 0 and

η :=min
(
η1,1,η2,2

)< 0 and noticing that X2
1 + X2

2 = X2 −2X1X2, it follows that

dX
dt

≥
(
%+

(
η1,2 +η2,1 +2η

)
X

)
X .

Let X satisfy dX
dt =

(
%+

(
η1,2 +η2,1 +2η

)
X

)
X , X (0) = ε < X (0) ≥ 2ε > 0. Defining f := 1

X , f satisfies

the following ODE,

d f
dt

= −% f −
(
η1,2 +η2,1 +2η

)
,

the solution of which is

f (t) =
 f (0)+

(
η1,2 +η2,1 +2η

)
%

 e−%t −
(
η1,2 +η2,1 +2η

)
%

,

yielding

X (t)=
%ε(

%+
(
η1,2 +η2,1 +2η

)
ε
)

e−%t −
(
η1,2 +η2,1 +2η

)
ε

.

But X i (t) is not defined for t∗ such that

(
%+

(
η1,2 +η2,1 +2η

)
ε
)

e−%t∗ −
(
η1,2 +η2,1 +2η

)
ε = 0,

i. e.

t∗ = 1
%

log

1+
%ε(

η1,2 +η2,1 +2η
)
 .

Assuming that min
(
η1,1,η2,2

)≤−η1,2+η2,1
2 makes t∗ ∈R?+. Therefore lim

t→t∗
X (t)=+∞.
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Because dX
dt ≥ dX

dt and X (0)< X (0), it follows that lim
t→t∗

X (t)=+∞ as well under the previous assump-

tions. Moreover we have numerically checked that the dynamics behave similarly for cases where $=;
and relaxed assumptions on the parameters.

To conclude, if the parasite traits are such that no fixed point is feasible and LAS in the DIS, the

total parasite load blows up in finite time.

D.4 Threshold adaptation to explosive infections

In order to take into account explosive infections and keep the model outputs biologically relevant for all

parameter sets or to avoid numerical complications, one should add the following rule to the dynamical

system:

∃T ∈R?+ : X1 (T)+ X2 (T)= xmax > 0=⇒∀t > T, X1 (t)= X2 (t)= 0,

where xmax is a new parameter of the model defined as the total parasite load threshold a host can bear

before either dying or triggering an acute immune response that leads to recovery.
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E Generated infection pattern identification

E.1 Compatible sets of FLAS fixed points

Let $i and $ be the set of feasible and LAS (’FLAS’) fixed points in the SIS (Wi) and the DIS (W )

respectively.

$i :=
{
ŵ ∈ Ŵi : (ŵº 0)∧ (

ŵ LAS in Wi
)}

,

$ :=
{
ŵ ∈ Ŵ : (ŵº 0)∧ (

ŵ LAS in W
)}

.

From the results obtained in section C and summarised in table S9, one can derive four rules satisfied

by these sets:

ŵi ∈$ =⇒ ŵi ∈$i, (23)

ŵ0 ∈$ =⇒ ŵ0 ∈$1 ∩$2, (24)

ŵ0 ∈$ =⇒ {ŵ1,ŵ2}+$, (25)

ŵ3 ∈$ =⇒ {ŵ1,ŵ2}+$. (26)

Rule (23) states that if the SIFPi is FLAS in the DIS then it is also FLAS in the SIS. Its proof is

obvious from (19) and (20). Rule (24) states that if the UFP is FLAS in the DIS then it is also FLAS in

the SIS and its proof is obvious from (15) and (16). Rule (25) states that if the UFP is FLAS in the DIS,

then none of the SIFPs are FLAS in the DIS and its proof is obvious from (15) and (20).

Rule (26) states that if the DIFP is FLAS in the DIS, then it is the only FLAS fixed point in the DIS.

We could not prove this rule analytically because of the size of the local asymptotic stability conditions.

However, numerical explorations always satisfied this rule.

A consequence of (26) is that if any fixed point other than the DIFP is both feasible and LAS in the

DIS, then the DIFP is not FLAS in the DIS.

We want to reveal the infection patterns this model generates. This requires enumerating all the

($i,$k,$) triplets that satisfy rules (23) to (26), with the addition that explosive single infections should

be treated as failed infections (that is $i =; is epidemiologically equivalent to $i = {ŵ0}). The resulting

list is given in Table S10, each combination corresponding to a distinct infection pattern.

$i = $k = $= pattern

{ŵ0} or ; {ŵ0} or ; {ŵ0} or {ŵ0,ŵ3} or ; no infection
{ŵ3} ambinfection

{ŵi} {ŵi} or ; latinfection (k)
{ŵ3} suprainfection (k)

{ŵk} ; ultrainfection
{ŵi} superinfection (i)
{ŵ1,ŵ2} priorinfection
{ŵ3} coinfection

Table S10: FLAS fixed points set combination and corresponding infection patterns.
For the sake of concision, twin infection patterns (latinfection i, suprainfection i and superinfection k)
are not shown.
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E.2 Logical viewpoint

If the steady presence of genotype 1 in a given host is denoted by the logical proposition p, and if q

denotes the same for genotype 2, then the host classes S, I1, I2, I3 are equivalent to {¬p,¬q}, {p,¬q},

{¬p, q}, {p, q} respectively. If we attribute to each class a value 1 if epidemiologically observed or 0 if

not, there exists an application that associates one binary operator (also called logical connective) to

each infection pattern. Because the susceptible class is, by definition, always observed (the value of

{¬p,¬q} is always 1), only half of the sixteen different binary operators do match. Restrained to this

set, this application is surjective, as shown in Table S11.

infection S I1 I2 I3 logical connective
pattern {¬p,¬q} {p,¬q} {¬p, q} {p, q} equivalence
no infection 1 0 0 0 p ↓ q joint denial
ambinfection 1 0 0 1 p ↔ q biconditional
latinfection 1 1 0 1 0 ¬p negation of p
suprainfection 1 1 0 1 1 p → q material implication
latinfection 2 1 1 0 0 ¬q negation of q
suprainfection 2 1 1 0 1 p ← q converse implication
ultrainfection, 1 1 1 0 p ↑ q alternative denial
priorinfection,
superinfection 1,
superinfection 2
coinfection 1 1 1 1 > tautology

Table S11: Infection patterns and their binary operators (logical connectives) equivalents.

However, the infection pattern-to-logical connective map is not injective since ultrainfection, prior-

infection and the two superinfections match with the alternative denial. This yields two lessons. The

first one is that the world of (formal) infection patterns is richer than the logical one. The second is

that if only prevalence data is available for a host-parasite system, then it is impossible to distinguish

between these four infection patterns. This requires the knowledge of the within-host dynamics or, at

least, the outcome of cross-inoculations.
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