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Abstract—In this paper, a Bayesian method with a hierarchical
sparsity enforcing prior model for Dual-Tree Complex Wavelet
Transform (DT-CWT) coefficients is proposed. This model is used
for X-ray Computed Tomography (CT) image reconstruction. A
generalized Student-t distributed prior model is used to enforce
the sparse structure of the DT-CWT coefficient of the image.
The joint Maximum A Posterior algorithm (JMAP) is used in
this Bayesian context. Comparisons with the conventional and
other state-of-the-art methods are presented, showing that the
proposed method gives more accurate and robust reconstruction
results while the dataset is insufficient.

Index Terms—Computed Tomography (CT), Bayesian Ap-
proach, Hierarchical Model, Dual-Tree Complex Wavelet Trans-
formation (DT-CWT), Generalized Student-t distribution, Joint
Maximum A Posterior (JMAP).

I. INTRODUCTION

In X-ray CT, the intensity of X-ray radiation is attenuated
when passing through the object, and the parameters to be
reconstructed are the linear attenuation coefficients inside the
object under the test. The Radon Transform (RT), presented
in detail in [1], is the most commonly used forward modeling
for X-ray CT. There have been different analytic methods
to solve the reconstruction problem, for example the Back-
Projection (BP) [2], the Filtered Back-Projection (FBP) [2],
etc. Iterative methods are developed with a lot of efforts in
order to solve the ill-posed CT reconstruction, concerning
fewer projection numbers or less exposed time during the
projection. Accounting for the modeling uncertainties and
measurement noise, the forward system is modeled by:

g =Hf + ε (1)

where g ∈ RM×1 represents the projection data, f ∈ RN×1
the object and ε ∈ RM×1 the additive noise. Matrix H ∈
RM×N corresponds to the linear projection system.

The regularization methods [3], [4] are often used for
the ill-posed inverse problems. A general criterion of the
regularization method is J (f) = ‖g −Hf‖22+λR(f) where
R(f) is the regularization term and λ is called the regulariza-
tion parameter. We list out some conventional regularization
reconstruction methods: (a) the Least Square (LS) method
[4] with R(f) = 0 where the obtained result minimizes the

disparity but is not guaranteed to be precise because of the ill-
posedness; (b) the Quadratic Regularization (QR) method [5]
with R(f) = ‖Df‖22 which enforces the global smoothness
of the estimated result and (c) the Total Variation (TV) method
[6], where the difference of neighbour pixels are enforced to
be sparse withR(f) = ‖Df‖1. By using l1 norm, the sparsity
of the penalty term is enforced. The appearance of the non-
differentiable l1 term leads to difficulties for the computation
of the gradient of constraints. Many methods have been studied
in order to solve this l1 norm optimization problem, for
example the Newton’s method [7] and the Split Bregman
method [6]. Another class of the regularization method, called
”Synthesis”, considers a linear sparse transformation f =Dz
and minimizes a criterion: J (z) = ‖g −HDz‖22 + λR(z)
for example R(z) = ‖z‖1 [8]. When ẑ obtained the object is
reconstructed by f̂ =Dẑ.

Note that in all the above mentioned regularization methods,
there is a parameter λ controlling the trade-off of the disparity
and the regularization penalty, and it needs to be fixed. There
have been different methods to choose a suitable value for λ,
for example the Cross Validation (CV) and L-curve methods,
with details presented in [9], [10]. However, the computation
for choosing this parameter should be done for each situation
and different dataset, which is very costly in computation.
Bayesian methods [11], [12], therefore, are often used to
estimate the parameters and variables simultaneously [13].

The choice of prior distributions is crucial in Bayesian
methods. In a previous work [14], a hierarchical structured
prior distribution is defined via the Haar transformation, with
the direct model f =Dz+ξ, with coefficients presented by z
and transform operator by D, and ξ defines the uncertainties
which relax the transformation relationship in this hierarchical
model. ξ is then modelled through a heavy tailed distribution
to enforce its sparsity. In particular a generalized form of
Student-t distribution (details presented in Section II) has
been used and can be presented with a hierarchical model
by defining p(ξ|vξ) as a normal distribution and p(vξ) as
an Inverse Gamma distribution, where vξ is the variance of
noise ξ. In this way, one can obtain p(f |z,vξ), p(z|vz) and
p(vξ) and by combining with the likelihood p(g|f ,vε) and



p(vε), where vε is the variance of the noise ε, the posterior
law p(f , z,vε,vξ,vz|g) is obtained and is used for doing
inference. In this paper we focus on the choice of the linear
transformation D. We had used the Haar Transform before
[14] for piecewise constant object. This time we focus on DT-
CWT which can be used in more general object types as for
example piecewise continuous ones. We give some arguments
on the appropriateness of DT-CWT and show its performances.

II. THE HIERARCHICAL BAYESIAN METHOD

In our previous work [14], the discrete Haar transformation
coefficient is used as the sparse representation of the piecewise
continuous image. There are also variety of works on X-
ray CT based on discrete transformations or dictionary bases
[8], [15], [16]. In this paper, the Dual Tree-Complex Wavelet
Transformation (DT-CWT) [17] is used.

A. Dual-tree Complex Wavelet Transformation (DT-CWT)

Wavelets provide an optimal representation for many signals
containing singularities (jumps and spikes), for example a
piecewise smooth function. The wavelet representation is op-
timally sparse for such signals. A most basic discrete wavelet
transformation is the Haar transformation [18]. However,
the typical wavelet transform suffers from four fundamental
shortcomings [17]: 1) the wavelet coefficients tend to oscillate
positive and negative around singularities, which complicates
wavelet-based processing, making singularity extraction and
signal modeling very challenging; 2) they are shift variant, thus
a small shift of the signal greatly perturbs the wavelet coeffi-
cient oscillation pattern around singularities; 3) the wavelet co-
efficients results in substantial aliasing, which can be cancelled
by the inverse DWT only if the wavelet and scaling coefficients
are not changed, and any wavelet coefficient processing will
lead to artifacts in the reconstructed signal; 4) the lack of
directional selectivity complicates modeling and processing of
geometric image features like ridges and edges. To overcome
these problems, the DT-CWT, first introduced by Kingsbury in
1998 [19], is proposed, which is approximately shift-invariant,
directionally selective, and computationally efficient.

Also, it was pointed out in [15] that the dictionary redun-
dancy improves the sparsity of representation. In the discrete
Haar transform the size of the coefficient is the same as the size
of image. In DT-CWT, the size of coefficients is two times the
size of image (see Fig.1). So, following the above mentioned
idea, DT-CWT will result to much sparser coefficient than
the Haar transformation. Dual-tree of wavelet filters is used
to obtain the real and imaginary parts of complex wavelet
coefficients. So the coefficients can be divided into 2 groups,
which correspond to the real and imaginary parts respectively.

In this paper, a Bayesian hierarchical structured method
based on DT-CWT transformation (BH-DTCWT) is proposed.

B. Sparsity Enforcing prior distribution

The sparse property of the DT-CWT transformation coef-
ficient can be enforced by using three kinds of distributions:
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Fig. 1: The original phantom and the 3-level Haar transform
coefficients and 3-level DT-CWT transform coefficients with
scale adapted. The scales are adapted in order to be more
visually clearly.

the Generalized Gaussian distributions, the Gaussian Mixture
distributions and the heavy tailed distributions.

The standard Student-t distribution is heavy tailed, but from
the definition of its variance we easily figure out that there is
a lower limit of the variance value of Student-t distribution:
Var[f ] = ν

ν−2 > 1, (ν > 2). This limit implies that this
heavy-tailed distribution can’t have a small variance, therefore
the sparsity couldn’t be intensively enforced. In this paper
we use a generalization of Student-t distribution (Stg) which
can be obtained by using the marginalization of the Normal-
Inverse Gamma bi-variate distribution:

Stg(f |α, β) =
∫
N (f |0, v)IG(v|α, β) dv. (2)

This generalization of Student-t distribution adds a supple-
mentary parameter compared to the standard one, and hence
more capable to control the level of sparsity of the prior
distribution [13].

C. Hierarchical Model of the proposed HB-DTCWT

The additive noise is assumed zero mean but non-stationary
Gaussian distributed with unknown variances: p(ε|vε) =
N (ε|0,V ε), where V ε = diag [vε] is a diagonal matrix and
vε = [· · · , vεi , · · · ]T . According to the linear forward model
shown in Eq.(1), we obtain an expression for the likelihood:
p(g|f ,vε) = N (g|Hf ,V ε).

In the considered applications, generally the object to be
reconstructed is piece-wise homogeneous, considering that it
consists of several different materials. With this property, an
information which can be considered as a prior knowledge is
the sparseness of the DT-CWT coefficient.

As presented previously, we use the DT-CWT coefficient
as the sparse representation of the piece-wise continuous
image. z is used to present the l-level DT-CWT coefficients
of the image f . Prior distribution of f depending on z is:
p(f |z,vξ) = N (f |Dz,V ξ) where D represents the inverse
DT-CWT operator, and the additive noise ξ is considered
to be zero mean Gaussian distributed and V ξ = diag [vξ],
vξ = [· · · , vξj , · · · ]T .

Vector z = [z1, z2, · · · , z2N ]
T is sparse. As mentioned

above, the generalized Student-t distribution is used in order
to enforce the sparsity. By using the Normal-Inverse Gamma



marginalization property given in Eq.(2), the prior distribution
for z can be realized by:{

p(z|vz) = N (z|0,V z) where V z = diag [vz] ,
p(vz|αz0 , βz0) =

∏2N
k=1 IG(vzk |αz0 , βz0),

(3)

where the elements of vector vz = [· · · , vzk , · · · ]T are
supposed to be i.i.d.

On the other hand, when considering the variance of two
noises: vε and vξ, by knowing that the variance is posi-
tive, and the fact that the majority of the values are small,
we choose the Inverse Gamma distribution to model them:
p(vε|αε0 , βε0) =

∏M
i=1 IG(vεi |αε0 , βε0) and p(vξ|αξ0 , βξ0) =∏N

j=1 IG(vξj |αξ0 , βξ0).
With all the proposed prior distributions, the model contain-

ing all the variables, parameters and hyper-parameters is:

p(g|f ,vε) ∝ |V ε|−
1
2 exp

[
− 1

2
(g −Hf)T V −1

ε (g −Hf)
]
,

p(f |z,vξ) ∝ |V ξ|−
1
2 exp

[
− 1

2
(f −Dz)T V −1

ξ (f −Dz)
]
,

p(z|vz) ∝ |V z|−
1
2 exp

[
− 1

2
zTV −1

z z
]
,

p(vz|αz0 , βz0) ∝
∏2N
k=1 v

−(αz0+1)
zk exp

[
−βz0v−1

zk

]
,

p(vε|αε0 , βε0) ∝
∏M
i=1 v

−(αε0+1)
εi exp

[
−βε0v−1

εi

]
,

p(vξ|αξ0 , βξ0) ∝
∏N
j=1 v

−(αξ0+1)

ξj
exp

[
−βξ0v

−1
ξj

]
.

(4)
The corresponding directed acyclic graph (DAG) of the

proposed model is shown in Fig.(2).
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Fig. 2: DAG of proposed model.

D. Bayesian Inference

Via the Bayesian inference, the posterior law is obtained
from the likelihood and priors:

p(f , z,vε,vξ,vz|g) ∝ p(g|f ,vε)p(f |z,vξ)p(z|vz)
· p(vε)p(vξ)p(vz)

(5)

From the posterior distribution obtained, different estimation
methods can be used. Mainly there are two options: Posterior
Mean (PM) and Joint Maximum A Posterior (JMAP). The
first one can be computed either by MCMC methods [20],
Variational Bayesian Approximation (VBA) [21] or any other
approximation methods. In this paper, we use the JMAP
method to estimate all the variables iteratively in this paper.

E. Bayesian Point Estimation

The JMAP computation aims at iteratively and alternately
estimate the variables and parameters by maximizing the
posterior distribution:

(f̂ , ẑ, v̂ε, v̂ξ, v̂z) = argmax
f ,z,vε,vξ,vz

{p(f , z,vε,vξ,vz|g)} (6)

Because of the huge size of dataset, the descend gradient
algorithm is used since the computation of big size matrix
inversion is too expensive. The iterative updating rule is:

iter : f̂
(n+1)

= f̂
(n)
− γ̂(n)

f ∇J (f̂
(n)

);

iter : ẑ(n+1) = ẑ(n) − γ̂(n)
z ∇J (ẑ(n));

v̂zk =

(
βz0 +

1

2
ẑ2k

)
/ (αz0 + 3/2) , ∀k ∈ [1, N ];

v̂εi =

(
βε0 +

1

2

(
gi −

[
Hf̂

]
i

)2)
/ (αε0 + 3/2) , ∀i ∈ [1,M ];

v̂ξj =

(
βξ0 +

1

2

(
f̂j − [Dẑ]j

)2)
/ (αξ0 + 3/2) , ∀j ∈ [1, N ],

(7)

where

J (f) =
1

2

∥∥∥∥V − 1
2

ε (g −Hf)

∥∥∥∥2
2

+
1

2

∥∥∥∥V − 1
2

ξ (f −Dz)

∥∥∥∥2
2

;

J (z) =
1

2

∥∥∥∥V − 1
2

ξ (f −Dz)

∥∥∥∥2
2

+
1

2

∥∥∥∥V − 1
2

z z

∥∥∥∥2
2

;

γ̂
(n)
f =

(∥∥∥∇J (f̂
(n)

)
∥∥∥2
2

)
/

(∥∥∥Ŷ εH∇J (f̂
(n)

)
∥∥∥2
2
+
∥∥∥Ŷ ξ∇J (f̂

(n)
)
∥∥∥2
2

)
;

γ̂
(n)
z =

(∥∥∥∇J (ẑ
(n)

)
∥∥∥2
2

)
/

(∥∥∥Ŷ ξD∇J (ẑ
(n)

)
∥∥∥2
2
+
∥∥∥Ŷ z∇J (ẑ

(n)
)
∥∥∥2
2

)
,

(8)

where ∇J (·) is the gradient of J (·). γ̂f and γ̂z are
obtained by using optimized step length strategy, see [22].
The initialization of the hyper parameters αs and βs are:
αz0 = αε0 = αξ0 = 2 + ε1, βz0 = βε0 = βξ0 = ε2 where ε1
and ε2 are small values close to zero.

III. SIMULATIONS RESULTS

The simulated Shepp-Logan image of size 2562, shown in
Fig.(3)(a), is used as the original image, and the value of the
pixels are normalized to [0, 1]. Parallel projections are used
as the dataset. For each projection, 2562 detectors are used,
and an image of size 256 × 256 is obtained. The red block
is the zone that we choose to show the results in Fig.(4).
The uncontaminated sinogram by applying 128 projections
is shown in Fig.(3)(b). The sinogram with 128 projections
and SNR=20dB is shown in Fig.(3)(c). The projections are
distributed uniformly from 0 to π. The signal-to-noise ratio of
the dataset is defined as:

SNR = ‖g0‖
2
2 / ‖ε‖

2
2 = ‖g − ε‖22 / ‖ε‖

2
2 , (9)

where g0 is the unbiased sinogram and g is the contaminated
sinogram with the additive noise represented by ε in Eq.(1).
A lower level of SNR refers to the dataset with more critical
additive noise ε.

The proposed BH-DTCWT method is used for the recon-
structed and is compared with the conventional TV method
and the HHBM method in our previous work [14]. In the
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Fig. 3: Original Shepp Logan image of size 2562 and its (b)
sinogram with 128 projections and (c) the same data with
additive noise with SNR=20dB.

TV method, the Split-Bregman algorithm [6] is used. The
regularization parameter is chosen empirically, which should
have a bigger value when the data has a lower SNR value,
namely the level of noise is higher. In both HHBM and BH-
DTCWT methods, the multi-level transformations are chosen
to have 5 levels.

The reconstructed images are shown in Fig.(4), represented
by zones of them corresponding to Fig.(3)(a). The red curve
represents the profile of the image at the position of the
blue line. The first column shows the results reconstructed
from dataset with 128 projections, by using TV, HHBM and
BH-DTCWT methods respectively. Visually, the TV method
give a better result with smoother homogeneous zones. In the
right column, images are reconstructed from dataset with 64
projections, and they show the convenient of the HHBM and
BH-DTCWT methods: they obtain a better result than the TV
method with less number of projections.

In order to show more clearly the effect at the edges of
different methods, we compare a zone of the profiles in Fig.(4),
which is at the position of the thick green line shown in
Fig.(3)(a). Comparisons are demonstrated in Fig.(5). In the
figure on top are the profiles obtained with 64 projection, and
in the bottom are those from 32 projections. As we can see, the
proposed method stays more robust at the edges while there
are insufficient number of distributions.

Both HHBM and BH-DTCWT methods have a good perfor-
mance when dealing with the reconstruction with less number
of projections. Fig.(6)-Fig.(8) show the comparison of the
normalized Mean Square Error (NMSE), represent by δf in
the ordinates in Fig.(6)-Fig.(8), with the definition:

NMSE =
∥∥∥f̂ − f∥∥∥2

2
/ ‖f‖22 . (10)

The performance of TV is very good when there are sufficient
number of projections, but when the number of projections
become insufficient, the HHBM and BH-DTCWT methods are
more robust than the TV method. The BH-DTCWT method is
not strictly better than the HHBM method, but is better in most
of the cases in the reconstruction of Shepp Logan phantom.

IV. CONCLUSION

We proposed a Bayesian method based on a hierarchical
prior model in which the Dual-Tree Complex Wavelet Trans-
formation is used. Generalized Student-t distribution is used

TV TV

HHBM HHBM

BH-DTCWT BH-DTCWT

(a) 128 projections (b) 64 projections

Fig. 4: Reconstructed Shepp-Logan image by using different
reconstruction methods. Top: the TV method, middle: the
HHBM method and bottom the BH-DTCWT method with a
dataset of (a) 128 projections and (b) 64 projections and a
high SNR=40dB.

to enforce the sparsity of the transformation coefficient. Com-
paring with the state-of-the-art methods, the proposed method
remain robust when dealing with reconstruction problems with
less number of projections, namely insufficient dataset, in
the CT reconstruction of the Shepp Logan image. Another
advantage is that by using the Bayesian method we have no
need to choose a value for the parameters, such as the regular-
ization parameter in TV, and they are automatically estimated
in the simulations. In the future work we will complete the
comparisons by using different types of phantoms, for example
phantoms with periodical textures, in order to analyse the
influence of the transformation type.
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