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ABSTRACT

The usage of micro or nanorods is steadily increasing in various applications from fundamental

research to industry. Therefore their geometrical, mechanical and eventually magnetic properties

need to be well determined. Here, using an optical microscope equipped with magnetic tweezers,

we report an experimental procedure to obtain all these information on a single magnetic rod. In

particular, we measured the magnetic susceptibility χ by analyzing the deformation of a rod submit-

ted to a uniform magnetic field. To do so, we refined a theoretical model which takes into account

the variation of χ with the internal field. We prove experimentally that this model yields consistent

measures, at any value of field strength and incidence angle. From the combination of the different

measurements, we also deduced the number of iron oxide nanoparticles which are embedded within

the polymer matrix of the superparamagnetic rods under study.

A very broad research activity concerns micro and nanoscale magnetic rods which show funda-

mental interest in many applications such as surface coating reagents, actuators, bio-medical probes

and so on [4]. Depending on their size, various strategies have been developed to synthesize them:

near-micron radius or larger wires are made for instance from rapid quenching [22], whereas the

probably most common strategy for preparing rods around tens of nanometers diameter consists in

filling the pores of an etched template by electrochemical deposition of one or several metals [6].

Other groups realized nanorods by metallizing bacteria [14], by chaining particles together [17], or

by embodying nanoparticles into an elastomer gel such as PDMS through lithographic technics [18].

Many applications for which these rods are designed require a well-characterized calibration of their

properties, often at the level of the individual object rather than for a broad distribution.

We report the measurements of their length L, radius r, flexural rigidity C, and magnetic sus-

ceptibility χ performed on single individual rods by using a conventional optical microscope equipped

with magnetic tweezers (ESI†, note 1 shows the complete scheme of all measurements). Whereas

the measurement presented in the paper could apply to many types of magnetic rods, we studied

L ∼10-80 micron-long superparamagnetic rods with r ∼200-400 nm made of iron oxide nanoparti-

cles (diameter∼13 nm) embedded into a polymer matrix [3, 7, 11, 12, 20]. We initially assessed each

measurement independently: the super-resolutive optical model used to derive r was compared to

Atomic Force Microscopy (AFM) scans performed on the same rods; the measured value of C was

derived from the analysis of the thermal fluctuations [11]; χ was obtained from the measurement of

2



the tip deflection of a magnetically-bent rod. To do so, we used a theoretical model (which takes

into account the variation of χ(H) = M(H)
H

with the field strength H [12]) to describe the rod mag-

netoelastic deformation. We present an improved version of this model which applies well to rods of

relatively low magnetic susceptibility such as the ones studied here. By comparison of the resulting χ

value with the susceptibility χv of the particles which compose the rods (measured independently by

vibrating sample magnetometry (VSM)), we deduced the volume fraction φ of the magnetic nanopar-

ticles. We also report experiments which yield constant values for φ, independently of the intensity

and incidence angle of the field, thereby demonstrating the robustness of the model. Finally, the full

analysis performed on 10 different rods showed consistent and relatively low dispersion of the values

found for φ ∼ 10% − 30% considering the broad disparity of χ ∼ 2.0 − 7.4 (at µ0H =4 mT) and

C ∼ 10−18 − 10−20 Jm.

The γ-Fe2O3 (maghemite) iron oxide nano-particles which compose the rods were synthesized

by the aqueous coprecipitation route also called the Massart procedure, followed by a size sorting

procedure [1]. Their nanometric size yields their superparamagnetic properties (each particle has

a single Weiss magnetization domain) and their size disparity accounts for the divergence between

the Langevin law and the magnetization curve of the particle ferrofluid suspension [5]. This re-

sult was confirmed by our own magnetization curves (ESI†, Fig. S2) of a ferrofluid suspension of

negatively charged (citrated) nanoparticles (volume fraction φv = 3.9%) obtained by VSM using a

home-made apparatus, from which was deduced the log-normal distribution of the particle diameters

(10-16 nm range, mean=13 nm) [16]. Following an already published protocol [11], the rods were

then prepared by dialysis of a solution of the nanoparticles mixed with positively charged polymers

(poly(diallyldimethylammonium chloride)) while being exposed to a ∼ 250 mT magnetic field. We

used a microscopic setup equipped with magnetic tweezers designed to induce a uniform magnetic

field on the sample (Fig. 1). We carefully calibrated the field, and checked that the influence of the

gradient was negligible [11]. To prepare the samples, we flowed a 100x diluted rod solution into an

observation chamber, so that some of the rods were found in a cantilevered configuration, i.e. with

a small part of the rod stuck on an inner coverslip while the longest part remained far from any

solid surface (Fig. 1B). After performing the measurements, we checked that the clamped boundary

condition was fulfilled by controlling that the anchorage resisted to a large deformation induced by

a magnet brought at vicinity of the sample. The rods were observed with a DMIRB inverted Leica

microscope equipped with an apo plan 100x NA 1.3 objective and a Photometrics fx-Coolsnap cam-
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era (pixel size (4.65 µm)2) either by bright field or by reflection microscopy (Fig. 1C). Home made

softwares were written to automatically pilot the magnetic tweezers and the camera, track noisy

motion of the sample and digitize the rod shape with a resolution of 2-20 nm [11].

Before performing the complete set of measurements on individual rods, we checked the validity

of each of them. To characterize the rod geometry, the measure of L ∼ 30-80 µm was straight forward

on the images taken with the microscope, but the measure of r ∼ 300 nm was more challenging

because of the optical diffraction limit. We thus developed a theoretical model to compute the

rod reflection intensity profile: Ir(x) = I0 + I1

∫ r
−r exp

[
− (s−x−x0))2

2σxy2

]
2r
√

1− ( s
r
)2ds, where I0 is the

background intensity, I1 an effective intensity, σxy is a function of the wavelength and the objective

numerical aperture, and x the abscissa along the rod cross section (ESI†, note 1). The value of r

was then obtained from the fit of this function to the experimental intensity measured at each rod

cross-sections (Fig. 1C). We checked our model by comparing its result to the value of r measured

by AFM on the same sample rods (ESI†, note 1 and Fig. S3). We found that the uncertainty of this

optical measurement was of ∼30 nm, which is also the typical standard deviation of r along the rod.

The mechanical characterization of the rod was previously fully described [11] and consisted of

acquiring ∼900 images of the rod to analyze its thermal fluctuations, from which were deduced the

rod persistence length Lp, its bending modulus C = Lp/kBT (kBT is the thermal energy) and its

Young modulus Y = C
4πr4

.

The magnetic susceptibility χ of the rod material (defined as χ = M
H
, where M is the magneti-

zation and H the field inside the material) was deduced from magnetoelastic experiments in which we

analyzed the deflection of the rod deformed by a uniform field. During such magnetic deformation,

the magnetic torque per unit volume Γm = || ~M ∧ ~B0|| ( ~B0 is the uniform induction field) acting on

the rod is counter-balanced by the elastic restoring torque C
R
, R being the local radius of curvature.

As shown in ESI†, note 2, Γm = ∆χ sin(2α)
πr2B2

0

2µ0
, where µ0 is the vacuum permeability, α the angle

of ~B0 with respect to the rod main axis and ∆χ a function of χ and of the local components of the

field ~H in the rod. Thus, the measurement of the rod deflection δ (Fig. 2A) may yield either one

of the parameter C or χ when the other one is known. However, a difficulty arises from the fact

that χ depends on H. This can be directly observed on the magnetization curve of the nanoparticles

before they were embedded in the rods (ESI† Fig. S2) which shows deviation from linearity even at

very low field (χv varies by more than a factor of 2 between 2 and 10 mT). Consistently, previously

detailed [11] viscous drag versus magnetic torque (VD/MT) experiments (in which the magnetically
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driven rotational kinetics of free rods in solution is analyzed), also showed that the rod material

susceptibility χ depends on H and is proportional to χv, the constant ratio χ/χv being simply the

ratio of the magnetic nanoparticle volume fraction within the rod and in the initial ferrofluid φ/φv.∗

Thus, to analyze the magnetoelastic experiments, we modified a theoretical model [12] to study

the magnetoelastic deformation of low susceptibility rods. Although this model is only detailed here

(ESI†, note 2), we showed that it matched accurately the shape of the deformed rods [11]. This model

takes into account the dependence of χ with H, a variability which is often neglected [2, 7, 9, 20].

Here, we also report experiments aimed at controlling that this model yields a constant measure of

φ independently of the field incidence and strength (Fig. 2). Fig. 2B shows experiments on a 33.1

µm long rod oriented at various incidence angles θ0 from 0 to 60◦ in a constant applied field. The

deflection δ(θ0) (Fig. 2A) varies accordingly to our theoretical model: when θ0 varies, so does the

internal field H (ESI†, Fig S4). and we found that the variation of the measured χ(H) matches

the data χv(H). Consequently the comparison yielded a fairly constant value for φ (within ±2%).

This experiment and the theoretical curves shown on Fig. 2A also suggested that the best values at

which these deflection measurements should be performed were θ0 ∼ 30 − 50◦: at these angles, the

deflection δ reaches a maximum plateau when B0 is below the magnetoelastic buckling field [12].

Next, at a constant incidence θ0 = 35 ± 0.1◦, we studied the effect of the field intensity on

the rod deflection (Fig. 2C). We monitored 130 deformations of a 46.4 µm long rod submitted to

an incrementally increased intensity of the external induction field from 0 to 7 mT. The fields was

successively turned on during 500 ms (a sufficient time to reach the equilibrium configuration) and

off for the same amount of time to monitor the rod returning to its undeformed state. Excepted

the thermal fluctuations, the deformations were reproducible. They did not increase incrementally,

an effect which could have occurred in the case of remanent magnetization, thus confirming the

superparamagnetism of the rod. During this experiment, the rod deflected by a maximum of 1.6 µm

(corresponding to a deviation of 2◦), and the induced longitudinal field µ0H0‖ ranged from 0 to 4

mT. The analysis of the deflection according to the theoretical model showed that χ(H0‖) varied by

more than a factor of two, but remained proportional to χv(H0‖). The values found for χ below 2

mT (for which no VSM data are available) also appeared consistent with the expected shape of the

magnetic susceptibility curve. The deduced measure of φ was found to vary by less than 10% and
∗for non-interacting and uniformly magnetized nanoparticles such as used here, the magnetization (and therefore

the susceptibility) is simply proportional to the volume of magnetic matter.
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yielded a mean value of < φ >= 15% ± 0.8.† In contrast, if χ is assumed constant, φ varies by a

factor of two when deduced from these measurements.

We then proceeded to the full characterization of ten individual rods. All came from the

same synthesis batch. Once L, r and C were determined as described above, the measurement of

χ consisted in submitting the rod to ∼ 1 s long pulses of magnetic field applied at a 35◦ incidence.

The field intensity was varied from ∼2 to ∼8 mT to check the constancy of φ for a given rod. At

each field intensity, the measurements were repeated 5 times to averaged out the errors mostly due

to the thermal fluctuations (∼ 1/10 of the magnetic deflections) (ESI†, Fig. S5A and Movie 1). The

deflections always remained small (δ ∼ 1 µm, θL . 1◦), which also ensured that the system was

probed in the linear elastic regime: for larger deformations, we observed a plastic behavior (ESI†,

Fig. S5b). To monitor small deformations, we took advantage of our super-resolutive image analysis

algorithm [11] to measure the rod centerline from the microscopy images with a precision of a few

tens of nanometers (Movie 1).

Table 1 shows the results for 10 rods selected over nearly 100 studied samples. Reasons for

rejections were insufficiently straight or badly anchored rods, or uncontrolled vibrations of the sample

(noise) which prevented the detection of the thermal fluctuations. The selected rods were homoge-

neous in length because we chose the longest to allow a fine detection of the thermal fluctuations.

This selection might also explain the small dispersion in thickness as r varies only from 0.3 to 0.4

µm. By contrast the flexural rigidity was extremely variable, ranging from 21.5 to 536 ×10−21 Jm,

corresponding to a persistence length from 5 to 130 m and a Young modulus of 2 to 60 MPa. The

measured susceptibility (for B0=4 mT) was found to vary by a factor of 3 (<χ>=3.8±1.7) as the

volume fraction (<φ>=14.7±6.7) and the mean particle number per rod cross-section: 144±59.‡

In these measurements, the final precision of only 25-50% on χ and φ mostly arises from

the uncertainty on C, due to the difficulty to detect the small fluctuations of the rods (∼ 10 − 100

nm [11]). However, this precision was sufficient to display the large disparity of the rod characteristics,

unreported by the previous study on the stiffness of such rods [2] which contained a single measure.

This surprisingly high dispersion is corroborated by several observations: (i) several previous papers

concerning this type of rods also reported a large distribution of their properties such as their log-

normal distribution of lengths [9] or as their susceptibility [7] which was plotted on a logarithmic
†The standard deviation of 0.8% only accounts for the variability of the measures and not for the uncertainty of

the other previously independently determined parameters (see Table 1).
‡The uncertainty for these numbers is the standard deviation of the measures on the 10 rods.
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scale; (ii) the VD/MT experiments performed on ten other rods gave a similar range of values for

χ = 4.6±1.2 (for B0=4 mT), which consistently yielded a similar result for < φ >= 17.8± 4.5% [11];

(iii) the alternative analysis of the magnetoelastic experiments (in which χ is set from the VD/MT

experiments and C is looked for) confirmed the values of C determined by the thermal fluctuation

method [11], and in particular (iv), the fact that despite their large variation and the complete

independence of their measurements, the combination of values found for C and χ yielded consistent

results for φ = 14.7 ± 6.7% which falls into a narrow acceptable range of values: from electron

micrographs [20], it has to be above 10% but also below 50%, the fraction of randomly close-packed

spheres. By comparison, a small angle neutron scattering study on isotropic aggregates made of

different kind of polymers and smaller nanoparticles yielded a mean value for φ = 38% [8]. In the

present study, the large dispersion of values highlights the advantage of fully characterizing each rod

individually: if we had only known a mean value for C from a distribution of rods, the magnetoelastic

experiments would have yielded results for χ ranging from 0.6 to 13 and inconsistent values of φ from

2.3 to 60%!

This study shows that the number of nanoparticles per rod cross-section is relatively small (Fig.

3), thus indicating that rods with a higher concentration of particles could be synthesized to obtain a

greater magnetic susceptibility. This information on the microscopic structure also suggests that the

rod stiffness is mostly dictated by the polymer matrix. A putative explanation of the rod stiffness

variability is that fluctuations in numbers of particles from one rod to another yield even larger

fluctuations of the concentration in polymer chains c, which adsorb onto the particles. This must

induce variable elastic properties according to the scaling law of a polymer mesh Y ∝ c2.2 [15]. For

future uses, a sorting or a more selective method to produce the rods more homogeneously needs to

be developed. Meanwhile, individual rod characterization as described in the paper may be required

for many applications. We also believe that insights could be gained on numerous other types of

magnetic microrods from the techniques we have introduced here.
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Fig. 1 Experimental setup and rod images. (A1) Microscope setup equipped with magnetic tweezers.

The sample may be observed by standard bright field of by reflection microscopy by use of a beam

splitter. Set on a ring attached to the condenser of the inverted microscope, the magnetic device is

free to rotate in the (x, y) plane perpendicular to the microscope light path. It consists of two 7

cm diameter soft iron bars, planed at one end so they can be brought in the vicinity of the sample.

They are mounted on actuated stages in order to vary the distance d between their tips (precision

∼10 µm). The magnetic field is induced by permanent magnets or by induction coils at the remote

end of these bars. The axial symmetry of the system insures that the field in the midperpendicular

plane is horizontal. The magnets were used to demagnetize the bar before each experiments, and

fine-tuned magnetic field could be generated by use of the coils (powered by a computer-controlled

DC generator) without producing mechanical disturbances. (A2) Calibration of the x-component of

the field at the expected position of the rod, for (i) a set of three magnets as a function of d (axis in

black) and (ii) as a function of the current in the coils (axis in green), for d = 2.5 mm and without

magnet. The ∼ 2% error bars are mostly due to the uncertainty on the sample position along z (∼10

µm) and the weak vertical field gradient (∂Bx/∂z ∼ 0.6 T/m). (A3) 3D representation of the spatial

variation of the x-component of the field between the tips of the iron bars, measured at the expected

height of the rod. (B) Cross section of the sample cell made of various thickness coverslips glued

together. The rod water solution was flowed into the cells and left for about 15-30’ to sediment on

the hang-over made by the inner coverslip. The sample was then set upside-down on the microscope

stage. (C1) Bright field image of a rod stuck at one extremity (left side) on the inner coverslip. Scale
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bar=5 µm. (C2): Reflection image of the same rod. (C3) shows three typical grey intensity profiles

along a rod cross-section (such as indicated by the yellow line on C2) fitted by our theoretical model

to measure the radius (yielding r=148±8, 386±7 and 476±6 nm respectively for the red, blue and

green curves). The red curve is taken from the rod shown on C2.
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iments, indicating in particular the deflection δ of the rod tip. Main curve: theoretical computations

of δ using the "axial model" for a cantilevered rod of length L = 1 as a function of the incidence

angle θ0 of the field. Each curve corresponds to a magnetic induction intensity B0 given relatively

to the magnetoelastic buckling critical field Bc. For all curves such that B0 6 Bc the deflection is

close to a maximum when θ0 ∼ 35◦ − 50◦. (B) Experimental data with a 33.1±0.05 µm long rod

(C=1.6×10−20 Jm) probed at 11 incidence angles with B0 = 4.8 ± 0.15 mT. The deflection δ (blue

dots) is in excellent agreement with the theoretical curve of the axial model (solid black line) which

corresponds to the "B0 = Bc/4" curve of (A). The error bars indicate the dispersion of the 5 mea-

sures taken at each angle. Red diamonds (scale on the right y-axis) are φ−<φ>
<φ>

: the variation of the

volume fraction φ (relatively to the mean of all values < φ >), computed from δ (see text and ESI†,

note 2). The variation remain below ±2%, indicating the independence of the measurement with θ0.

(C) Analysis of the deflection of a cantilevered microrod (r = 0.34±0.04 µm, L = 46.37±0.05 µm,

C = 300 ± 80 × 10−21 Jm) bent by an incrementally increased intensity of the magnetic induction

field applied at θ0 = 35◦. The field B0 varies from 0 to 4 mT by 0.027 mT steps and by 0.27 mT

steps from 4 to 7 mT to reduce heating of the induction coils. The following quantities are plotted

as a function of B0‖ = µ0H0‖ (the projection of the field along the direction of the rod tip): 1-

(along the left-axis) 5 × δ (black diamonds) from which are computed χ(H0‖) (blue squares), and

< φ/φv > ×χv(H0‖) (green dots) the magnetic susceptibility of the ferrofluid nanoparticles extrap-

olated at the mean volume fraction < φ > of the particles in the the rod (VSM data are available

only above 2 mT), and 2-(along the right-axis) φ−<φ>
<φ>

(filled red circles) as in (B). The transverse

field µ0H⊥ (not plotted) varies from 0.11 to 1.5 mT and is taken into account for the computations

of φ.
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Fig. 3 Simulation of 144 nanoparticles (ø=13 nm) (mean value found for the 10 analyzed rods

detailed Table 1) randomly distributed in a cross-section of a rod of radius r=300 nm.
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Table 1 - Results for 10 rods

N. L (µm) r (µm) C (x10−21Jm) Y(MPa) χ@4mT (x1) φ (%) Part./rod (x1000) Part./Cr.-Sec.(x1)
1 34.36±0.05 0.316±0.027 21.5±4 2.7±1.5 2.4±0.9 9.2±3.4 108±59 82±45
2 26.83±0.05 0.302±0.001 38.1±16 5.8±3.1 4.1±1.7 15.8±6.6 132±66 128±64
3 44.92±0.05 0.366±0.024 398±74 28.3±12.6 3.0±1.0 11.4±4.0 234±115 135±67
4 35.94±0.05 0.372±0.027 76.7±14.3 5.1±2.4 2.00±0.7 7.7±2.7 130±67 94±49
5 54.17±0.05 0.410±0.080 42.8±8.0 1.9±1.9 2.5±1.4 9.75±5.2 303±281 145±135
6 42.41±0.05 0.320±0.013 448±84 54±19 7.4±2.4 28.5±9.1 422±174 259±107
7 55.70±0.05 0.330±0.040 536±100 58±39 5.3±2.4 20.3±9.4 420±299 196±140
8 25.52±0.05 0.314±0.024 154.0±29 20±10 3.4±1.3 13.4±5.0 115±62 117±64
9 42.31±0.05 0.301±0.014 30.3±5.7 4.7±1.8 2.6±0.9 10.0±3.6 131±60 81±37
10 36.41±0.05 0.331±0.037 158±30 16.8±11 5.5±2.3 21.0±8.7 285±185 204±132

mean 39.86 0.336 190.4 19.8 3.8 14.7 228 144
SD 10.15 0.035 196 21 1.7 6.7 124 59

Measured parameters of 10 microrods from the same batch. The standard deviation for L

indicates the uncertainty of the measurement (estimated as a pixel size at each rod end). For r,

the value is the mean±SD of the variation of the measure along the rod (the precision of a single

measure being 30 nm). For C, χ and φ the value is provided with the experimental uncertainty of

the measurements. From these values, we estimate the total number of particles in each rod and per

cross-section. The last two lines are the mean and SD of each parameter for the 10 analyzed rods.
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ELECTRONIC SUPPLEMENTARY INFORMATION

Extensive characterization of magnetic microrods observed by optical microscopy

F. Gerbal, Y. Wang, O. Sandre, F. Montel, JC. Bacri

ESI, Figure. S1: General scheme of the experiments
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Fig. S1 General scheme of the experiments. The four groups of experiments explicit what are the

measurements realized on the same rod, or on the same bulk sample (hexagons). Some variables (red

round circles) are directly deduced by some measurements (squared boxes) or from a combination of

them.
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ESI, Figure S2: Magnetization curves of the rod nanoparticles
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Fig. S2 Magnetization curves of the nanoparticles used to prepare the rods. The magnetization

curves M(H) were obtained by vibrating sample magnetometry on a 3.9% volume fraction ferrofluid

suspension of non-aggregated citrated particles. At this low concentration, the magnetic interaction

between the particles is negligible and thus, no demagnetizing field takes place. Data have been

extrapolated as if the solution volume fraction were 100%. The main figure is a plot of the magneti-

zation cycle for the low values of the field at which the flexural experiments were performed. Green:

field is increased, Red: field is decreased (refer to the left-axis for the scale). Blue data: magnetic

susceptibility χv = M
H

deduced from the magnetization values (scale on the right axis). The full

cycle, shown in the grey inset, confirms the known surperparamagnetism of such a suspension [5].

The slight shift between the increasing and decreasing curves ascribes to a known thermal drift of

the Hall probe gaussmeter used to measure the magnetic induction.
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ESI, note 1: Optical and Atomic Force Microscopy measures of the rod radius

Much attention is necessary for the precise measurement of the radius r, on which depends the

further determination of other parameters such as the Young modulus Y (Y = 4
Π
r−4C for cylindrical

rods [13]), the magnetic susceptibility χ ∝ C.r−2 (ESI†, note 2), and hence the particle volume

fraction φ ∝ χ. We therefore searched for a precise direct determination of the radius of individual

rods. Unfortunately, the typical diameter size (200-800 nm) was in the order of the Abbe’s resolution

limit ρ = 0.61λ
NA
∼250 nm (NA is the numerical aperture of the objective and λ the wave length).

We thus developed a method to measure the rod radius inspired by the measurement of the length

of sub-micron large bacteria by fluorescent microscopy [21] and driven by the assumption that in

reflection microscopy, individual nanoparticles of the rod behave as individual point sources, like

fluorescent particles in biological samples. We neglected the possible interference between them as

ascribed from weak coherence of the light source. We also adopted the simple viewpoint where each

diffuser reemits light with the same intensity. With the further hypothesis that at a given cross-

section the nanoparticle concentration is homogeneous, the back scattered light intensity is simply

dictated by the geometry and should be proportional to 2r1

√
1− (x

r
)2, where x denotes for the

abscissa along the orthogonal axis to the rod, r the radius in the transverse direction of the optical

axis and r1 the radius along the optical axis (r1 6= r for an elliptic cross-section). In this view, the

reflected light is therefore the point spread function of the microscope convoluted by the emitted

light and should be: Ir(x) = I0(r)
∫ r
−r J1 [a(s− x)2] 2r1

√
1− ( s

r
)2ds where J1 is the Bessel function

of the first kind and a = 2πNA
λ

. A common simplification consists in replacing J1 by a Gaussian

law with standard deviation σxy = .21 λ
NA

[19]. To test this model, we thus compared the expected

intensity Ir(x) = I0 + I1

∫ r
−r exp

[
− (s−x−x0))2

2σxy2

]
2r
√

1− ( s
r
)2ds with many measures of grey intensity

profiles from reflection images of the various rods (Fig. 1C and ESI†, S2). I0, I1, x0 and r where

adjustable parameters. In all cases, the theoretical curve fitted well the measured curves. We could

thus automatize the procedure to probe the rod along its entire length (every two pixels=91 nm,

ESI†, Fig. S3).

To check the accuracy of these optical measures, we compared them with measures obtained

by an AFM scan performed on the same optically analyzed rod. The AFM used was a MFP-3D-BIO

from Azylum Research, mounted on an inverted Olympus optical microscope. The AFM cantilevers

were OMCL AC160TS R3 probes from Olympus with nominal stiffness of 26 N/m, nominal tip height
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of 14 µm, and nominal tip radius of 7 nm. The resonance frequency was 271 kHz and the scan rate

was 1 Hz. The imaging was performed in the soft tapping regime. The images were acquired with

lateral sizes ranging from 5 to 20 µm. To measure the radius by analysis of the optical images, we

used the same equipment as for the rest of the experiments (camera, objective and beam splitter).

To avoid the difficulties of AFM on water immersed samples, we partially allowed the sample to dry

before the scan. It is clear that the procedure somewhat damaged the rods (as shown by images taken

before, during and after rehydratation) but we found that a greater variability of the rod cross-section

was actually more suitable than homogeneous rods to compare both radius measurement methods.

After AFM analysis, the samples were gently rehydrated with a pipette, without moving the sample

from the microscope stage. Images taken before and after the procedure showed that no observable

modification occurred during the procedure. The AFM scans were done in tapping mode in the soft

tapping regime from which we derived the height and radius of the rod profiles from the AFM scans

(ESI†, Fig. S3) taking into account the geometry of the tips. The height was found to be smaller

than the width diameter, indicating that their lower surface may have flattened on the coverslip

while drying. In all cases, we found that the variation of the height and the width were strongly

correlated. The model for the optical analysis also holds for elliptic cross-section (or half-cut elliptic

section) through the adjustment of the fit variable I1.

We performed this analysis respectively on 15 rods made from the 13 nm (and also 8 nm) average

diameter nanoparticle fractions. The graphs of ESI†, Fig. S3 show the strong similitude between the

profiles from the two methods for three rods. However, we find that rather than being stochastic,

the sign of the difference between the two curves is persistent over micron-long distances. Our

interpretation is that, given the low number of particles (see Table 1 and Fig. 3), the AFM tip

scans the polymer hairy shell whereas the optical method accounts for the presence of the inorganic

nanoparticles. The AFM precision could thus be affected by the presence of sticky blobs of polymer

or nanoparticles onto the tip, or the presence of a heterogeneous water layer around the rod. Despite

these differences, we found that the mean difference (averaged over the rod length) between AFM and

optical measures were respectively 1.5, 1.9 and 12 nm and that the standard deviation was ranging

from 20 to 30 nm. This latter value of 30 nm also appeared to be the typical standard deviation of

the optical radius measured along a water-immersed rod and was retained to be the uncertainty of

our optical measurement.
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ESI, Figure S3: Optical and AFR measurements of the rod radius
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Fig. S3 Comparison of rod radius measurement by AFM and optical reflection image analysis for

three different rods. A1-A3 grey intensity map of the height measured by AFM. For each panel,

the inset shows the reflection optical image of the same rod after the sample has been rehydrated

(bars=2 µm). B1-B3 each panel corresponds to the A images and shows the AFM-measured height

(black line), the AFM-measured radius deduced from the width (blue line), the radius derived from

the optical analysis (red line) and the absolute difference between the two blue and red measures

(green line). For each curve the sampling was every 2 camera pixels=93 nm.
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ESI, note 2: Theory of the magnetoelastic experiments

In this section, we detail the theoretical model used to deduce the magnetic susceptibly χ from

the magnetoelastic bending of a cantilevered rod submitted to a uniform external field ~B0 = µ0
~H0

(µ0 is the vacuum permeability). As described in the main text, we assume that the rod geometrical

parameters - the radius r, the length L, and the deflection δ of the rod tip - as well as its bending

modulus C are known from independent measurements. As shown on (Fig. 2A), we note ~H the

field inside the rod and ~M its magnetization. The symbols ‖ and ⊥ applied to any vector ( ~M ,

~B0, ~H...) denote respectively their longitudinal and orthogonal projections on the rod. In absence

of remanent field (the rods are superparamagnetic), the bulk rod material is characterized by a

magnetic susceptibility which is defined as χ(H) = M
H
. We assume the material to be homogeneous

and isotropic so that this relationship is the same in any direction and we may write: ~M = χ(H) ~H.§.

In the absence of magnetic dipolar interaction between the nanoparticles [10], we also have χ(H) =

φ
φv
χv(H) where φ and φv are respectively the volume fractions of the particles in the rod and in the

ferrofluid of the same nanoparticles on which the measurement of χv was performed by vibrating

sample magnetometry (VSM).

We first consider a non-deformable paramagnetic rod of size L and radius r, submitted to ~B0

oriented at an angle α = π
2
− θ with respect to the rod main axis (Fig. 2A). When L � r, the

cylindrical rod may be approximated by a degenerate ellipsoid for which the Maxwell equations have

an analytical solution¶. In our case where the material is uniform and isotropic, the computation

yields the demagnetizing fields and the magnetization in both directions: ~M‖(⊥) = χ‖(⊥)
~H0‖(⊥) where

χ‖(⊥) =
χ(H‖(⊥))

1+n‖(⊥)χ(H‖(⊥))
is the effective susceptibility for each canonic directions and n‖(⊥) the respective

demagnetization factors. For L/r ∼ 100, as in the experiments, the infinite cylinder is an excellent

approximation which gives n‖ = 0 (there is no demagnetizing field in the axial direction and thus

H‖ = H0‖) and n⊥ = 1/2 [12], with a relative error of ∼ 7× 10−3.

In these conditions, each section of the cylinder is submitted to a magnetic torque per unit
§see Landau and Lifchitz, Electrodynamics of continuous media, (Second edition, Pergamon press, Oxford 1984),

chapter IV p106 Eq. (29.10) and (29.11)
¶see Demagnetizing factors of the General ellipsoid, (1945) Osborn, Phys. Rev. 11 and 12, p351. The calculation

holds when the ellipsoid is homogeneous, isotropic (our case) and magnetically linear. Our weaker condition of a
non-constant χ(H) is nevertheless sufficient: in the ellipsoid, a solution exists for any susceptibility χ′ in which ~H and
~M are constant throughout the ellipsoid. The solution verifies M = χ′H everywhere. Thus, there is a valid solution
for our specific χ(H) = χ′ =M/H. By unicity of the solution of the Maxwell equations, it is the only one.
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volume ~Γm = ~M ∧ ~B0. The contributions from the ‖ and ⊥ yield its algebraic amplitude:

Γm = Γm‖ + Γm⊥ = ∆χ sin(2α)
πr2B2

0

2µ0

(1)

where

∆χ = χ(H‖)−
χ(H⊥)

1 + χ(H⊥)/2
(2)

depends on both components of the internal magnetic field.

Secondly, we now assume that the cylinder is a Hookean deformable solid of Young modulus

Y and bending modulus C = π
4
r4Y . According to classical elasticity equations [13], the restoring

torque per unit length of a bent cylinder is Γb = C d2θ
dl2

. The local torque balance equation (which

may be obtained through minimization of the energy functional even when χ depends on H [12]) is

therefore:

C
d2θ(l)

dl2
+ πr2 ∆χB2

0

2µ0

sin [2θ(l)] = 0 (3)

where l designates the curvilinear abscissa along the rod and θ the angle with respect to the orthogonal

direction to the field (see Fig. 2A). However, this equation relies on the supporting hypothesis of

equation (1) which holds for a single straight rod, not for a deformed cylinder that changes direction

(i.e. bends) relatively to the external field. It remains approximatively valid‖ if each section of

the rod magnetically responds to the external field independently of what happens in the rest of

the rod. We thus designate it as the "independent model". We recently introduced an alternative

so-called "axial model" [12], in which we hypothesized that for large χ the magnetization is mostly

longitudinal and also approximatively constant along the rod main axis. In the same paper, using the

dipolar approximation, we discussed of the validity of each model and showed that the "independent

model" is actually true when χ 6 2 because with this low susceptibility, the main contribution to the

internal field ~H in any direction is the external field rather than the magnetic self-induction of the

rod. Thanks to the demagnetizing field, this is also true in the transverse direction whatever the value

of χ > 0. But in the axial direction, quite the contrary happens when χ > 2: each cross-section of

the rod is influenced by both the close and distant magnetized parts of the rod. As a conclusion, our

experiments demonstrated that the "axial model" describes more accurately the shape of nickel wires

with χ > 100 and also of microrods described here, although χ ∼ 2 [12]. It also better predicted the

‖The bent rod can be approximated by several contiguous ellipsoids.
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threshold of the field intensity at which the rod buckles. The constant axial part of the magnetization

is determined by the part of the rod which is the most influenced by the external field,i.e. the section

most aligned with the external field. In the cantilevered configuration studied here, this is thus the

tip of the rod. Using H‖ = H0‖ (the demagnetizing factor is assumed to be null along the rod main

axis as in the infinite cylinder), this writes M‖ = χ(H‖)H‖ = χ(H‖) sin [θ(L)]H0. We also neglected

Γm⊥ in front of Γm‖ because mathematically ∀χ, χ⊥ < 2 when n⊥ = 1/2. With these conditions the

"independent model" described by equation (3) is replaced by:

C
d2θ(l)

dl2
+ πr2M‖B0 cos [θ(l)] = 0 (4)

This "axial model" also presents a very convenient advantage: with the constancy of M = M‖,

follows the constancy of H and χ (see below). But for an accurate measure of χ we improve for

this paper the "axial model" to take into account Γ⊥ which may account for∼ 40% of Γm when χ

is low. If neglected, the experiments described in the main text done for variable field strength and

directions (Fig. 2) does not yield constant φ. Since ~H⊥ always follows the "independence rule", the

expression of Γm⊥ in equation (1) is valid and the torque balance of the complemented axial model

becomes:

C
d2θ(l)

dl2
+

{
χ(H‖) sin(θL)− χ(H⊥)

1 + χ(H⊥)/2
sin [θ(l)]

}
cos [θ(l)]

πr2B2
0

µ0

= 0 (5)

Without the assumption that χ(H) is constant, neither equation (3), nor (5) may be integrated.

To circumvent these difficulties we performed very small deformation measurements (deflection δ ∼

L/50 ∼ 1 µm) in order to keep almost constant the orientation of the rod with respect to the field.

In this condition, we approximate in equation (5): sin [θ(l)] ' sin [θ(L)]∗∗. This also allowed to

consider H⊥ as constant in the rod, and thus also χ(H⊥) (Fig. S4). With these approximations,

equation (5) may be integrated and yields the shape of the rod:

x(l) = 2λ

{√
1− sin(θ0)

sin(θL)
)−

√
1− sin [θ(l)]

sin(θL)

}
(6)

∗∗sin [θ(l)] ' sin [θ(L)] + cos(θL)(θ(l) − θL). With θL − θ0 . 3◦ � θ0 = 55◦ (see further), the approximation is
better than 4%. Alternatively, replacing sin [θ(L)] by sin [θ(l)] yields the equation of the independent model (Eq. (3)).
Indeed, with a small deformation, the infinite straight cylinder model holds to compute the internal magnetization.
Thus, analytical integration of equation (3) is feasible and yields somewhat different expressions which are: x(l) =

κ

[
arcsin( sin θ(l)

sin θL
) − arcsin( sin θ0

sin θL
)

]
, y(l) = κ

[
arccosh( cos θ0

cos θL
) − arccosh( cos θ(l)

cos θL
)

]
and L = κ

∫ θL
θ0

dθ′√
sin2 θL−sin2 θ′

with

κ =
√

µ0C
πr2∆χB2

0
. Although this model does not match the rod shape as well as the "axial model" [12], they are very

similar for small deflections. In this case, both models yield similar values for the volume fraction φ.
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y(l) = λ

∫ θ(l)

θ0

sin(θ)dθ√
1− sin(θ)

sin(θL)

(7)

with λ =
√

µ0C
2πr2∆χB2

0
. From equations (6) and (7), we deduce the relation between L and θL:

L = λ

∫ θL

θ0

dθ√
1− sin(θ)

sin(θL)

(8)

as well as the deflection of the tip:

δ = − sin(θ0)x(L) + cos(θ0)y(L) (9)

From the experimental measurements of L and δ, we numerically solved equations (8) and (9) to

find θL and λ from which follows ∆χ. Equation (8) always admits a solution for θL > θ0 > 0. But

in the case θ0 = 0, a solution exists only if L > 2λ. This is the mathematical translation of the

magnetoelastic buckling instability which occurs at the critical field Bc = 1
rL

√
2µ0C
π∆χ
' 1

rL

√
2µ0C

πχ(H0‖L )

in the axial model [12].

From ∆χ and the geometrical parameters, one can compute χ(H‖) and χ(H⊥), each of them

being proportional to the magnetic susceptibility of the nanoparticles which compose the rods, i.e.

χ(H‖(⊥)) = φ
φv
χv(H‖(⊥)). Using the expression of ∆χ and the data χv(H), φ could thus be obtained

by solving numerically the set of equations:

H‖ = H0‖ H⊥ =
H0⊥

1 + φ
φv
χv(H⊥)/2

(10)

φ = φv
∆χ

χv(H0‖)− χv(H⊥) H⊥
H0⊥

(11)

based on these latter equations, Fig. S4 shows the variation of the magnetic susceptibilities

in a infinitely-long cylinder as a function of the field components, which depends themselves on the

induction field angle with respect to the cylinder.
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ESI, Figure S4: Rod magnetic susceptibility as a function of the field incidence
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Fig. S4 Rod magnetic susceptibility as a function of the field incidence angle. Computation of the

magnetic susceptibilities of an infinitely long rod (with a particle volume fraction of φv=15%) as a

function of its orientation α in respect with the external induction field B0 = 5 mT (see inset). The

various susceptibilities are numerically computed from equations (10) and (11) and after the VSM

data χv(H). H‖ and H⊥ are respectively the axial and orthogonal components of the magnetic field

inside the rod, ∆χ = χ(H‖) − χ⊥(H⊥) with χ⊥ = χ
1+χ/2

. Interestingly, ∆χ varies dramatically by

almost a factor of 5 when α is rotated by 90◦ but varies by less than 10% for α between 0 and 20◦.
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ESI, Fig. S5: Elastic and plastic deformations of the rods
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A: deflection distance δ of a 44.6 µm long cantilever rod during a typical sequence of magnetic mea-

surements with an applied induction field. The field is alternatively turned on for 700 ms (including

200 ms of camera acquisition) and off (for the same time) to check its elastic return to its undeformed

state. The field is always applied at 35◦, at increasing strength (3.26, 5.59 and 7.61 mT) and 5 times

for each strength to test the reproducibility and average out the variations of the deflected amplitude

due to thermal fluctuations. B: by contrast, a strong induction field (33.7 mT) applied for a long

time yields large non-elastic deformations. The arrow indicates the time at which the field is turned

off. The recording has been stopped but the rod does not return to the initial state (δ = 0) even

after hours.

ESI, Movie 1: automatic recognition of the deflected rod centerline by the image

recognition software

Movie made of 31 time-laps reflection images of a 53 µm long rod deflected by an increasing

magnetic field successively turned on and off according to the experimental procedure shown on ESI†,

Fig. S5. Lower left bar=10 µm. The direction of the field is indicated by the upper right arrow

(θ0 = 35◦) and its intensity written on the movie. The dark line drawn on the middle of the rod

image is its centerline automatically digitized by our software.

11


