
HAL Id: hal-01567794
https://hal.science/hal-01567794

Submitted on 24 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Evolutionary Algorithm for Discovering
Multi-Relational Association Rules in the Semantic Web
Minh Tran Duc, Claudia d’Amato, Binh Thnanh Nguyen, Andrea Tettamanzi

To cite this version:
Minh Tran Duc, Claudia d’Amato, Binh Thnanh Nguyen, Andrea Tettamanzi. An Evolutionary
Algorithm for Discovering Multi-Relational Association Rules in the Semantic Web. Genetic and
Evolutionary Computation Conference (GECCO 2017), ACM SIGEVO, Jul 2017, Berlin, Germany.
pp.513–520, �10.1145/3071178.3079196�. �hal-01567794�

https://hal.science/hal-01567794
https://hal.archives-ouvertes.fr

An Evolutionary Algorithm for Discovering Multi-Relational
Association Rules in the Semantic Web
Minh Duc Tran

Université Côte d’Azur, CNRS, Inria, I3S, France
tdminh2110@yahoo.com

Claudia d’Amato
University of Bari, Italy
claudia.damato@uniba.it

Binh Thanh Nguyen
The University of Danang – University of Science and

Technology, Vietnam
ntbinh@dut.udn.vn

Andrea G. B. Tettamanzi
Université Côte d’Azur, CNRS, Inria, I3S, France

andrea.tettamanzi@unice.fr

ABSTRACT
In the Semantic Web context, OWL ontologies represent the concep-
tualization of domains of interest while the corresponding assertional
knowledge is given by RDF data referring to them. Because of its
open, distributed, and collaborative nature, such knowledge can be
incomplete, noisy, and sometimes inconsistent. By exploiting the
evidence coming from the assertional data, we aim at discovering
hidden knowledge patterns in the form of multi-relational association
rules while taking advantage of the intensional knowledge available
in ontological knowledge bases. An evolutionary search method
applied to populated ontological knowledge bases is proposed for
finding rules with a high inductive power. The proposed method,
EDMAR, uses problem-aware genetic operators, echoing the refine-
ment operators of ILP, and takes the intensional knowledge into
account, which allows it to restrict and guide the search. Discovered
rules are coded in SWRL, and as such they can be straightforwardly
integrated within the ontology, thus enriching its expressive power
and augmenting the assertional knowledge that can be derived. Addi-
tionally, discovered rules may also suggest new axioms to be added
to the ontology. We performed experiments on publicly available on-
tologies, validating the performances of our approach and comparing
them with the main state-of-the-art systems.

CCS CONCEPTS
•Computing methodologies → Ontology engineering; Logical
and relational learning; Genetic algorithms; Randomized search;

KEYWORDS
Evolutionary Algorithms; Description Logics; Pattern Discovery

ACM Reference format:
Minh Duc Tran, Claudia d’Amato, Binh Thanh Nguyen, and Andrea G.
B. Tettamanzi. 2017. An Evolutionary Algorithm for Discovering Multi-
Relational Association Rules in the Semantic Web. In Proceedings of
GECCO ’17, Berlin, Germany, July 15-19, 2017, 8 pages.
DOI: http://dx.doi.org/10.1145/3071178.3079196

GECCO ’17, Berlin, Germany
© 2017 ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published
in Proceedings of GECCO ’17, July 15-19, 2017, http://dx.doi.org/http://dx.doi.org/10.
1145/3071178.3079196.

1 INTRODUCTION
The Semantic Web (SW) [3] is a new vision of the Web aiming at
making Web contents machine-readable. Web resources are seman-
tically annotated with metadata referring to ontologies, which are
formal conceptualizations of domains of interest acting as shared
vocabularies where the meaning of the annotations is formally de-
fined. As such, annotated web resources represent the assertional
knowledge given the intensional definitions provided by ontologies.
Assertional and intensional ontological knowledge will be referred
to as ontological knowledge base. In the SW view, data, information,
and knowledge are connected following best practices and exploiting
standard Web technologies like HTTP, RDF, and URIs. This allows
to share and link information that can be read automatically by com-
puters meanwhile creating a global space of semantically described
resources. The description of data/resources in terms of ontologies
represents a key aspect in the SW. Interestingly, ontologies are also
equipped with powerful deductive reasoning capabilities. However,
due to the SW heterogeneous and distributed nature, ontological
knowledge bases (KBs)1 may turn out to be incomplete and noisy
w.r.t. the domain of interest. Specifically, an ontology is incomplete
when it is logically consistent (i.e., it contains no contradiction) but
it lacks information (e.g., assertions, disjointness axioms, etc.) w.r.t.
the reference domain; while it is noisy when it is logically consistent
but it contains invalid information w.r.t. the reference domain. These
situations may prevent the inference of relevant information or cause
incorrect information to be derived.

By exploiting the evidence coming from (assertional) knowledge,
data mining techniques could be exploited for discovering hidden
knowledge patterns from ontological KBs, to be used for enrich-
ing an ontology both at terminological (schema) and assertional
(facts) level, even in presence of incompleteness and/or noise. We
present EDMAR,2 an evolutionary algorithm (EA) for discovering
hidden knowledge patterns in the form of multi-relational associa-
tion rules (ARs) coded in SWRL [11], which can be added to the
ontology enriching its expressive power and increasing the asser-
tional knowledge that can be derived. Additionally, discovered rules
may suggest new axioms to be added to the ontology, such as transi-
tivity and symmetry of a role, and/or concept/role inclusion axioms.
Related work focussing on similar goals can be found both in the

1By ontological knowledge base, we refer to a populated ontology, namely
an ontology where both the schema and instance level are specified. This
expression will be interchangeably used with the term ontology.
2EDMAR is for “Evolutionary Discovery of Multi-relational Association Rules”.

http://dx.doi.org/http://dx.doi.org/10.1145/3071178.3079196
http://dx.doi.org/http://dx.doi.org/10.1145/3071178.3079196

GECCO ’17, July 15-19, 2017, Berlin, Germany M. Duc Tran, C. d’Amato, B. Thanh Nguyen, A.G.B. Tettamanzi

inductive logic programming (ILP) [6, 15, 16], and in the SW com-
munity [9, 12, 13, 20]. However, none of those approaches takes
advantage of the exploration capabilities of EAs jointly with the
reasoning capabilities of ontologies. Recently, a first attempt in this
novel direction to discover hidden knowledge patterns in ontological
KBs has been made [5]. However, that proposal suffers from some
limitations, which our solution manages to overcome. In this paper
we show how EDMAR is able to return a number of rules with high
inductive (predictive) capabilities while pruning redundant rules.

In the next section, basics are provided. EDMAR is presented
in Section 3 and its main characteristics and added value w.r.t. the
state of the art are discussed in Section 4. Section 5 provides an
experimental evaluation and comparison to the main state-of-the-art
systems. Conclusions and future directions are drawn in Section 6.

2 BASICS
We refer to ontological KBs described in Description Logics (DLs) [2]
(representing the theoretical foundation of OWL3 that is the standard
representation language in the SW), without restricting ourselves to
any specific DL. As usual in DLs, we refer to a KB K = 〈T ,A〉
consisting of a TBox T containing the terminological axioms and
an ABox A containing the assertional axioms. The formal meaning
of the axioms is given in terms of model-theoretic semantics. As for
reasoning services, we exploit instance checking, which assesses if
an individual is an instance of a given concept, and concept subsump-
tion, which checks whether a concept (role) is subsumed by another
concept (role). It should be recalled that DLs adopt the open-world
assumption (OWA), which has consequences on answering class-
membership queries. Specifically, for an individual that cannot be
proved to be an instance of a certain concept, it cannot be intended
as a counterexample for it. Rather, it should be interpreted as a
case of insufficient (incomplete) knowledge for possibly proving the
assertion. For more details concerning DLs see [2].

In the following, the definition of relational AR for an ontological
KB is given. Hence, the addressed problem is formally defined.

Definition 2.1 (Relational Association Rule). Given a populated
ontological KB K = (T ,A), a relational association rule r for K
is a Horn-like clause of the form: body → head, where: (a) body
is a generalization of a set of assertions in K co-occurring together;
(b) head is a consequent that is induced from K and body

Definition 2.2 (Problem Definition).

Given:
• a populated ontological knowledge base K = (T ,A);
• a minimum “frequency threshold”, θf ;
• a minimum “fitness threshold”, θfit;

Discover: all frequent and fit hidden patterns w.r.t θf and
θfit, in the form of relational ARs, that may induce new
assertions for K.

Intuitively, a frequent hidden pattern is a generalization of a set
of concept/role assertions co-occurring reasonably often (w.r.t. a
fixed frequency threshold) together, showing an underlying form of
correlation that is exploited for obtaining new assertions.

3https://www.w3.org/OWL/

The rules to be discovered (following Def. 2.2), will be repre-
sented in the Semantic Web Rule Language (SWRL) [11], which
extends the set of OWL axioms with Horn-like rules.4

Definition 2.3 (SWRL Rule). Given a KB K, a SWRL rule is an
implication between an antecedent (body) and a consequent (head)
of the form: B1 ∧B2 ∧ . . . Bn → H1 ∧ · · · ∧Hm,
where B1 ∧ · · · ∧Bn is the rule body and H1 ∧ · · · ∧Hm is the rule
head. Each B1, . . . , Bn, H1, . . . Hm is called atom.

An atom is a unary or binary predicate of the formC(s),R(s1, s2),
sameAs(s1, s2) or differentFrom(s1, s2), where the predicate sym-
bol C is a concept name in K, R is a role name in K, s, s1, s2 are
terms. A term is either a variable (denoted by x, y, z) or a constant
(denoted by a, b, c) standing for an individual name or data value.

The discovered rules can be generally called multi-relational rules
since multiple binary predicates R(s1, s2) with different role names
of K could appear in a rule. The intended meaning of a rule is:
whenever the conditions in the antecedent hold, the conditions in the
consequent must also hold. A rule having more than one atom in the
head can be equivalently transformed, due to the safety condition
(see Def. 2.5), into multiple rules, each one having the same body
and a single atom in the head. We will consider, w.l.o.g., only SWRL
rules (hereafter just “rules”) with one atom in the head.

Example 2.4 (SWRL rule). Given a SWRL rule of the form
fatherOf(y, x) ∧ Male(x) → sonOf(x, y) where sonOf(x, y) is
the rule head; fatherOf(y, x)∧Male(x) is the rule body; fatherOf,
Male, sonOf are atoms and x, y are variables.

2.1 Fixing the Language Bias
A language bias is a set of constraints giving a tight specification of
the patterns worth considering, thus allowing to reduce the search
space. We are interested in rules having only atomic concepts and/or
role names of K as predicate symbols, and individual names as con-
stants. Only connected [9] and non-redundant [12] rules satisfying
the safety condition [10] are considered.5 In the following, notations
and formal definitions for the listed properties are reported.

Given an atom A, let T (A) denote the set of all the terms occur-
ring in A and let V (A) ⊆ T (A) denote the set of all the variables
occurring in A e.g. V (C(x)) = {x} and V (R(x, y)) = {x, y}.
Such notation may be extended to rules straightforwardly.

Definition 2.5 (Safety Condition). Given a KB K and a rule r =
B1 ∧ B2 ∧ . . . Bn → H , r satisfies the safety condition if all
variables appearing in the rule head also appear in the rule body;
formally if: V (H) ⊆

⋃n
i=1 V (Bi),

Definition 2.6 (Connected Rule). Given a KB K and a rule r =
B1 ∧ B2 ∧ . . . Bn → H , r is connected iff every atom in r is
transitively connected to every other atom in r.

Two atoms Bi and Bj in r, with i 6= j, are connected if they
share at least a variable or a constant i.e. if T (Bi) ∩ T (Bj) 6= ∅.
Two atoms B1 and Bk in r are transitively connected if there exist
4The result is a KB with an enriched expressive power. More complex
relationships than subsumption can be expressed. For details see [10].
5To guarantee decidability, only DL-safe rules are sought for [14], i.e., rules interpreted
under the DL-safety condition, whose variables are bound only to explicitly named
individuals in K. When added to an ontology, DL-safe rules are decidable and generate
sound, but not necessarily complete, results.

An EA for Discovering Multi-Relational Association Rules GECCO ’17, July 15-19, 2017, Berlin, Germany

in r, atoms B2, . . . , Bk−1, with k ≤ n, such that, for all i, j ∈
{1, . . . , k} with i 6= j, T (Bi) ∩ T (Bj) 6= ∅.

Example 2.7 (Disconnected rule). The rule wifeOf(y, x)∧
siblingOf(z, w)→ spouseOf(x, y) is disconnected, since the atom
siblingOf(z, w) does not share any variable with the other atoms.

Definition 2.8 (Closed Rule). Given a KB K and a rule r =
B1 ∧B2 ∧ . . . Bn → H , r is closed iff every variable in r is closed.

Each variable vj ∈
⋃n
i=1 V (Bi), j ∈ {1, . . . , k}, with k ≤ n, is

closed if it appears at least twice in r.

Example 2.9 (Open rule). Rule sonOf(z, x)→ spouseOf(x, y)
is not closed, since variables z and y are not closed.

Definition 2.10 (Non-redundant Rule). Given a KB K and a
rule r = B1 ∧ B2 ∧ . . . Bn → H , r is a non-redundant rule if no
atom in r is entailed by other atoms in r with respect to K, i.e., if,
∀i ∈ {0, 1, . . . , n}, with B0 = H , results:

∧
j 6=iBj 6|=K Bi,

Example 2.11 (Redundant Rule). Given K with T = {Father v
Parent} and the rule r = Father(x) ∧ Parent(x) → Human(x)
where Human is a primitive concept, r is redundant since the atom
Parent(x) is entailed by the atom Father(x) with respect to K.

2.2 Metrics for Rules Evaluation
For determining the rules of interest for the goal in Def. 2.2, metrics
for assessing the quality of a rule are necessary. In the following,
the adopted metrics are summarized.

Given a rule r = B1 ∧ . . . ∧Bn → H , let us denote:
• ΣH(r) the set of distinct bindings of the variables occurring

in the head of r, formally: ΣH(r) = {binding V (H)}
• EH(r) the set of distinct bindings of the variables occurring

in the head of r provided the body and the head of r are sat-
isfied, formally: EH(r) = {binding V (H) | ∃ binding
V (B1 ∧ · · · ∧Bn) : B1 ∧ · · · ∧Bn ∧H}. Since rules are
connected and closed, V (H) ⊆ V (B1 ∧ · · · ∧Bn)

• MH(r) the set of distinct bindings of the variables occur-
ring in the head of r also appearing as binding for the
variables occurring in the body of r, formally: MH(r) =
{binding V (H) | ∃ binding V (B1 ∧ · · · ∧ Bn) : B1 ∧
· · · ∧Bn}

• PH(r) the set of distinct bindings of the variables occur-
ring in the head of r provided that the body and the head
of r are satisfied. Particularly, this applies when a role
atom is in the head of the considered rule. Formally:
PH(r) = {binding V (H) | ∃ binding V (B1 ∧ · · · ∧
Bn) ∪ vrng(H ′) : B1 ∧ · · · ∧Bn ∧H ′} where
- H and H ′ are role atoms with the same the predicate sym-
bol R;
- V (H) ⊆ V (B1 ∧ · · · ∧ Bn) since rules are connected
and closed
- vdom(H) = vdom(H ′) and vrng(H) 6= vrng(H

′);
with vdom and vrng standing for the domain and range
variables respectively of the predicate symbol R
- vrng(H ′) /∈ V (B1 ∧ · · · ∧Bn);

Like in [4, 9], the classical definitions (as used in [1]) are modified
to ensure monotonicity, as summarized in the following.

Definition 2.12 (Rule Support). Given a rule r = B1 ∧ . . . ∧
Bn → H , its support is the number of distinct bindings of the
variables in the head, provided the body and the head of r are
satisfied jointly, formally:

supp(r) = |EH(r)|. (1)

Example 2.13 (Computation of Rule Support). Given the rule
r = feed(x, y)→ love(x, y) and assuming the following bindings
{feed(Anna,Dog), feed(Anna,Cat), feed(Peter, P ig),
love(Anna,Dog), love(George, Cat)} exist then supp(r) = 1,
as there is just one binding for the rule head (feed(Anna,Dog)) al-
lowing the head love(Anna,Dog) and the body feed(Anna,Dog)
to be jointly satisfied.

Definition 2.14 (Head Coverage for a Rule). Given the rule r =
B1 ∧ . . . ∧ Bn → H , its head coverage is the ration between the
rule support and the distinct variable bindings from the head of the
rule

headCoverage(r) = |EH(r)|/|ΣH(r)|. (2)

Example 2.15 (Computation of Head Coverage). Given the rule r
in Ex. 2.13 and the corresponding bindings, headCoverage(r) = 1

2

since there are two bindings for the head of r: {love(Anna,Dog),
love(George, Cat)}.

Definition 2.16 (Rule Confidence). Given a rule r = B1 ∧ . . . ∧
Bn → H , its confidence is defined as the ratio of the number of the
rule support and the number of bindings in the rule body:

conf(r) = |EH(r)|/|MH(r)|. (3)

Example 2.17 (Computation of Rule Confidence). Given the rule
r in Ex. 2.13 and the corresponding bindings, conf(r) = 1

3
, since

there are three bindings, {feed(Anna,Dog), feed(Anna,Cat),
feed(Peter, P ig)} for the body of r.

An issue with these definitions, and particularly Def. 2.16, is that
an implicit closed-world assumption is made, since no distinction
between incorrect predictions, i.e., bindings σ matching r such that
K |= ¬Hσ, and unknown predictions, i.e., bindings σ matching r
such that both K |= Hσ and K |= ¬Hσ, is made. Reasoning on
ontologies is grounded on the OWA and our goal is to maximize
correct predictions, not just describing the available data. Hence, we
also adopt the PCA Confidence [9] that is able to take into account
the OWA.

Definition 2.18 (Rule PCA-Confidence). Given the rule r =
B1 ∧ . . . ∧Bn → H , its PCA (Partial Completeness Assumption)
confidence is defined as follows:

pcaconf(r) =

{
|EH(r)|/|MH(r)|, if H is a concept atom;
|EH(r)|/|PH(r)|, if H is a role atom.

(4)

For the example described in Ex. 2.13, pcaconf(r) = 1
2

.

Definition 2.19 (Rule Precision). Given the rule r = B1 ∧ . . . ∧
Bn → H , its precision is the ratio of the number of correct pre-
dictions made by r and the total number of correct and incorrect
predictions (predictions logically contradicting K), leaving out the
predictions with unknown truth value.

GECCO ’17, July 15-19, 2017, Berlin, Germany M. Duc Tran, C. d’Amato, B. Thanh Nguyen, A.G.B. Tettamanzi

This metric expresses the ability of a rule to perform correct
predictions, but it is not able to take into account the induced knowl-
edge, that is the unknown predictions. For this reason, the metrics
proposed in [8] are also considered (for the evaluation in Sect. 5):

• match rate: number of predicted assertions in agreement
with facts in the complete ontology, out of all predictions;

• commission error rate: number of predicted assertions con-
tradicting facts in the full ontology, out of all predictions;

• induction rate: number of predicted assertions that are
not known (i.e., for which there is no information) in the
complete ontology, out of all predictions.

3 EVOLUTIONARY DISCOVERY OF
RELATIONAL ASSOCIATION RULES

Given a populated ontological KB, our goal is to discover frequent
and accurate hidden patterns in the form of multi-relational ARs
to be exploited for making predictions of new assertions in the
KB. The discovered rules are compliant with the fixed language
bias (see Sect. 2.1). Particularly, they are DL-Safe and expressed
in SWRL (see Sect. 2). Hence, they can be integrated with the
existing ontology, resulting in a KB with an enriched expressive
power [10, 11].

EDMAR maintains a population of patterns (the individuals) and
makes it evolve by iteratively applying a number of genetic operators.
A pattern is the genotype of an individual and the corresponding
rule is its phenotype, constructed using the first atom of the pattern
as the head and the remaining atoms as the body. Since the goal
is to discover rules capable of making (possibly a large number
of) accurate predictions, the fitness of a pattern is the sum of the
head coverage and of the PCA confidence of the corresponding rule,
which measures its the overall quality. The EA we propose may
be regarded as an improvement of a previous proposal by three of
us [5] and at the same time as an alternative and complementary
approach to level-wise generate-and-test algorithms for discovering
relational ARs from RDF data-sets [9] and recent proposals that
take into account terminological axioms and deductive reasoning
capabilities [4].

3.1 Representation
The overall flow of the EA is shown by Algorithm 1. As in [4, 5,
9], a pattern is represented as a list of atoms, to be interpreted in
conjunctive form. For each discovered frequent pattern, a multi-
relational AR is constructed by considering the first atom in the list
as the head of the rule and the remaining atoms as the rule body.
The length of a rule is the number of atoms in the rule (including the
head atom).

Example 3.1. Given the pattern [sonOf(x, y), fatherOf(y, x),
Male(x)], the corresponding rule is fatherOf(y, x) ∧Male(x) →
sonOf(x, y). The rule length is 3. Its meaning is: “if y is x’s father
and x is male, then x is a son of y”.

The EA is steady-state: children are created by applying genetic
operators on selected parents, and then the children are added back
into the population to compete with individuals in the old population
in order to allow transition into the new population at the next cycle.
The selection operator chooses the best parents for reproduction.

Algorithm 1 Evolutionary algorithm for the discovery of multi-
relational ARs from a populated ontological KB
Input: K: ontological KB; θf : frequency threshold; n: the size of the population; pcross:

crossover probability; pmut : mutation probability; τ : truncation proportion; θfit: fitness
threshold;

Output: pop: set of frequent patterns discovered fromK
1: Creating a listAf of frequent atoms inK
2: Initialize a population pop of size n by using n times CREATENEWPATTERN() operator
3: Compute fitness values for all of the patterns in pop
4: Sort pop by decreasing fitness value
5: Initialize the number of generation (equals to 0)
6: while (the number of generation<MAX GENERATIONS) do
7: for (i = 0, 1, . . . , bτnc) do
8: CROSSOVER(pop[i], pop[bτnc + i])
9: CROSSOVER(pop[i], pop[2bτnc + i])

10: Compute fitness value for all of offspring
11: for each offspring do
12: with probability pmut do MUTATE(offspring)
13: Add all of offspring to pop
14: Sort pop by decreasing fitness value
15: Remove patterns located at the end of pop so that the size of pop is exactly n
16: Increase the number of generation by 1
17: Remove redundant and inconsistent rules from the final population pop
18: Remove rules where fitness value is less than θfit from the final population pop
19: return pop

Algorithm 2 The CREATENEWPATTERN() Operator.
Input: a global variableAf : a list of frequent atoms;
Output: p: a new random pattern
1: length← random(2,MAX RULE LENGTH)
2: p is initialized to empty
3: while p.LENGTH() < length do
4: pick an atom a ∈ Af at random
5: if (p is not empty) then
6: adjust the variables in a to ensure the language bias is respected
7: add a to the end of p
8: return p

The genetic operators of initialization, crossover, and mutation, are
designed to enforce the respect of the language bias.

An important consequence of the fact that patterns are intended
to be transformed into rules for evaluation is that the order of atoms
counts only insofar as one atom is in the head position (and, therefore,
the head of the rule). The relative position of atoms that are not in
the head position is irrelevant.

At the end of the algorithm, discovered knowledge patterns in
the final population satisfy three conditions: (1) each pattern is not
redundant (as for Defn. 2.10); (2) each pattern, once considered
jointly with the ontology, satisfies K ∪ p 6|= ⊥, in which p is the
pattern in the population; (3) the fitness value of each pattern is
above a given threshold θfit.

3.2 Initialization
Before creating patterns in the population, the initialization operator
requires a listAf of frequent atoms, which is computed once and for
all before launching the evolutionary process (line 1 of Alg. 1). A
frequent atom is a pattern r consisting of a single atom of the form
C(x) or R(x, y), such that supp(r) ≥ θf .

The initialization operator initializes the population with n pat-
terns by using n times CREATENEWPATTERN() operator. A new
pattern is seeded with a frequent pattern picked at random from the
list Af and a random target length uniformly distributed between 2
and MAX RULE LENGTH. The CREATENEWPATTERN() operator
is detailed in Algorithm 2.

An EA for Discovering Multi-Relational Association Rules GECCO ’17, July 15-19, 2017, Berlin, Germany

3.3 Selection
Before performing the selection operator, patterns in the population
are sorted by decreasing fitness value and a given parameter τ is
used to assist in the selection of individuals.

The selection operator is used before calling the crossover opera-
tor. The purpose of this operator is to select the best individuals to
perform crossover. An illustrative diagram is depicted in Figure 1:
3bτnc individuals are selected for reproduction, each individual
in Part 1 (the best individuals) is selected twice to mate with each
individual in Part 2 and each individual in Part 3, respectively, in
order from top to bottom.

Figure 1: Selection operator for crossover

3.4 Crossover
The crossover operator produces two offspring patterns from two
parent patterns that are selected according to the selection operator
(Fig. 1). The atoms of the offspring are randomly selected from the
atoms of the parents. The operator, detailed in Algorithm 3, proceeds
by creating a set L including all the atoms in the two input patterns
and choosing a target length for the two offspring; then, atoms are
picked from L at random and added to either pattern until the target
length is attained, possibly changing their variables to ensure the
language bias is respected.

Example 3.2. Given the two parent patterns

p1: [sonOf(x, y), fatherOf(y, x),Male(x)],
p2: [fatherOf(x, y), grandfatherOf(x, z), sonOf(z, y)],

according to Algorithm 3, we have:

L = {sonOf, fatherOf,Male, grandfatherOf}.

Suppose the (random) target length for the first child (O1) is 4 and for
the second child (O2) is 3. The offspring after performing crossover
may be the following patterns:

Algorithm 3 The Crossover Operator CROSSOVER(p1, p2).
Input: p1, p2: the two patterns to be crossed over;
Output: O1, O2: two patterns that are a recombination of the input patterns.
1: Creating a setL containing all of the atoms in both parents
A1← a set contains atoms of p1
A2← a set contains atoms of p2
L← A1 ∪ A2

2: Randomly choose a target length for each offspring in the range of 2 to MAX RULE LENGTH
(a given parameter)
length O1 ← random(2,MAX RULE LENGTH)
length O2 ← random(2,MAX RULE LENGTH)

3: O1 andO2 are initialized to empty
4: for (i = 1, 2) do
5: whileOi.LENGTH() < length Oi do
6: Pick an atom a ∈ L at random
7: if (Oi is not empty) then
8: adjust the variables in a to ensure the language bias is respected
9: add a to the end ofOi

10: return O1 ,O2

Algorithm 4 The Mutation Operator MUTATE(p).
Input: p: the pattern to be mutated;
Output: p′: the mutated pattern.
1: if p.GETFITNESSVALUE() > θmut then
2: if p.LENGTH() < MAX RULE LENGTH then
3: p′ ← SPECIALIZATION(p)
4: else
5: p′ ← CREATEBODYPATTERN(p)
6: else
7: if p.LENGTH() > 2 then
8: p′ ← GENERALIZATION(p)
9: else

10: p′ ← CREATEBODYPATTERN(p)

11: return p′

O1: [grandfatherOf(x, y), fatherOf(x, z), fatherOf(z, y),
Male(y)],

O2: [fatherOf(x, y), grandfatherOf(x, z), fatherOf(y, z)].

3.5 Mutation
The mutation operator perturbs a pattern from the offspring of

crossover with a given probability pmut. Our mutation operator,
detailed in Algorithm 4, uses two operators based on the idea of
specialization and generalization in ILP: it applies the specialization
operator, if the fitness of the pattern is above a given threshold θmut,
or the generalization operator, if its fitness is below the threshold
θmut, to the pattern undergoing it. In case a pattern is too long to
undergo specialization or too short to undergo generalization, muta-
tion will apply function CREATEBODYPATTERN(p), which creates
a completely new body by picking atoms from the listAf of frequent
atoms, while keeping the same head as the the parent pattern and
respecting the language bias.

Example 3.3. Assume p = [siblingOf(x, y), stayWith(y, x)],
with fitness(p) < θmut undergoes mutation; then,
p′ = CREATEBODYPATTERN(p), for instance, and
p = [siblingOf(x, y), brotherOf(z, x),Female(x), sisterOf(y, z)].

The specialization operator, detailed in Algorithm 5, appends a
new atom to a pattern, while preserving the language bias.

Example 3.4 (Specialization). Given p = [GrandFather(x),
Father(x)], p′ = SPECIALIZATION(p) might yield, for instance,
p′ = [GrandFather(x),Father(x),Husband(x)].

The generalization operator, detailed in Algorithm 6, removes a
random number of atoms located at the end of the body of p. After

GECCO ’17, July 15-19, 2017, Berlin, Germany M. Duc Tran, C. d’Amato, B. Thanh Nguyen, A.G.B. Tettamanzi

Algorithm 5 The Specialization Operator SPECIALIZATION(p).
Input: p: the pattern to be specialized; a global variableAf : a list of frequent atoms;
Output: p′: the specialized pattern.
1: pick an atom a ∈ Af at random
2: Adjust the variables in a to ensure the language bias is respected (adjust according to p)
3: p′←Add a to the end of p
4: return p′

Algorithm 6 The Generalization Operator GENERALIZATION(p).
Input: p: the pattern to be generalized;
Output: p′: the generalized pattern.
1: Randomly generate a number n which represents the number of atoms will be removed.

n← random(1, p.body.LENGTH()− 1)
2: for (i = 1, . . . , n) do
3: Remove the last atom from p
4: p′← Adjust the variables of atoms in p (if necessary) to ensure the language bias is respected.
5: return p′

removing atoms, the length of the body must remain at least one
atom and preserve the language bias.

Example 3.5 (Generalization). Given a pattern p =
[sonOf(x, y), fatherOf(y, x),Male(x),motherOf(z, x),
spouseOf(z, y)], p′ = GENERALIZATION(p) might yield, assum-
ing the operator randomly chooses to remove three atoms,
p′ = [sonOf(x, y), fatherOf(y, x)].

3.6 Fitness
In order to assess the fitness value, the head coverage metrics
(Def. 2.14) is primarily considered, as also argued in the related
literature [5]. Indeed, this metric captures the generality of a pattern,
since one expects good-quality patterns to cover a large share of
the known true facts. In addition, we argue that a measure of rule
confidence should be combined with the notion of coverage in order
to reward those patterns that, besides covering a large number of
true facts, also cover as few false facts as possible. Since DLs adopt
the OWA, we must use the PCA-Confidence metric (Def. 2.18) to
measure the confidence of a pattern. This metric is an indication of
how often the pattern has been found to be true. High confidence
value means that the pattern has a low error rate and vice versa.
Hence, the selected fitness function is

fitness(r) = headCoverage(r) + pcaconf(r).

A high fitness indicates that a pattern is meaningful (general and
accurate). The two terms of the fitness function might be viewed as
two conflicting objectives; therefore, they could be weighted differ-
ently or a two-objective EA could be used to find non-dominated
rules. We leave the exploration of both ideas for future work.

3.7 Consistency Check
Inconsistent rules, i.e., rules that are unsatisfiable when considered
jointly with the ontology, are of no use for KB enrichment and have
thus to be discarded.6 Notice that this case should never occur if
the ontological KB is consistent and noise-free. Nevertheless, since
EDMAR can also be applied to noisy ontologies, it may happen
that an unsatisfiable rule/pattern (when considered jointly with the

6As remarked in [12], the satisfiability check is useful only if disjointness
axioms occur in the ontology. This check can be omitted (thus saving
computational cost) if no disjointness axioms occur.

ontology) is extracted, particularly if low frequency and fitness
thresholds (see Sect. 2.2 for details about the metrics) are considered.

Since checking rules for consistency may be computationally very
expensive, we have decided not to check patterns for consistency
during evolution. Instead, we defer this check and we apply it to the
final population (see line 17 of Alg. 1). The satisfiability check is
performed by calling an off-the-shelf OWL reasoner. Our current
implementation makes use of Pellet [17].

4 RELATED WORK
The exploitation of data mining methods for discovering hidden
knowledge patterns is not new in the SW context. First proposals
have been formalized in [12, 13], where solutions for discovering
frequent patterns in the form of, respectively, DATALOG clauses
and conjunctive queries from hybrid sources of knowledge (i.e., a
rule set and an ontology) have been presented. These methods are
grounded on a notion of key, standing for the basic entity/attribute
to be used for counting elements for building the frequent patterns.
Unlike these methods, our solution focuses on an ontological KB and
does not require any notion of key and as such it is able to discover
any kind of frequent hidden knowledge patterns in the ontology.
A method for learning ARs from RDF datasets, with the goal of
inducing a schema ontology has been proposed in [20], while a
method for inducing new assertional knowledge from RDF datasets
has been presented in [9]. Unlike our approach, these two methods
do not take any background/ontological knowledge into account and
do not exploit any reasoning capabilities. Furthermore, our solution
allows to discover rules that can be directly added to the ontology,
since our rules are represented in SWRL, which is not the case for
the existing methods.

As regards exploiting EAs in combinations with ILP, several
proposals started to appear in the literature at the beginning of the
new millennium. An EA has been exploited as a wrapper around a
population of ILP algorithms in [16]; alternatively, a hybrid approach
combining an EA and ILP operators has been proposed in [6, 7].
A similar idea is also followed by [15, 18, 19], in which an EA
is used to evolve and recombine clauses generated by a stochastic
bottom-up local search heuristic. Finally, [5] built on those ideas and
combined them with recent work on relational AR discovery from
populated KBs in the SW [4, 9] to propose an EA for the discovery
of relational AR. The rationale for using EAs as a meta-heuristic
for ILP is to mitigate the combinatorial explosion generated by the
inductive learning of rich representations, such as those used in
DLs [4], while maintaining the quality of the results.

Our approach adopts several solutions that allow it to outperform
the evolutionary method proposed in [5], as shown in Tab. 3 and
4. Specifically, in [5], the mutation operator is only applied to the
worst individuals in the population, in the hope that the mutants be
better than their parents. However, while it is easier to improve a
poor individual by chance, such mutant can hardly compete with
the best individuals. Instead, we apply mutation to all individuals
independently of their fitness. This allows the EA to explore the
search space around promising solutions as well.

Another difference is that our approach strictly considers closed
rules (see Def. 2.8), unlike RARD and the method proposed in [5]
where open rules are allowed. This restriction allows us to reduce

An EA for Discovering Multi-Relational Association Rules GECCO ’17, July 15-19, 2017, Berlin, Germany

Table 1: Key facts about the ontological KBs used.

Ontology # Concepts # Roles # Indiv. # Declared # Decl.+Derived
Assertions Assertions

Financial 59 16 1000 3359 3814
BioPAX 40 33 323 904 1671
NTMerged 47 27 695 4161 6863

the search space and the number of returned rules while remaining
competitive in terms of generated predictions (see Tab. 4).

Another reason for the better performance of our method is our
use of a measure of rule confidence in the fitness function (cf. Sec-
tion 3.6). Indeed, [5] uses just the head coverage of a rule as its
fitness (fitness(r) = headCoverage(r)). Such choice only focuses
on the maximization of the number of the known correct predictions
without taking into account the confidence of the rule; in particular,
it completely overlooks the incorrect predictions of the rule. Thanks
to the PCA confidence, we can obtain rules with a low error rate.
Furthermore, it is also suitable to operate under the OWA.

5 EXPERIMENTS AND RESULTS
We applied our method to the same populated ontological KBs used
in [5]: Financial,7 describing the banking domain; Biological Path-
ways Exchange (BioPAX)8 Level 2 Ontology, describing biological
pathway data; and New Testament Names Ontology (NTN),9 de-
scribing named entities (people, places, and other classes) in the
New Testament, as well as their attributes and relationships. Details
on these ontologies are reported in Tab. 1.

The first goal of our experiments consisted in assessing the ability
of the discovered rules to predict new assertional knowledge for a
considered ontological KB. For that purpose, different samples of
each ontology have been built for learning multi-relational ARs (as
presented in Sect. 3) while the full ontology versions have been used
as a testbed. Specifically, for each ontology, three samples have been
built by randomly removing, respectively, 20%, 30%, and 40% of
the concept assertions, according to a stratified sampling procedure.

We ran the EA presented in Sect. 3 by repeating, for each run,
the sampling procedure. We performed 30 runs for each stratified
sample of each ontology using the following parameter setting:

n = 5, 000; pmut = 5%;
MAX GENERATIONS = 200; θmut = 0.2;
MAX RULE LENGTH = 10; τ = 1

5

θf = 1.

The charts in Figure 2 demonstrate the unfolding of the evolutionary
process over 30 distinct runs. The top chart shows the growth over
generations of the number of patterns having a fitness greater than
θfit. The bottom chart shows the growth over generations of the
average fitness of the entire population. We can observe that high-
quality patterns are gradually discovered over generations.

As in [9], we applied the discovered rules to the full ontology
versions and collected all predictions, that is the head atoms of the
instantiated rules. Given the collected predictions, those already
contained in the reduced ontology versions were discarded while the

7http://www.cs.put.poznan.pl/alawrynowicz/financial.owl.
8http://www.biopax.org/release/biopax-level2.owl.
9http://www.semanticbible.com/ntn/ntn-view.html.

Figure 2: The growth of population over generations

Table 2: Avg (± st.dev.) performance on each ontology.

Ontology Sample Match Comm. Ind. Precision Total #
Rate Rate Rate Predictions

Financial

20% 0.871 0 0.129 1.0 44,962
± 0.036 0 ± 0.036 ± 41,949

30% 0.855 0 0.145 1.0 39,401
± 0.047 0 ± 0.047 ± 44,645

40% 0.864 0 0.136 1.0 31,226
± 0.039 0 ± 0.039 ± 33,952

BioPAX

20% 0.571 0 0.429 1.0 86, 920
± 0.028 0 ± 0.028 ± 11,691

30% 0.59 0 0.41 1.0 79,543
± 0.025 0 ± 0.025 ± 11,850

40% 0.584 0 0.416 1.0 97,559
± 0.031 0 ± 0.031 ± 13,049

NTNMerged

20% 0.632 0 0.368 1.0 3,439,660
± 0.059 0 ± 0.059 ± 554,720

30% 0.6 0 0.4 1.0 2,353,420
± 0.055 0 ± 0.055 ± 477,735

40% 0.711 0 0.289 1.0 2,899,464
± 0.075 0 ± 0.075 ± 563,711

remaining predicted facts were considered. A prediction is assessed
as correct if it is contained/entailed by the full ontology version
and as incorrect if it is inconsistent with the full ontology version.
Results (see Tab. 2) have been averaged over 30 different runs with
the above parameter setting and have been measured in terms of
precision (see Def. 2.19), match rate, commission error rate, and
induction rate (see Sect. 2.2).

These results fully confirm the capability of EDMAR to discover
accurate rules (precision = 1 on all samples of all ontologies consid-
ered) and, which is even more relevant, to come up with rules that
induce previously unknown facts (induction rate > 0), with a very
large absolute number of predictions by the standards of alternative
state-of-the art approaches.

We also compared the performance of EDMAR to state-of-the-art
methods which are closest to it in purpose, namely the evolutionary

http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
http://www.biopax.org/release/biopax-level2.owl
http://www.semanticbible.com/ntn/ntn-view.html

GECCO ’17, July 15-19, 2017, Berlin, Germany M. Duc Tran, C. d’Amato, B. Thanh Nguyen, A.G.B. Tettamanzi

Table 3: Comparison of the number of discovered rules.

Ontology Samp.
The total number of rules discovered
EDMAR [5] RARD AMIE

Financial

20%
27 94 177 2± 3 ± 34

30%
26 86 181 2± 3 ± 32

40%
24 78 180 2± 4 ± 50

Biopax

20%
132 144 298 8± 10 ± 47

30%
118 188 283 8± 12 ± 26

40%
137 159 272 0± 12 ± 38

NTNMerged

20%
1,834 1,046

243 1,129± 782 ± 593

30%
1,235 946

225 1,022± 495 ± 218

40%
1,810 897

239 1,063± 733 ± 473

method proposed by [5] and the two level-wise generate-and-test
algorithms which are the multi-relational association rule discovery
(RARD) method by d’Amato et al. [4] and AMIE [9]. Table 3
reports the average number of rules discovered by each system given
each KB sample. We can observe a clear tendency for EDMAR to
perform better, as compared to its competitors, the more the ontology
to which it is applied is complex.

Additional comparative results are reported in Table 4. Here,
given the top m rules, with m equal to 10 or equal to the number
of rules discovered by AMIE, when fewer than 10 rules were dis-
covered, the number of correct predictions generated by the top m
rules discovered by each system is compared. The results reported in
Table 4 corroborate the claim that EDMAR can substantially outper-
form the existing systems, not only in terms of rules discovered, but
also (and more importantly) in terms of their predictive power. A star
in the EDMAR column means that Welch’s t-test on the comparison
of EDMAR vs. [5] rejects the null hypothesis with a confidence level
of at least 95%.

6 CONCLUSIONS
We presented an evolutionary method for discovering multi-relational
ARs, coded in SWRL, from ontological KBs, to be used primarily for
enriching assertional knowledge. EDMAR has been experimentally
evaluated through its application to publicly available ontologies
and compared to the three most relevant state-of-the-art algorithms
having the same goal.

Future work will focus on two main aspects: (i) scalability, by
considering experimenting our method on datasets from the Linked
Data Cloud; (ii) upgrading the algorithm for running on parallel sys-
tems such as the MapReduce programming model and the Hadoop
framework, in order to be able to perform big data analytics.

REFERENCES
[1] R. Agrawal, T. Imielinski, and A. N. Swami. 1993. Mining Association Rules be-

tween Sets of Items in Large Databases. In Proc. of the Int. Conf. on Management

Table 4: Comparison of the number of extracted predictions.

Ontology Samp.
Top

m
Predictions

EDMAR [5] RARD AMIE

Financial

20% 2
42,575 * 14,442

29 208± 38,239 ± 17,280

30% 2
36,799 29,890

57 197± 41,667 ± 29,576

40% 2
30,263 18,958

85 184± 33,825 ± 21,954

Biopax

20% 8
41,024 * 2,045

25 2± 7,567 ± 740

30% 8
39,283 * 1,653

34 2± 6,485 ± 779

40% 8
43,698 * 1,704

50 0± 6,524 ± 1,437

NTNMerged

20% 10
933,248 * 98,470

620 420± 110,786 ± 25,261

30% 10
724,020 * 11,940

623 281± 162,851 ± 41,960

40% 10
828,317 * 103,100

625 332± 250,804 ± 38,903

of Data. ACM Press, 207–216.
[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider

(Eds.). 2003. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge Univ. Press.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. 2001. The Semantic Web. Scientific
American (2001).

[4] C. d’Amato, S. Staab, A. Tettamanzi, D. M. Tran, and F. Gandon. 2016. Ontology
Enrichment by Discovering Multi-Relational Association Rules from Ontological
Knowledge Bases. In Proc. of SAC 2016. ACM.

[5] C. d’Amato, A. Tettamanzi, and D. M. Tran. 2016. Evolutionary Discovery of
Multi-relational Association Rules from Ontological Knowledge Bases. In EKAW.
113–128.

[6] F. Divina. 2010. Genetic Relational Search for Inductive Concept Learning: A
Memetic Algorithm for ILP. LAP LAMBERT Academic Publishing.

[7] F. Divina and E. Marchiori. 2002. Evolutionary Concept Learning. In GECCO
2002, W. B. Langdon et al. (Ed.). Morgan Kaufmann, 343–350.

[8] N. Fanizzi, C. d’Amato, and F. Esposito. 2008. Learning with Kernels in Descrip-
tion Logics. In ILP 2008, F. Zelezný and N. Lavrac (Eds.). Springer, 210–225.

[9] L. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek. 2013. AMIE: Association
Rule Mining under Incomplete Evidence in Ontological Knowledge Bases. In
WWW ’13. ACM, 413–422.

[10] I. Horrocks and P. F. Patel-Schneider. 2004. A proposal for an OWL rules language.
In Proc. of the Int. Conf. on World Wide Web. ACM, 723–731.

[11] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
2004. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
(2004). http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

[12] J. Józefowska, A. Lawrynowicz, and T. Lukaszewski. 2010. The role of semantics
in mining frequent patterns from knowledge bases in description logics with rules.
Theory and Practice of Logic Programming 10, 3 (2010), 251–289.

[13] F. A. Lisi. 2011. AL-QuIn: An Onto-Relational Learning System for Semantic
Web Mining. Int. J. of Semantic Web and Information Systems. (2011).

[14] B. Motik, U. Sattler, and R. Studer. 2005. Query Answering for OWL-DL with
rules. Web Semantics 3, 1 (2005), 41–60.

[15] S. Muggleton and A. Tamaddoni-Nezhad. 2008. QG/GA: a stochastic search for
Progol. Machine Learning 70, 2-3 (2008), 121–133.

[16] P. Reiser and P. Riddle. 2001. Scaling Up Inductive Logic Programming: An
Evolutionary Wrapper Approach. Applied Intelligence 15, 3 (2001), 181–197.

[17] E. Sirin, B. Parsia, B. Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. 2007.
Pellet: A practical OWL-DL reasoner. Web Semantics 5, 2 (June 2007), 51–53.

[18] A. Tamaddoni-Nezhad and S. Muggleton. 2000. Searching the Subsumption
Lattice by a Genetic Algorithm. In ILP 2000, J. Cussens and A. Frisch (Eds.).
Springer, 243–252.

[19] A. Tamaddoni-Nezhad and S. Muggleton. 2002. A Genetic Algorithms Approach
to ILP. In ILP 2002, S. Matwin and C. Sammut (Eds.). Springer, 285–300.

[20] J. Völker and M. Niepert. 2011. Statistical Schema Induction. In ESWC’11 Proc.
(LNCS), Vol. 6643. Springer, 124–138.

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

	Abstract
	1 Introduction
	2 Basics
	2.1 Fixing the Language Bias
	2.2 Metrics for Rules Evaluation

	3 Evolutionary Discovery of Relational Association Rules
	3.1 Representation
	3.2 Initialization
	3.3 Selection
	3.4 Crossover
	3.5 Mutation
	3.6 Fitness
	3.7 Consistency Check

	4 Related Work
	5 Experiments and Results
	6 Conclusions
	References

