
HAL Id: hal-01567880
https://hal.science/hal-01567880

Submitted on 5 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A System of Systems Architecture for Supporting
Decision-Making

Gregory Moro Puppi Wanderley, Marie-Hélène Abel, Jean-Paul Barthès,
Emerson Cabrera Paraiso

To cite this version:
Gregory Moro Puppi Wanderley, Marie-Hélène Abel, Jean-Paul Barthès, Emerson Cabrera Paraiso. A
System of Systems Architecture for Supporting Decision-Making. 21st IEEE International Conference
on Computer Supported Cooperative Work in Design (CSCWD 2017), Apr 2017, Wellington, New
Zealand. pp.186-191, �10.1109/CSCWD.2017.8066692�. �hal-01567880�

https://hal.science/hal-01567880
https://hal.archives-ouvertes.fr


A System of Systems Architecture for Supporting
Decision-Making

Gregory Moro Puppi Wanderley, Marie-Hélène Abel, Jean-Paul Barthès
Sorbonne Universités, Université de Technologie de Compiègne

CNRS UMR 7253 Heudiasyc
57 Avenue de Landshut - CS 60 319 - 60 203 Compiègne Cedex, France

Email: {gregory.wanderley, marie-helene.abel, barthes}@utc.fr

Emerson Cabrera Paraiso
Pontifı́cia Universidade Católica do Paraná
PPGIa - Graduate Program in Informatics

1155 I. Conceiçao - 80215-901 Curitiba, Brazil
Email: paraiso@ppgia.pucpr.br

Abstract—Good Decision Support Systems require three main
features: (i) a good handling of the domain data and information;
(ii) an efficient user interface; and (iii) a good knowledge of
past decisions. Usually such features are handled by different
specialized systems difficult to integrate. In this research we keep
specialized systems independent, focusing on interoperability. We
propose a system of systems architecture (SoS) integrating a
domain system in which users interact, a multi-agent system
implementing an efficient user interface and taking into account
results from the domain system, and a platform to capitalize and
manage knowledge. Our approach extracts indicators from the
interaction or behavior of users within the domain system, and
provides them analyses, statistics and recommendations to help
them reach good decisions. We built a prototype and applied it to
two different domains: collaborative software development and
healthcare. In this paper, we will focus on the multi-agent system
which is a key component of the SoS architecture.

I. INTRODUCTION

Decision Support Systems (DSS) are specific computer-
based applications that help making decisions based on the
information available (Suni and Gopakumar [1]). Many of the
decision-making processes such as team coordination, traffic
control, business strategy planning, resolving conflicts or game
playing are complex, unpredictable and hardly observable.
Moreover, the operators, decision makers, managers or game
players have to face the problem of controlling such systems
under uncertainty or the existence of random factors (Kwasi-
groch and Grochowski [2]).

When working in a particular domain, say developing soft-
ware, decisions are related to selecting algorithms, variables,
program structures, syntax and many other things. Decisions
result from the know-how and experience of the developer.
Developers get some help from IDEs that are tools to facilitate
the writing of the code. Because such tools are generic they
are limited regarding the amount of help they can provide.
While writing the code it would help to have some idea of its
quality, benefit from expert advice, be reminded of previous
projects, reuse historical data and follow good practices. Other
environments and tools exist for providing the information, but
they are not integrated and it is difficult to use all of them
simultaneously.

Our research consists in designing an environment combin-
ing a platform taking care of the targeted application (e.g. a
development environment), a platform for adding services, and
a platform for managing knowledge. Because such platforms

already exist, our goal is to render them interoperable by
proposing a System of Systems (SoS) architecture in which
each component is itself an independent complex operational
system, interacting to achieve a common goal (Saleh and
Abel [3]) and loosely coupled to the other ones. The easiest
approach to interoperability using loose coupling is the multi-
agent approach in which each platform can be extended to
handle external connections.

Multi-agents (MAS) have already been used to develop
Decision Support Systems (Othman et al. [4], Ying et al.
[5], Ling et al. [6]). Software agents have been found to be
useful for providing intelligent problem-solving mechanisms
and for improving the decision-making processes and therefore
obtaining a more powerful decision support (Ling et al. [6]).
Moreover, agents can also learn the behavior of users and
provide a customized support.

The main contribution of this paper is the proposed SoS
architecture that supports interoperability between the involved
systems and lets it be applied to different domains more easily.
Furthermore, this architecture allows teams to perform their
works in a distributed and asynchronous way. Thanks to its
characteristics, the approach can give customized support to
team members in order to make good decisions.

In this paper we focus on the multi-agent aspect of the
SoS, detailing our approach on the case of collaborative
software development. We then present a prototype, ending
with conclusions and future work.

II. MULTI-AGENT SYSTEMS

Multi-agent systems are sets of agents that interact to
coordinate their behavior often to achieve challenging tasks
(Ren and Chen [7]). Three types of agents are interesting for
our purposes: Service Agents, Personal Assistants and Transfer
Agents.

• Service agents (SA) provide specific services tailored
to the current application. Since they are loosely
coupled, they can be added as needed to increase the
power of the analysis of data;

• Personal Assistants (PA) act autonomously and are
built to be real assistants or surrogates of their master
(Wanderley et al. [8]), or even act as “digital butlers”
(Negroponte [9]). A PA has a crucial function, being
dedicated to:



Fig. 1. The proposed Architecture.

◦ understanding its master’s needs (i.e. the needs
of the user owning the agent);

◦ acting pro-actively to anticipate its master’s
needs;

◦ mobilizing SAs to execute a command or de-
mand from its master;

◦ mediating all information exchanges among
team members (who are considered informa-
tion sources);

◦ organizing the documentation of its master
with the help of an SA;

◦ capturing and representing the team members’
operations, helping them in the process of
preserving and creating knowledge (Paraiso
and Barthès [10]).

• Transfer agents (XA) are gateways that communicate
with platforms having different structures, implement-
ing their own protocol, and translating communication
and content languages;

III. A SYSTEM OF SYSTEMS ARCHITECTURE FOR
SUPPORTING DECISION-MAKING

In this section we present the proposed approach. First,
we introduce its architecture, and then the process to provide
support to users in their decision-making activities.

A. Architecture

Figure 1 shows the proposed architecture. As mentioned
earlier, the architecture forms a system of systems composed of
three main parts: a given domain system, a multi-agent system
(MAS) and a platform to capitalize and manage knowledge.
Each system is encapsulated (loose coupling) by an agent. In
order to do that, each system to be integrated must have at
least an API or SDK.

There are two groups of users: primary users of the domain
system, and users wanting to be aware of data or information.
The former ones use the domain system to develop their
activities, like employees, operators, etc., and the latter are
interested in information obtained from the domain system

and from the primary users. They could be managers. They
can use an interface like a browser to visualize the data.

The knowledge platform has an ontology that models a
given domain and aims at storing and documenting recom-
mendations, indicators, analysis, and statistics extracted from
the interaction or behavior of users with the domain system.
Moreover, it allows users to contribute with and improve
stored information, for instance, recommendations, making an-
notations, comments, descriptions, recommendations; adding
resources; or sharing ideas. This way, it contributes to reusing
previous knowledge.

Our approach extracts indicators from the interaction or
behavior of users with the domain system, and provides them
with analysis, statistics and recommendations to aid decision-
making.

In the proposed approach, each user has its own Personal
Assistant Agent (PA), and the communication uses natural
language. It is important to highlight that each agent (PA,
SA and XA) has its own ontology (Figure 1), used for
understanding the expressions of the content language (e.g.
messages between agents and systems), to interpret the users’
utterances (e.g. dialogues between users and their PAs), and to
work as a knowledge base. In the latter case, a PA ontology
can be used to store in a User Model personal information
(name, address, email, etc.) of its master, as well as information
concerning the interaction or behavior of users and the domain
system. The agent can be aware of the experiences, skills
and competencies of users, and then give them personalized
support. It is thus possible to better understand the users’
needs.

B. Supporting primary users

Let us consider a primary user u that belongs to the set
of primary users U. During his interaction with the domain
system, a set IV of new values for a given set of indicators I
describing the behavior of users are extracted. Formally, the
obtaining of the set of new values IV can be represented as a
unary predicate IV = ∀i IV(iv) → (i, iv) ∈ I X IV, where
i is an indicator belonging to I and iv (iv ∈ IV) is the new
value obtained for i.



After the extraction of the values of indicators, the next step
is to analyze and evaluate them being able to identify the ones
that the user needs support. This is done by a specific Service
Agent (SA) that compares the value iv of some indicator with
a given set of thresholds (range risks). Formally, the set ZV of
indicators belonging to the range risks can be represented as
ZV = ∀i, iv ZV(i)→ ((iv ≤ Dl(i)) ∨ (iv ≥ Du(i))), where:

• i is an indicator belonging to I.

• iv is a value obtained for the indicator i.

• Dl is a function − Dl : I → Lt − that returns the
lower threshold lt (lt ∈ Lt, set of lower thresholds for
the indicators of I).

• Du is a function − Du : I → U t − that returns the
upper threshold ut (ut ∈ U t, set of upper thresholds
for the indicators of I).

If the SA finds that there are indicators in the range risk,
i.e. ZV 6= ∅, then it will fetch recommendations from the
knowledge platform. Formally, let

• R be the finite set of recommendations available
in the knowledge platform, r be a recommendation
belonging to R.

• i an indicator belonging to I.

The subset R’ (R’ ⊆ R) of the recommendations found for
the indicators in the range risk can be defined by the predicate:
R’ : ∀i, r R’(r) → (i, r) ∈ I X R. The recommendations
found are then sent to the user, concerning the extracted
indicators, by his PA.

C. Supporting awareness

The indicators extracted from the interaction of primary
users with the domain system are capitalized and stored in
the knowledge platform. In order to let users be aware of
information about the indicators, an SA retrieves from the
knowledge platform charts showing information, analysis and
statistics regarding the behavior of primary users with the
domain system.

Given the name of some primary user u (u ∈ U ) or the
name of indicators belonging to I, the PA of a given user
interested in information regarding primary users, will retrieve
a chart g showing the requested data from the knowledge
platform.

Formally, let g be a chart belonging to the set of charts
G that shows analysis and information concerning the value
of the indicators stored in the knowledge platform. A single
chart g is composed of a given primary user, and the indicators
obtained from his behavior, i.e. g(u, CI). The function − DG :
U X I → G − returns the chart g that shows the indicators
concerning the user u.

IV. CASE STUDIES

In this section, we present two case studies from different
domains in which we applied the proposed architecture. First,
we show our approach in the collaborative software develop-
ment domain. Then, in the health care domain.

TABLE I. EXCERPT OF SOFTWARE QUALITY METRICS (ADAPTED
FROM [11]).

Metrics
McCabe’s Cyclomatic complexity met-
ric - MCC [12]

Weighted Methods per Class metric -
WMC [13]

Lack of Cohesion in Method metric -
LCOM* [13], [14]

Nested Block Depth - NBD [15]

Depth of Inheritance Tree - DIT [13] Number of Children - NOC [13]
Number of Overridden Methods -
NORM [14]

Specialization Index - SIX [14]

Method Lines of Code - MLOC [14] Number of Attributes per Class - NOA
[14]

Number of Static Attribute - NSF [16] Number of Static Methods - NSM [16]
Number of Parameter - NOP [16] Number of Interfaces - NOI [16]
Number of Package - NOP [16] Afferent Coupling - Ca [15]
Efferent Coupling - Ce [15] Instability metric - I, named here as

RMI [15]
Abstractness - A, named here as RMA
[15]

Normalize Distance from Main Se-
quence - D [15]

A. Supporting software development teams to improve code
quality

In order to support decision-making in collaborative soft-
ware development, we applied our architecture intending to
improve the quality of the code produced by developers. Fol-
lowing, we explain the approach based on what we proposed
in Wanderley et al. [11].

The architecture forms a system of systems composed of
three main parts: a Software Development (SD) environment,
that is, the domain system; an MAS; and a platform to
capitalize and manage knowledge. The primary users of the
domain system are developers who write their codes in the
SD environment. In addition, users interested in information
obtained from the interaction and behavior of developers, are
managers of collaborative SD.

One of the ways that PAs can support developers is by
measuring the code quality and providing recommendations
to improve the code quality. During collaborative software
development, while a developer is developing code, software
quality metrics are calculated and extracted from the code each
time the code is compiled. Table I shows some software quality
metrics related to complexity; inheritance; size; and coupling,
for object-oriented source code.

After the extraction, the resulting metrics are sent to the
MAS, through a transfer agent XA that bridges the two plat-
forms. After that, the service agent ”Metrics Agent” receives,
analyzes and evaluates the metrics, verifying whether the code
needs quality improvement. To evaluate the metrics, the agent
compares them with thresholds or range risks. If the evaluation
concludes that the code needs some improvement, them the
Metrics Agent forwards it to the a SA ”Search,” that will try
to find recommendations in the knowledge platform.

Managers on the other hand, have an interface named
”Manager - Information,” with which they can interact with the
environment. Managers may be aware of the quality of projects
or the quality of the code developed by a given developer. They
receive charts or tables showing the code quality information,
aiding him in decision-making.

B. Improving drug prescriptions comprehension and execution

In this case study the proposed architecture was applied
to a regional project in France, named CONSIGNELA. The



goal is to support elderly people and patients suffering from
Parkinson disease to improve their adherence to a medication
regimen prescribed by a caregiver. In this context, primary
users of the domain system are the elderly people and the
patients with Parkinson. On the other hand, caregivers are the
people who want to be aware of information obtained from
interaction or behavior of patients and elderly people.

In this case, the system of systems architecture integrates a
virtual pillbox, an MAS and a knowledge platform to capitalize
and manage knowledge. The virtual pillbox is the tool that
patients and caregivers use to follow or prescribe a medication
regimen. The MAS provides agents that extract and analyze
automatically and in a non-intrusive way, actions and infor-
mation resulting from the interactions between patients and
virtual pillboxes. The information is capitalized and stored in
the knowledge platform. Personal Assistant agents (PA) present
the information, using charts and dashboards, to caregivers,
making them aware whether patients are following correctly
the medication regimen, or reporting for example how long
a patient spent to take a specific medicine. Moreover, PAs
are able to give recommendations to patients to improve their
adherence to the medication regimen.

V. PROTOTYPE

This section briefly presents a prototype of the proposed
architecture concerning the case study of supporting software
development teams to improve code quality described above.
Currently, the prototype regarding the case study to improve
drug prescriptions comprehension and execution is under de-
velopment.

The prototype is based on our ACE4SD system (Wanderley
et al. [11]). It shows the point of view of the developers and
managers. In order to build the prototype, the following tools
were used: the Eclipse IDE1, the OMAS platform (Barthès
[17]) and the MEMORAe platform (Abel [18]). The Eclipse
IDE is a Java environment, in which developers write their
codes. The OMAS platform provides the multi-agent envi-
ronment, and the MEMORAe platform the environment to
capitalize and share knowledge.

The Eclipse IDE contains two plugins: (i) Metrics [19]:
and (ii) ACE4SD.

• The Metrics plugin calculates, automatically and in
a non-intrusive way, quality metrics of Java source
code, providing the measured values, the mean and
standard deviation for resources (project, class and
method). Some of the quality metrics that the plugin
calculates are available in Table I. The goal is to
extract the quality metrics of the source code that is
being produced by a developer and to send it to the
ACE4SD plugin.

• The ACE4SD plugin creates the interface between
developers and their PAs (which are inside the OMAS
platform). In this way, the developers can interact
with their PA directly from Eclipse, avoiding switch-
ing between different windows from different tools.
Moreover, the ACE4SD plugin receives the calculated

1More information in: https://eclipse.org/home/index.php

metrics from the Metrics plugin and sends it a the
”Metrics Agent” service agent. This agent is respon-
sible for analyzing the metrics.

Figure 2 shows a developer’s interface of the Eclipse
IDE. The interface provides a communication channel between
developers and their PA. In the interface, a developer can
communicate and exchange information with his PA in natural
language directly, avoiding changing windows or tool. Besides,
the PA is proactive and it is always monitoring its master. In
the example of Figure 2, the PA alerts the developer that a new
report with information about problems related to code quality
and possible solutions is available. When the developer opens
the report, a new window (inside Eclipse) will show its content.

A manager’s interface of ACE4SD is shown in Figure 3.
The interface enables a manager to be aware of the quality
of the projects and the developers. She can see the quality
of the whole project, the resources (.java) with the worst
quality, and what are their main defects, such as inheritance,
coupling, complexity, etc. If the quality of some project is
under a defined threshold, it is highlighted in red. Besides,
in her interface, the manager is able to interact and exchange
information in natural language with her PA.

For instance, in Figure 3 the manager asks more details
about a specific developer, and the PA brings her the results
showed in Figure 4. In this figure, the manager has a quality
chart of the developer, being aware of the quality of the code
he produced as well as its problems, such as it is difficult to
test, i.e. the code contains a high number of decisions paths,
and more tests are needed.

VI. RELATED WORK

The work of Botti et al. [20] presents an MAS decision
support tool for simulating water-right markets. The goal is to
use the approach to assist policy makers in decision processes.
The tool is based on a multitier architecture, composed of a
presentation (GUI), application processing (software agents)
and data persistence (DB). However, as opposed to SoS archi-
tectures, multitier architectures are client-server architectures
usually running the same application, i.e. presentation is the
client, and the application processing is the server. Besides, all
the system needs to be built from scratch, as opposed to SoS
architectures, which integrate existing systems.

Bokhari and Ahmad [21] show a multi-agent architecture
for providing decision-support in the context of distance learn-
ing on the Web. The system monitors the learning activity of
the student and helps him/her throughout the learning process.
The architecture is based on four layers, namely human level
(interfaces for students and teachers), web level (web portal),
system level (agents) and storage level (databases).

Ellouzi et al. [22] propose an architecture for visual clinical
decision support for the fight against nosocomial infections.
The approach integrates visualization techniques in the KDD
(Knowledge Discovery in Databases) steps for the decision-
making. The architecture is based on 3 layers, namely interface
(interface with humans), data (database) and model (data
mining). Each layer has a set of agents to perform the tasks.

The work of Robbins et al. [23] presents an information
architecture for a clinical decision support system. The archi-



Fig. 2. The ACE4SD developers’ interface inside the Eclipse IDE.

Fig. 3. The ACE4SD managers’ interface (adapted from [11]).

Fig. 4. Details and informations of some developer in the manager’s view
(adapted from [11]).

tecture comprises a patient model, a treatment library, software
agents, and a knowledge base. The patient model contains
patient information; the treatment library stores information
such as treatment procedures and dosages; agents are used to
optimize courses of treatments to best achieve desired health
goals. The knowledge base contains medical research used to
keep the patient model and treatment library up to date.

An approach to accessing information stored in legacy

relational databases, based on Semantic Web (SW) and MAS
is also proposed by Polajnar et al. [24]. Their goal is to give
the users of enterprise decision-support systems with access
to information, through semantic queries, without the need to
modify the underlying legacy databases. The authors show an
architecture based on two components, namely Database and
User. The former comprises a relational database and the server
side of the agent-based middleware, whereas the latter provides
an interface to the user, and the client side of the agent-based
middleware.

The fact is that we could not find an approach to support
decision-making based on an SoS architecture integrating a
domain system, an MAS and a knowledge platform, all of
them loosely coupled. An SoS architecture with loose cou-
pling allows and enhances interoperability. The MAS provides
facilities and makes it easier to extend and interface different
systems belonging to distinct contexts.

VII. CONCLUSIONS AND FUTURE WORK

Decision Support Systems (DSS) are computer-based ap-
plications that help to make decisions based on the information
available in different domains. A good DSS involves a domain
platform (environment), a set of analysis tools, and a platform
for saving and reusing knowledge.

In this research we proposed a system of systems architec-
ture including a given domain system, an MAS and a platform
to capitalize and manage knowledge. Each platform is loosely
coupled with the others, rendering them interoperable and
easier to be applied to different domains. Our approach extracts
indicators from the interaction or behavior of users with the
domain system, and provides them with analyses, statistics and
recommendations to aid decision-making.

In the paper, we presented our architecture focusing on
the multi-agent aspects, discussed how we provide support
to primary users of a given domain system, and also to
users interested in information regarding the interactions and
behaviors of primary users and the domain system. Agents
are responsible to encapsulate and interface the systems, thus
letting them be used in a distributed and asynchronous way.
Furthermore, as they have user models of their masters, they
are able to provide customized support.



Besides, we applied the proposed architecture to two case
studies from two different domains: collaborative software
development and health care. In the former, the domain system
was a software development environment, and in the latter it
was a virtual pillbox.

In addition, we described a prototype regarding the case
study of collaborative software development. In the prototype
the software development environment was handled by the
Eclipse IDE, the multi-agent platform OMAS, and the knowl-
edge platform MEMORAe. We showed the point of view of
developers and managers.

Even though our architecture allows and enhances interop-
erability, it has some requirements. For instance, in order to
extend or interface different domain systems, it is necessary to
use a common communication protocol between the domain
system, the MAS platform and the knowledge management
system.

We are currently adapting the prototype to the domain of
health care. We plan to test our architecture in other domains.

VIII. ACKNOWLEDGMENT

Gregory Moro Puppi Wanderley would like to thank CNPq-
Brazil (process 233137/2014-9) for its support in this research.

Moreover, the authors are thankful to the support provided
by the CONSIGNELA project, which is funded by the Re-
gional Council Hauts-de-France and the European Regional
Development Fund (FEDER).

REFERENCES

[1] S. Suni and K. Gopakumar, “A real time decision support system using
head nod and shake,” in Circuit, Power and Computing Technologies
(ICCPCT), 2016 International Conference on. IEEE, 2016, pp. 1–5.

[2] A. Kwasigroch and M. Grochowski, “Evolving neural network as a
decision support systemcontroller for a game of 2048 case study,” in
Methods and Models in Automation and Robotics (MMAR), 2016 21st
International Conference on. IEEE, 2016, pp. 549–554.

[3] M. Saleh and M.-H. Abel, “Information systems: Towards a system of
information systems,” in KMIS 2015 7th International Conference on
Knowledge Management and Information Sharing, 2015, pp. 193–200.

[4] S. B. Othman, H. Zgaya, S. Hammadi, A. Quilliot, A. Martinot, and J.-
M. Renard, “Agents endowed with uncertainty management behaviors
to solve a multiskill healthcare task scheduling,” Journal of Biomedical
Informatics, vol. 64, pp. 25–43, 2016.

[5] Y. Shen, J. Colloc, A. Jacquet-Andrieu, and K. Lei, “Emerging medical
informatics with case-based reasoning for aiding clinical decision in
multi-agent system,” Journal of biomedical informatics, vol. 56, pp.
307–317, 2015.

[6] L. Xue, Y. Zhu, and Y. Xue, “Raedss: An integrated decision support
system for regional agricultural economy in china,” Mathematical and
Computer modelling, vol. 58, no. 3, pp. 480–488, 2013.

[7] C. Ren and C. P. Chen, “Decentralized control for second-order uncer-
tain nonlinear multi-agent systems consensus problem based on fuzzy
adaptive high-gain observer,” in Systems, Man, and Cybernetics (SMC),
2013 IEEE International Conference on. IEEE, 2013, pp. 4935–4940.

[8] G. M. P. Wanderley, M. P. Ramos, C. Tacla, G. Y. Sato, E. J. d. Silva,
and E. C. Paraiso, “Modus-sd: User modeling in collaborative software
development,” in Computer Supported Cooperative Work in Design
(CSCWD), 2012 IEEE 16th International Conference on. IEEE, 2012,
pp. 372–378.

[9] N. Negroponte, Being digital. Vintage, 1996.

[10] E. C. Paraiso and J.-P. A. Barthès, “An intelligent speech interface for
personal assistants in r&d projects,” Expert Systems with Applications,
vol. 31, no. 4, pp. 673–683, 2006.

[11] G. M. P. Wanderley, M.-H. Abel, J.-P. Barthès, and E. C. Paraiso,
“An advanced collaborative environment for software development,”
in Systems, Man, and Cybernetics (SMC), 2016 IEEE International
Conference on. Accepted, In press, 2016.

[12] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, no. 4, pp. 308–320, 1976.

[13] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” Software Engineering, IEEE Transactions on, vol. 20, no. 6,
pp. 476–493, 1994.

[14] B. H. Sellers, “Ojbect-oriented metrics. measures of complexity,” 1996.

[15] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[16] R. Harrison, S. Counsell, and R. Nithi, “An overview of object-
oriented design metrics,” in Software Technology and Engineering
Practice, 1997. Proceedings., Eighth IEEE International Workshop on
[incorporating Computer Aided Software Engineering]. IEEE, 1997,
pp. 230–235.

[17] J.-P. A. Barthès, “Omasa flexible multi-agent environment for cscwd,”
Future Generation Computer Systems, vol. 27, no. 1, pp. 78–87, 2011.

[18] M.-H. Abel, “Knowledge map-based web platform to facilitate organi-
zational learning return of experiences,” Computers in Human Behavior,
2014.

[19] Metrics, “Eclipse Metrics Plugin,” http://metrics2.sourceforge.net, 2016,
online; accessed 15 September 2016.

[20] V. Botti, A. Garrido, A. Giret, and P. Noriega, “The role of mas
as a decision support tool in a water-rights market,” in International
Conference on Autonomous Agents and Multiagent Systems. Springer,
2011, pp. 35–49.

[21] M. Bokhari and S. Ahmad, “Design for interactive e-learning based
upon multi-agent system: I-mbls,” in Confluence 2013: The Next Gen-
eration Information Technology Summit (4th International Conference).
IET, 2013, pp. 456–460.

[22] H. Ellouzi, H. Ltifi, and M. B. Ayed, “New multi-agent architecture
of visual intelligent decision support systems application in the med-
ical field,” in Computer Systems and Applications (AICCSA), 2015
IEEE/ACS 12th International Conference of. IEEE, 2015, pp. 1–8.

[23] D. E. Robbins, V. P. Gurupur, and J. Tanik, “Information architecture of
a clinical decision support system,” in Southeastcon, 2011 Proceedings
of IEEE. IEEE, 2011, pp. 374–378.

[24] D. Polajnar, M. Zubayer, and J. Polajnar, “A multiagent architecture for
semantic access to legacy relational databases,” in Systems Conference

(SysCon), 2012 IEEE International. IEEE, 2012, pp. 1–8.


