
HAL Id: hal-01567740
https://hal.science/hal-01567740v1

Submitted on 9 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of aircraft ground movements and runway
operations

Julien Guepet, Olivier Briant, Jean-Philippe Gayon, Rodrigo Acuna Agost

To cite this version:
Julien Guepet, Olivier Briant, Jean-Philippe Gayon, Rodrigo Acuna Agost. Integration of aircraft
ground movements and runway operations. Transportation Research Part E: Logistics and Trans-
portation Review, 2017, 104, pp.131-149. �10.1016/j.tre.2017.05.002�. �hal-01567740�

https://hal.science/hal-01567740v1
https://hal.archives-ouvertes.fr

Integration of aircraft ground movements and runway operations

J. Guépet1,1, O. Briant1, J.P. Gayon1,, R. Acuna-Agost1

aUniv. Grenoble Alpes, CNRS, G-SCOP, 38 000 Grenoble, France
bAmadeus S.A.S., 485 Route du Pin Montard, 06560 Sophia Antipolis, France

Abstract

The Ground Routing Problem focuses on finding the optimal routing of aircraft from parking stands to
runways. The Runway Sequencing Problem consists in ordering the sequence of takes-offs and landings
on runways. We study the integration of these two problems with the aim of simultaneously increasing
runway efficiency and reducing taxi times. We propose a heuristic sequential approach based on a novel
mathematical formulation. We test our methods using real data of a major European airport. Our
approach significantly reduces the total completion and taxi times within reasonable computation times,
making it viable to be used in daily operations.

Keywords: Ground routing, runway sequencing, Mixed integer programming

1. Introduction

This paper focuses on the management of the departure process, from push back to take-off, through
an integration of the Ground Routing Problem (GRP) and the Runway Sequencing Problem (RSP).
In this first section, we present briefly the two problems and their interactions. Then we present the
research questions addressed in this work and the outline of the rest of the paper.

RSP. The RSP consists in sequencing runway operations while ensuring safety, i.e. deciding in which
order (and when) each aircraft takes off, lands on or crosses a runway, while respecting minimum separa-
tion requirements. Depending on the airport layout, runway assignment can be also part of the problem.
This problem is issued by Air Traffic Controllers (ATC) on an operational window of typically 10 to 40
minutes. Longer time windows can hardly be considered because of perturbations occurring the day of
operations. Hence a sliding time window scheme is used in the literature and in practice. Consequently,
the problem has to be solved very often and computation times are critical.

Minimum separation requirement is the main limiting factor of runway capacity. Because of wake
vortex, an air mass is perturbed when it is crossed by an aircraft and a minimum separation time must be
respected between two aircraft to ensure the safety of the second one. The heavier the leading aircraft,
the bigger its wake vortex is and, thus, the separation time is longer. The lighter the trailing aircraft,
the more it is subject to turbulence and the longer is the separation time. Aircraft are classified in wake
vortex categories by the International Civil Aviation Organization (ICAO) and the minimum separation
between two aircraft depends on their respective classes (see e.g. Table 1). Additional separations may
be necessary to prevent conflicts in airspace segment of routes, also known as Standard Instrument
Departure routes (SID). SID separation constraints depend upon the departure routes and speeds of the
aircraft.

∗Corresponding author : jean-philippe.gayon@grenoble-inp.fr, phone : +33 4 76 57 47 46, fax : +33 4 76 57 46 95

Preprint submitted to Elsevier April 9, 2024

Trailing aircraft
Time [s] H M L

Leading
aircraft

H 90 120 120
M 60 60 90
L 60 60 60

Table 1: Minimum take-off separation times (H = heavy, M = medium and L = light)

When an air sector of an aircraft flight plan is congested or when the destination airport is facing
adverse conditions, the Network Manager Operations Center (NMOC) assigns a Calculated Take-Off
Time (CTOT). It generally results in delaying the take-off to prevent the situation to become worse in
the perturbed sector. The take-off is allowed within the interval [CTOT−5 min;CTOT+10 min], called
a NMOC slot. Otherwise, the aircraft has to wait for another slot from the NMOC. For a more detailed
description of constraints that have to be taken into account in take-off scheduling, we refer the reader
to Atkin et al. (2009b).

The quality of a runway sequence can be evaluated with different criteria. The main criterion is
the efficiency and the good use of the runway capacity. In the literature, it is often modeled by the
runway throughput (makespan), the total (weighted) completion time or the total (weighted) deviation
to targeted take-off or landing times. Equity is another important criterion, it is often measured by the
deviation to the First Come First Serve order (FCFS, the fairest order) or the maximum delay.

GRP. The GRP consists in scheduling the movements of aircraft between airport facilities without
conflicts and in the most effective way. An arriving aircraft has to be routed from its landing runway
to its stand or hangar. A departing aircraft has to be routed from its current parking position to its
departure runway. The ground movements occur on a network of roads called taxiways which link airport
facilities. In practice this problem is issued by Air Traffic Controllers (ATCs) on an operational window
of typically 10 to 40 minutes.

The main constraints of the problem are related to the safety of aircraft: as in airspace, aircraft have
to be separated from each other to avoid collisions. Several other routing constraints must also be taken
into account such as taxi speeds and acceleration for passengers comfort, turning angle and aircraft /
taxiway segment compatibility due to weight or width. There are also many different conflicts in the
stand area. Among them, the push back conflicts and the head-on conflicts between departures and
arrivals are the most common ones (see Figure 1).

(a) Push back conflicts (b) Head-on conflict

Figure 1: Common conflicts in the stand area

The quality of a routing schedule can be evaluated with different performance indicators. Among
them the average taxi time and the average completion time are frequently used. The taxi time measures

2

the time an aircraft spends on the ground with engines on, between push back (i.e. leaving the parking
position) and take-off for a departure and between landing and park-in for an arrival. It includes any
waiting time (e.g. runway queuing time) and not just the time spent moving, as engines cannot be
turned off once started up. The completion time is the take-off time for departing flights and the park-in
time for arriving flights.

For departures, the completion time and the taxi-time depend on the take-off sequence. Hence, the
GRP and the RSP are intimately linked.

Towards a better integration. Two different managements of the departure process can be observed
nowadays. In the first one, aircraft are pushed back as soon as possible and taxi to the runway where they
can potentially be reordered to increase the runway capacity. The second practice proceeds sequentially
in three steps. First, an earliest time at the runway is estimated for every aircraft through an estimation
of taxi times. Then, the take-off sequence is optimized. Finally, ground movements (or only push
back) are scheduled to match the predicted take-off sequence. This approach is recent and promoted by
the Airport Collaborative Decision Making (A-CDM) project (Eurocontrol, 2009). It targets a better
synchronization of ground movements and runway operations. It particularly allows to reduce runway
queuing times through a better scheduling of push backs: aircraft can be held at their stand with engines
off instead of waiting at the runway with engines on.

The aim of a better integration of the GRP and the RSP is to further improve this synchronization.
The motivations are twofold: increasing runway efficiency and reducing taxi times. A-CDM approach
relies on estimations of taxi times, which are particularly difficult to forecast. Nevertheless, the accuracy
of these estimations is crucial. If taxi times are underestimated, aircraft are held too long, consequently
creating idle time between take-offs and wasting runway capacity. On the contrary, if taxi times are
overestimated, aircraft are not held long enough. Thus, an excessive queue will appear at the departure
runway and fuel will be wasted. Furthermore, inaccurate taxi times can make the aircraft reach the
runway in a different order from the desired one. Aircraft can be reordered at the runway but Atkin
et al. (2009a) show that this reordering is constrained by the holding point layout and that not all
sequences are feasible. A better synchronization leads to less reordering and potentially enables more
efficient sequences.

Research questions. We mainly address two research questions in this paper. Is a better integration of
runway sequencing and ground routing valuable ? How can the integrated problem be solved efficiently ?
Indeed, computation times are critical since the GRP and the RSP should be solved on a rolling horizon
time window of 10 to 40 minutes, with an update ideally at each event (up to twice per minute in peak
hours).

The rest of the paper is organized as follows. A literature review is presented in Section 2 with
a summary of our contributions. The problem is described in Section 3 with a formulation from the
literature. A sequential approach is proposed in Section 4. Its principle is the same that the sequential
approach of A-CDM, but a new runway sequencing approach is presented. The different methods are
tested on Copenhagen Airport (CPH) layout in Section 7. We conclude and highlight some directions
for future works in Section 8.

2. Literature review

For detailed literature reviews on the GRP and the RSP, we refer the reader respectively to Atkin
et al. (2010); Guépet et al. (2016) and Bennell et al. (2011); Lieder et al. (2015). The RSP is generally

3

recognized as a more critical problem than the GRP. We focus the rest of our literature review on papers
that consider a partial or full integration of both problems.

Full integration. Deau et al. (2008, 2009) consider a sequential approach similar to the A-CDM one.
A take-off sequencing problem is solved, which provides Target Take-Off Times (TTOTs) to a routing
model. The take-off sequencing algorithm is a Branch & Bound algorithm (B&B) minimizing departure
delay and deviation from NMOC slots.

Keith and Richards (2008) propose a Mixed Integer linear Program (MIP) directly integrating the
RSP and the GRP in a single model. A weighted combination of the makespan, the average taxi time
and the average taxi distance is minimized. The model is slightly adapted by Clare and Richards (2011)
to improve computational efficiency. Nevertheless, computation times are too long: their model needs
more than a minute to handle instances with eight aircraft on a small network with a single runway
holding point.

Lee and Balakrishnan (2012) propose a simplified version of the model of Clare and Richards (2011)
by restricting the routing possibility to a fix path. Computation times are still too long and they
propose a sequential approach. The take-off sequencing is performed with the algorithm of Balakrishnan
and Chandran (2010). The so-obtained TTOTs are provided to a routing model minimizing a linear
combination of deviation to TTOTs and the total taxi time. The take-off sequence can still be changed
in their routing model and several minutes are often necessary to solve a time window.

Bosson et al. (2014a) propose a three phase decomposition for sequencing take-offs and landings and
scheduling airspace movements under uncertainty. Bosson et al. (2014b) additionally involve ground
movements. They consider stochastic release times and due dates (estimated time of arrival and depar-
ture) through sampling (Sample Average Approximation) embedded in a 3-phases decomposition. The
approach is computationally demanding since an important number of scenarios has to be considered.
An instance of less than 15 aircraft is solved in 4 minutes. Besides, routing in the stand area is not
considered.

Partial integration. Malik et al. (2010) also assume constant taxi times. They compute a take-off
sequence with the reference MIP of the RSP (see Beasley et al. (2000)). Then, they deduce spot release
times by subtracting the constant taxi times, which reduces runway queuing time. Jung et al. (2010,
2011) use the same approach but replace the runway optimization by an adaptation of the Dynamic
Program (DP) of Rathinam et al. (2009).

Atkin et al. (2012) use a similar sequential approach but do not assume constant taxi times and
consider stand contention during the design of the take-off sequence: sequences not allowing feasible
push back times are pruned. Push back times are then reoptimized in a second phase. The take-off
sequence is optimized with a complex heuristic which core algorithm is a B&B embedded in a rolling
horizon scheme.

Atkin et al. (2004, 2007, 2009a) consider routing constraints in the holding point while optimizing the
take-off sequence on a single runway. They propose a tabu search algorithm in which feasibility in the
holding point is heuristically checked when a sequence is evaluated. Infeasible solutions are discarded.

Rathinam et al. (2009) also consider holding point constraints in a take-off sequencing problem on
a single runway. Aircraft are pre-assigned to runway entry queues and a first come first serve order has
to be respected inside each queue. Using this structure, the problem is efficiently solved by a Dynamic
Program (DP) minimizing the total aircraft delay.

Kim et al. (2010) extend the MIP of the RSP (see Beasley et al. (2000)). Their model aims at
minimizing total emissions in the Terminal Maneuvering Area (TMA, the airspace around the airport)
through runway assignment and scheduling of take-off and landing. Constant taxi times (depending

4

on gate / runway) are assumed, benefit in fuel consumption on the ground would thus be lessened if a
routing optimization approach was considered (e.g. through stand holding).

Summary of our contributions. In this paper, we consider the integration of the RSP and the GRP on a
single departure runway, with the objective of minimizing the total completion and taxi times. Landing
times are assumed to be fixed inputs but our model can be easily adapted to include other runway
operations.

The literature review reveals that there does not exist an efficient approach to solve this problem.
The existing methods are not computationally efficient (Clare and Richards (2011), Lee and Balakr-
ishnan (2012), Bosson et al. (2014b)). Sequential approaches have been proposed but the integration
is rudimentary since ground routing is not taken into account when optimizing the take-off sequence
(Deau et al. (2008, 2009)). On the contrary, Atkin et al. (2012) consider interactions through stand
contention but do not use it to minimize fuel consumption during the runway sequencing, potentially
missing more fuel efficient solutions. Moreover, the solutions of Atkin et al. (2012) are not compared to
other approaches.

Our first contribution is to propose an efficient heuristic sequential algorithm based on an innovative
formulation of the RSP including stand area conflicts. Several directions are also explored to improve
the solving. A second contribution is to show that a better integration of RSP and GRP is highly
valuable and significantly reduces the total completion and taxi times. A last by-product contribution
is to improve the RSP discrete-time formulation of Beasley et al. (2000) through a reformulation of
separation constraints. Our results are illustrated with numerical experiments based on Copenhagen
Airport (CPH) layout.

3. The integrated runway sequencing and ground routing problem

The integrated runway sequencing and ground routing problem (I-RSP/GRP) consists in simultane-
ously scheduling the ground movements and the runway sequence. As many random events happen the
day of operations and ready times are not accurately known long in advance, the I-RSP/GRP problem is
issued on a relatively short time horizon of typically 10 to 40 minutes. This optimization horizon slides
over time and a problem has to be solved each time an aircraft enters the system, i.e. each time a new
landing is forecasted and each time a new departure is ready to push back.

In this section, we focus on solving the I-RSP/GRP on a time window for which ready times and
landing times are accurately known. Finding the optimal solution for each time window does not
guarantee optimality over the whole time horizon, as it will be explained in Section 7 when comparing
different heuristic approaches.

Problem description. A departure (resp. arrival) has to be routed from its stand (resp. landing runway)
to its take-off runway (resp. stand). Take-offs must also be scheduled. Landing times are inputs of the
problem, as well as the stand allocation and the runway assignment. The objective is to minimize the
completion times and taxi times, while respecting operational requirements of the GRP and the RSP.
For a departure, the taxi time gathers all the time spent with engines on, from push back to take-off,
whereas the completion time gathers all the time spent in the system, from the ready time to take-off.
For an arrival, the taxi time and the completion time are identical and gather all the time between the
landing and the park-in.

Taxiway network and flight characteristics.

• The taxiway network is modeled as a graph G = (V,E) with V the set of nodes and E the set of
edges.

5

• The set of arriving and departing flights is F = Fdep ∪ Farr.

• A flight i must be routed from its origin oi to its destination di through a pre-determined path
Pi = (oi, u2, . . . , u|Pi|−1, di). For departure i, oi is its stands and di is its take-off runway. For an
arrival, oi is its landing runway and di is its stand.

• Vi ⊂ V and Ei ⊂ E are the set of nodes and edges that flight i uses (defined by path Pi).

• A flight i can spend a minimum (maximum) time Tmin
iuv (Tmax

iuv) on edges uv ∈ Ei, which can be
directly computed from the minimum and maximum average speeds allowed on each edge of its
path.

• Two flights i and j must have a minimum separation time Siju at each node u ∈ Vi ∩ Vj (if i uses
node u first) to prevent collision. Note that if flights i and j use the same runway, the separation
time includes wake vortex separation times at the runway.

• G is the set of stand blockages, i.e. the set of all flights pairs (i, j) ∈ Fdep × Farr assigned to the
same stand, and whose slots at the stand overlap.

• A flight i is ready to leave its origin at time Toi and must reach its destination before Ldi , which
is necessary to prevent excessively unfair completion times.

In Guépet et al. (2016), we have shown that alternate path cannot significantly improve the perfor-
mance indicators in CPH airport, while computation times increase exponentially with the number of
possible paths. Hence, assuming a pre-determined path for each aircraft seems a reasonnable assumption
for the airport under consideration.

We will also use the following notations to denote the unimpeded taxi-time
∑

∀uv∈Ei
Tmin
iuv for flight

i, i.e. the minimum time necessary to taxi from stand to runway or vice-versa.

• EXOTi : unimpeded taxi-out time for a departure i ∈ Fdep.

• EXITi : unimpeded taxi-out time for an arrival i ∈ Farr.

Decision variables and objective function.

• tiu ∈ Tiu = [eiu, liu] the time when flight i reaches node u ∈ Vi. The bounds eiu and liu are not
inputs of our model but can be deduced from the taxiway network and flight characteristics (see
Appendix A for computation details). They can also be useful to include CTOT constraints.

• ziju = 1 if flight i arrives before flight j at node u ∈ Vi ∩ Vj , 0 otherwise.

The objective function is the weighted sum of taxi times and completion times with ctaxii and ccti the
taxi and completion weights for flight i. In this paper, we chose to define ctaxii = 1 and ccti = 2 for all
flights i. A more detailed discussion of the impact of these coefficients on industry indicators can be
found in Guépet et al. (2016).

6

MIP formulation. The I-RSP/GRP can be formulated as follows.

min
∑

i∈F ctaxii (tidi − tioi) +
∑

i∈F ccti (tidi − Toi) (1)
tioi ⩽ tjdj ∀(i, j) ∈ G (2)

(MIP) Tmin
iuv ⩽ tiv − tiu ⩽ Tmax

iuv ∀i ∈ F ,∀uv ∈ Ei (3)
ziju + zjiu = 1 ∀i, j ∈ F ,∀u ∈ Vi ∩ Vj (4)
ziju = zijv ∀i, j ∈ F ,∀uv ∈ Ei ∩ Ej (5)

tju ⩾ tiu + Siju −Miju(1− ziju) ∀i, j ∈ F ,∀u ∈ Vi ∩ Vj (6)
tiu ∈ Tiu ∀i ∈ F ,∀u ∈ Vi (7)

ziju ∈ {0, 1} ∀i ̸= j ∈ F ,∀u ∈ Vi ∩ Vj (8)

Constraints (2) prevent stand blockages. Constraints (3) ensure the respect of speed limitations. Con-
straints (4) ensure that either i uses node u before j or the opposite. It ensures the definition of variables
ziju. Constraints (5) prevent overtake and head-on conflicts on a single edge, which are illustrated in
figures 2(b) and 2(c). Constraints (6) ensure the separation of aircraft at every node of the taxiway
network as illustrated in Figure 2(a), where Miju can be defined as liu + Siju − eju.

(a) Separation constraints (b) Head-on constraints

(c) Overtaking constraints

Figure 2: Safety constraints

Note that for two flights i and j, if liu ⩽ eju at node u ∈ Vi ∩ Vj , then ziju has to be equal to 1.
These constraints can be added to strengthen the model and one of the two separation constraints (6)
can be removed. Furthermore, if liu+Siju ⩽ eju, then the separation is naturally forced. The associated
variables ziju, zjiu and constraints involving them can be removed. Constraints (7) ensure the respect
of the slot at each node. Note that it forces arrival i to start taxiing as soon as the landing is completed
since eioi = lioi = Toi .

Fairness. We do not consider fairness issues in this paper. A simple way to include a fairness criterion
is to include in the MIP a third part in the objective function in order to minimize the maximum
completion time (including or not the taxi time).

7

Our MIP is a generalization of the one presented for the GRP in Guépet et al. (2016) (by relaxing
the runway sequence) but also of the one presented for the RSP in Beasley et al. (2000). This last MIP
already offers poor performances because of a weak linear relaxation due to the big M constraints (6).
Miju cannot be further reduced without loss of generality and we did not succeed in strengthening this
model. Consequently, we propose a heuristic approach in the next section.

4. A heuristic sequential approach

Following Lee and Balakrishnan (2012), we consider a sequential approach that proceeds in three
steps.

Step 1. Estimate the earliest runway times for departure flights and also the earliest stand times
for arrival flights.

Step 2. Sequence take-offs using the earliest times provided by Step 1.

Step 3. Route aircraft in the taxiway network based on the take-off sequence obtained in Step 2.

This sequential scheme is convenient for airports since it decomposes the whole problem in three
modules that can be changed independently from each other. Existing systems can be reused. For
instance, most of big airports already have a runway optimization advisory system. This scheme is
also compatible with the division of roles between the ground controller (ATC) managing the taxiway
network and the runway controller ATC managing the runway. Finally, this sequential scheme is in line
the A-CDM project.

We now provide some additional details for each step.

Step 1. As in Lee and Balakrishnan (2012), we estimate the earliest runway time for a departure flight
by adding the unimpeded taxi-out time to the scheduled pushback time. In addition, we estimate the
earliest stand time for an arrival flight by adding the unimpeded taxi-in time to the estimated landing
time.

Step 2. We consider three different approaches using more or less information:

(a) Sequence take-offs according to a First Come First Served (FCFS) policy, i.e. by increasing order
of earliest runway times (provided by Step 1).

(b) Sequence take-offs with the objective to minimize completion times, while respecting runway sep-
aration constraints. The problem is formulated with an IP formulation, denoted by (IPr), of the
RSP adapted from Beasley et al. (2000). See Section 5 for more details.

(c) Sequence take-offs with a new IP formulation, denoted by (IPrs), of the RSP which takes into
account runway separation constraints and stand conflicts. The objective function includes com-
pletion times and taxi times. See Section 6 for more details.

Step 3. The aircraft routing in the taxiway network is performed with the single path MIP formulation
of the GRP presented in Guépet et al. (2016). This formulation is similar to (1)-(8) except that the
take-off sequence computed during Step 2 is forced with additional constraints (ziju = 1 at runway u if
flight i takes off before j). It provides an optimized detailed schedule of ground movements, i.e. a time
at each node for every aircraft, such that it respects the take-off sequence decided during Step 2. The

8

real interest of Step 3 is that it provides an accurate estimation of push back and take-off times, which
can be different from the take-off times computed in Step 2 when building the sequence.

We now briefly discuss the computational complexity of each step. Step 2(b) can be solved very
quickly for a large number of aircraft, either with an IP formulation (see next section) or by dynamic
programming (see e.g. Balakrishnan and Chandran (2010)). Step 2(c) will be discussed in detail in
sections 6 and 7. Step 3 can be solved in a few seconds for the instances under consideration (Guépet
et al., 2016).

5. A stronger formulation of the RSP (step 2.b)

In this section, we focus on Step 2.b of the sequential approach. We consider the problem of se-
quencing departures on a single runway. with the objective to minimize the total weighted completion
time, while respecting runway separation times. It was originally formulated by Beasley et al. (2000) in
continuous and discrete time. In what follows, we remind these formulations and also present a refor-
mulation of separation constraints using clique constraints introduced by Fahle et al. (2003). Then we
present a stronger formulation of separation constraints based on wake vortex categories.

As we consider only departure flights at the runway node, we introduce some simpler notations :

• Sr
ij : minimum runway separation time between flights i and j (equal to Sijdi when di is the runway

node)

• T r
i : set of possible take-off times for a departure i (equal to Tidi when di is the runway node)

5.1. Formulations from the literature
Continuous time. The problem of minimizing completion times while respecting runway separation times
can be formulated with the following MIP adapted from Beasley et al. (2000).

min
∑

i∈Fdep

ccti (ti − Toi) (9)

(MIP r) s.t. ti ≥ tj + Sr
ij −M(1− zij) ∀i, j ∈ Fdep (10)

zij + zji = 1 ∀i, j ∈ Fdep (11)
ti ∈ T r

i ∀i ∈ Fdep (12)
zij ∈ {0, 1} ∀i, j ∈ Fdep. (13)

One may remark that separation constraints (10) are modeled with so-called big M constraints, which
lead to a weak linear relaxation and poor computational performances.

Discrete time. A time discretization avoids these big M constraints. We discretize the take-off slots T r
i

with a step of 30 seconds. In practice, earliest times at the runway are estimated with a precision of 1
minute and separation times of Table 1 with a precision of 30 seconds. Hence, a discretization step of 30
seconds ensures that an optimal solution of the discrete formulation is optimal for the continuous time
formulation.

Let xrit = 1 if flight i ∈ Fdep takes off at time t ∈ T r
i and 0 otherwise. The discrete time formulation,

adapted from Beasley et al. (2000), follows:

9

min
∑

i∈Fdep

∑
t∈T r

i

c̃ritx
r
it (14)

s.t.
∑
t∈T r

i

xrit = 1 ∀i ∈ Fdep (15)

xrit + xrjt′ ⩽ 1 ∀i, j ∈ Fdep, ∀t ∈ T r
i , ∀t′ ∈ T r

j , t ⩽ t′ < t+ Sr
ij (16)

xrit ∈ {0, 1} ∀i ∈ Fdep, ∀t ∈ T r
i (17)

where c̃rit = ccti (t − Toi) models the total completion time in objective function (14). Constraints (15)
ensure that flights take-off once and only once in their slot. Constraints (16) ensure minimum separation
times as illustrated below.

Fahle et al. (2003) have reformulated the separation constraints (16) with clique constraints as
follows :

xrit +
∑
t′∈T r

j

t−Sr
ji<t′<t+Sr

ij

xrjt′ ⩽ 1 ∀i, j ∈ Fdep, ∀t ∈ T r
i

(18)

5.2. Reformulation of separation constraints using wake vortex categories
We propose a stronger formulation based on wake vortex categories. Our reformulation is presented

for the minimum take-off separation times of Table 1, but a similar approach could be used for other
separation standards or for SID separation constraints. We respectively denote H, M, L the set of
flights operated by heavy, medium and light aircraft.

Clique based on the minimum separation time. Two aircraft must be separated by at least 60 seconds.
Consequently, the following inequalities are valid for all couples of aircraft and cover the minimum
separation times for couples M/H, M/M, L/H, L/M, L/L.∑

i∈Fdep

∑
t∈T r

i
t0⩽t<t0+60

xrit ⩽ 1 ∀t0 ∈ ∪
i∈Fdep

T r
i (19)

Clique based on the medium aircraft category. The minimum separation times for M/M, L/L, and M/L
are respectively 60, 60 and 90 seconds. Consequently, the following inequalities are valid and, with
inequalities (19), they additionally cover couples M/L.

∑
i∈M

∑
t∈T r

i
t0⩽t<t0+60

xrit +
∑
i∈L

∑
t∈T r

i
t0+30⩽t<t0+90

xrit ⩽ 1 ∀t0 ∈ ∪
i∈Fdep

T r
i (20)

10

Clique based on the heavy aircraft category. The minimum separation for H/H, H/M and H/L are
respectively 90, 120 and 120 seconds. Consequently, the following inequalities are valid and, with
inequalities (19), they cover minimum separation for couples H/H, H/M, H/L.

∑
i∈H

∑
t∈T r

i
t0⩽t<t0+90

xrit +
∑

i∈M∪L

∑
t∈T r

i
t0+60⩽t<t0+120

xrit ⩽ 1 ∀t0 ∈ ∪
i∈Fdep

T r
i

(21)

In the end, inequalities (19)-(21) form a reformulation of separation constraints (16). In the rest of
the paper, (IPr) will denote the IP including these reformulations.

(IP r) min
∑

i∈Fdep

∑
t∈T r

i

c̃ritx
r
it

s.t. (15), (19)− (21), (17)

Several other inequalities could be derived from Table 1, but only those presented appeared to be
significantly effective.

5.3. Comparison of formulations
In his PhD thesis, Guepet (2015) provides a detailed numerical study comparing the previous for-

mulations. Based on randomly generated instances representing different flight mixes in peak hours, he
shows that discrete time formulations outperforms the continuous time formulation. Surprisingly, the
reformulation of Fahle et al. (2003) appears to be less efficient than the discrete time model of Beasley
et al. (2000), probably because of the presolve of Cplex solver. On the contrary, the reformulation based
on wake vortex categories is shown to be the most efficient technique: computation times are significantly
reduced and are short enough for a direct industrial application.

Note that very efficient dynamic programming approaches can be used to solve the RSP (see e.g.
Balakrishnan and Chandran (2010)). However these approaches cannot be generalized to integrate stand
area conflicts, which is the purpose of the next section.

6. Integrating stand area conflicts (step 2.c)

In this section, we extend (IPr) to integrate stand area conflicts and taxi time indicator. At Copen-
hagen airport, Guépet et al. (2016) have shown that the main constraints of the problem are the conflicts
in the stand area and the separation times at the runway. On the other hand, conflicts between stands
and runways can be neglected. Based on these observations, we assume especially in what follows that:

• Aircraft can be routed at maximum speed between runways and stands, within time EXOTi

(EXITi) for a departure (arrival) i.

• To prevent conflicts between two flights i and j in the stand area (see Figure 1), we define aij ⩽
bij ∈ R such that if i pushes back or parks in at time t, then j cannot push back or parks in during
the interval [t+ aij , t+ bij]. See Appendix B for details on how to compute aij and bij .

In what follows, we first present an extension of (IPr) that takes into account stand area conflicts
(denoted by (IPrs)). Then we present some techniques to speed up computation.

11

6.1. Discrete time formulation
We introduce (or remind) some notations:

• xrit = 1 if flight i takes-off or lands at time t and 0 otherwise.

• xsit = 1 if flight i pushes back or parks in at time t and 0 otherwise.

• T r
i : set of possible take off (landing) times for a departure (arrival) i. The landing set for an

arrival is a singleton as landing times are an input of our model.

• T s
i : set of possible push back (park-in) times for a departure (arrival) i.

We can now formulate an IP than takes into account stand area conflicts and taxi time.

min
∑
i∈F

∑
t∈T r

i

critx
r
it +

∑
i∈F

∑
t∈T s

i

csitx
s
it (22)

(IP rs) s.t. (15), (19)− (21)∑
t∈T r

i

xrit = 1 ∀i ∈ Farr (23)

∑
t∈T s

i

xsit = 1 ∀i ∈ F (24)

∑
t∈T r

i

txrit −
∑
t∈T s

i

txsit ⩾ EXOTi ∀i ∈ Fdep (25)

∑
t∈T s

i

txsit −
∑
t∈T r

i

txrit ⩾ EXITi ∀i ∈ Farr (26)

∑
t∈T s

i

txsit ⩽
∑
t∈T s

i

txsjt ∀(i, j) ∈ G (27)

xsit + xsjt′ ⩽ 1 ∀i, j ∈ F ,∀t ∈ T s
i ,∀t′ ∈ T s

i , t+ aij ⩽ t′ ⩽ t+ bij(28)
xrit ∈ {0, 1} ∀i ∈ F , ∀t ∈ T r

i (29)
xsit ∈ {0, 1} ∀i ∈ F , ∀t ∈ T s

i (30)

To model objective function (1) of (MIP), we set the objective coefficients to

crit = tccti + tctaxii ∀i ∈ Fdep, ∀t ∈ T r
i crit = −Toic

ct
i − tctaxii ∀i ∈ Farr, ∀t ∈ T r

i

csit = −Toic
ct
i − tctaxii ∀i ∈ Fdep, ∀t ∈ T s

i csit = tccti + tctaxii ∀i ∈ Farr, ∀t ∈ T s
i

Constraints (15), (23) and (24) ensure that one and only one runway time and stand time is assigned
to every flight. Constraints (25) and (26) ensure that minimum taxi-out and taxi-in times are respected.
Constraints (27) prevent stand blockages. Constraints (28) guarantee minimum stand separation times.
Other constraints ensure the definition of the variables.

According to our assumptions, T r
i is a singleton if i is an arrival. Hence variable xrit and related

constraints can be removed for arrivals. Nevertheless, it is possible to generalize our formulation to
optimize landings, by considering larger landing sets T r

i and by adding runway separation constraints
similar to (16) or (19)-(21).

12

6.2. Reformulation of taxi time and stand blockages constraints
We now propose reformulations of constraints involving time in the coefficients, i.e (25)-(27). These

reformulations will be shown to improve computation times in Section 7.
If departure i pushes back after t0 then it cannot take off before t0+EXOTi and reciprocally. Hence

taxi-out time constraints (25) can be reformulated as∑
t∈T s

i
t⩾t0

xsit +
∑
t∈T r

i
t<t0+EXOTi

xrit ⩽ 1 ∀i ∈ Fdep, ∀t0 ∈ T s
i .

(31)

The same reformulation works for taxi-in time constraints (26):∑
t∈T r

i
t⩾t0

xrit +
∑
t∈T s

i
t<t0+EXITi

xsit ⩽ 1 ∀i ∈ Farr,∀t0 ∈ T r
i . (32)

Similarly, if departure i pushes back after t0, then arrival j cannot park-in before t0 and reciprocally.
Thus stand blockages constraints (27) can be reformulated as:

∑
t∈T s

i
t⩾t0

xsit +
∑
t∈T s

j
t<t0

xsjt ⩽ 1 ∀(i, j) ∈ G,∀t0 ∈ T s
i ∩ T s

i . (33)

6.3. Filtering stand separation constraints
We now propose a heuristic filtering of stand separation constraints (28). Consider two medium

aircraft parked in the same area of the airport. Their taxi-out times (EXOTi) are similar. As the
runway separation time is 60 seconds (see Table 1), they are likely to be separated by 60 seconds in all
the taxiway network. Based on this remark, we remove the stand separation constraints that are shorter
than the runway separation constraints.

This filtering is heuristic as taxi-out times may vary because of conflicts with other aircraft. However,
it is a good heuristic as the main conflicts occur at the runway and at the stands, and not in the
intermediate taxiways. This will be shown in the numerical study.

6.4. Using the solution of previous time window
We can exploit the fact that the problem is addressed continuously through a sliding time window.

It seems reasonable that push backs scheduled in the near future during the previous time window will
still be scheduled in the near future in the current time window. This idea can be used to heuristically
reduce sets T r

i and T s
i as follows.

Let i ∈ Fdep a departure that was in the previous time window. Let t∗ioi and t∗idi the push back and
take-off times that were computed in Step 3. We reduce slots Tioi and Tidi as follows, which consequently
reduces sets T s

i and T r
i

eioi ← max{eioi , t∗ioi −∆i} eidi ← max{eidi , t
∗
idi
−∆i}

lioi ← min{lioi , t∗ioi +∆i} lidi ← min{lidi , t
∗
idi

+∆i}

13

where, assuming that current time window starts at time 0 (within a translation),

∆i =

1 minute if 0 ⩽ t∗ioi < 5 minutes
3 minutes if 5 ⩽ t∗ioi < 10 minutes
5 minutes if 10 ⩽ t∗ioi < 15 minutes
10 minutes if 15 ⩽ t∗ioi < 20 minutes
+∞ otherwise

The same idea is used for arrivals.
The reduction of slots is illustrated in Figure 3, consists in almost fixing the flights with the earliest

scheduled push back / park-in while giving more flexibility to further flights. Note that take-off time
windows are also reduced according to the proximity of the scheduled push back time. It allows to
reduce the number of variables and constraints but the quality of the solution can be deteriorated.

Figure 3: Using previous solution to reduce intervals [eiu, liu]

7. Numerical experiments

In this section, we compare the different approaches discussed previously on instances based on
Copenhagen airport (CPH) layout.

7.1. Sliding time window scheme
Real operations are simulated with a sliding time window scheme. The length of the time window is

set to 20 minutes. Each optimization over a single time window will be referred to as an iteration. An
iteration is performed each time a new aircraft enters the system, i.e. each time the ready time at origin
eioi of an aircraft enters the optimization time window. We repeat the process over a time horizon of
one hour.

We consider four sliding time window algorithms :

• MIP: For each iteration, solve (MIP)

• FCFS: For each iteration, run the sequential algorithm using FCFS policy in Step 2

• IPr: For each iteration, run the sequential algorithm using (IPr) in Step 2

• IPrs: For each iteration, run the sequential algorithm using (IPrs) in Step 2

Reformulation of runway separation constraints (19)-(21) will always be used for IPr and IPrs.
Other improvements of IPrs will be discussed in Section 7.4.

14

Solutions provided by the different algorithms are compared on the whole time horizon (one hour
long). Let Fall be the set of flights in the whole time horizon. If we denote by t∗ioi and t∗idi the origin
and destination times decided by an algorithm for flight i, then the cost of a solution is, consistently
with objective function (1), ∑

i∈Fall

ctaxii (t∗idi − t∗ioi) +
∑

i∈Fall

ccti (t
∗
idi
− Toi).

All the approaches are heuristic, even MIP which provides the optimal solution on a time window
but does not guarantee optimality on the whole time horizon. The gap reported in the next sections is
the one with the best known solution on the whole time horizon (not systematically MIP).

7.2. Instances and test environment
Copenhagen airport layout. Figure 4 presents the graph of CPH taxiway network in the 22 runway
configuration (the most frequent runway configuration), i.e. with take-offs on runway 22R (R=Right)
and landings on runway 22L (L=Left). An edge represents an elementary taxiway segment. A node
needs to be defined for each taxiway intersection. There is also a node for each stand. The graph is
composed of 93 nodes and 235 edges. The standard path between each stand and each runway was
provided by the airport, as well as the standard push back scheme and its duration, for each stand.
We assume a maximal speed of 15 m/s for the taxiways around the runway (in blue in Figure 4), of 5
m/s for the taxiways around the stands (in red in Figure 4) and of 10 m/s for the other taxiways. A
minimum (average) speed of 2 m/s is assumed on every edges. Note that a full stop of 4 minutes and
a move at 10 m/s during 1 minute would respect the speed limit constraint, with an average speed of
2m/s. The minimum separation time (Siju) between two aircraft is assumed to be 40 seconds for every
nodes (except the runways, see Table 1), which guarantees a minimum separation of 80 meters between
aircraft. There are 95 stands (denoted by letters in Figure 4). The set G is empty for instances involving
only departures. When including also departures, its cardinality remains small since only a few pairs of
conflicting departure/arrival flights are assigned to the same stand.

More details on the airport layout and characteristics can be found in Guépet et al. (2016).

Traffic. Instances of 1 hour are generated to represent intense and very intense departure peaks. More
precisely, we consider 8 data sets being combinations of the following parameters:

• Number of departures : 40 or 60

• Number of arrivals : 0 or 20

• Flight mix (Light/Medium/Heavy in %) = 5-90-5 or 10-70-20. The first flight mix is representative
of CPH traffic and some other European airports. The second flight mix is more representative of
large US airports (Lee and Balakrishnan, 2012).

For each of this data set, we randomly generate 10 instances according to the following protocol :

• Ready times are uniformly distributed with a precision of 1 minute, then slots at each node
[eiu, liu] are deduced with the equations presented in Appendix A. To ensure fairness, the maximum
completion time at each node is also limited to 30 minutes (liu ← min{liu, eiu + 30 min}).

• Stands are randomly allocated for departures first and such that two departures do not use the
same stand (which is rarely the case in the same hour). Then stands are randomly allocated to
arrivals such that, on each stand, there are at least 35 minutes between an arrival and a consecutive
departure to respect minimum turnaround times.

15

Arrivals
Departures

C10

E78

E77

E76

H107

H106

H104

H102 H103

H101
F9

F8F7F5F4F1

D12

D10

D8

D6

F97 F95 F93 F91

F90F92F94F98 F96

D4D3D2D1

C27

C35

C33

C29

C39

C37

C43
C45

C47

C49

C26

C28

C30

C32

C34

C40

B3

B5

B7

B9

B15

B17
B19

B16

B10

B8

B6

B4

B2A7

A9

A11

A12

A14

A8

A6

A4

A15
A16

A17

A21A22
A23A25A26A27A28

A30 A18A20
A19

A31

A33
A34

A32

H105

Runway 22R

Runway 22L

E73
E74

E75

E72
E71

E70

Figure 4: The taxiway network when runways are operated in 22 mode

Objective coefficients ccti and ctaxii are respectively set to 2 and 1 to emphasize efficiency against
taxi times, while not making taxi times negligible (see Guépet et al. (2016) for more details on the
relationship between indicators).

Computer configuration. All MIPs were solved with Cplex 12.4 through Java Concert API on a personal
computer (Intel Core i5-2400 3.10 Ghz, 4Go RAM) under Ubuntu 12.04 LTS. Default parameter tuning
was used with a time limit of 300 seconds for all instances.

16

7.3. Comparison of algorithms
Table 2 presents the average and maximum gaps to the best known solutions over all instances. We

remind that the best known solutions are not necessarily provided by MIP . When the time limit of
300 seconds is reached, IPrs sometimes provides better solutions than MIP. Moreover, because of
the sliding time window, an exact formulation does not guarantee to find the best solution over all the
one-hour instance.

Flight mix 5-90-5 Flight mix 10-70-20
FCFS IPr IPrs MIP FCFS IPr IPrs MIP

40 dep.
0 arr.

Avg 6.46 % 4.97 % 0.51 % 0 % 7.02 % 3.63 % 0.16 % 0 %
Max 12.9 % 9.31 % 0.90 % 0 % 13.9 % 9.37 % 0.63 % 0 %

40 dep.
20 arr.

Avg 6.38 % 5.19 % 0.60 % 0.06 % 6.71 % 3.20 % 0.92 % 0 %
Max 12.2 % 13.9 % 1.45 % 0.55 % 17.2 % 6.09 % 3.15 % 0 %

60 dep.
0 arr.

Avg 11.9 % 6.45 % 0.46 % 0.10 % 20.5 % 9.84 % 0.18 % 0.89 %
Max 18.3 % 11.8 % 1.17 % 0.91 % 29.2 % 21.1 % 1.11 % 2.17 %

60 dep.
20 arr.

Avg 14.7 % 8.63 % 0.68 % 0.23 % 19.2 % 9.54 % 1.11 % 0.97 %
Max 26.0 % 14.5 % 3.33 % 0.96 % 27.0 % 16.6 % 2.35 % 2.15 %

Max= maximum gap over all instances
Avg= average gap over all instances

Table 2: Gap to the best known solution

Table 3 presents the average and maximum computation times over all iterations. It also presents
the percentage of iterations that were solved before the time limit.

Flight mix 5-90-5 Flight mix 10-70-20
FCFS IPr IPrs MIP FCFS IPr IPrs MIP

40 dep.
0 arr.

Max <0.1s 0.2s 24s 300s <0.1s 1.0s 4.0s 300s
Avg <0.1s <0.1s 0.8s 6.8s <0.1s <0.1s 0.4s 20s

% solved 100 % 100 % 100 % 99.3 % 100 % 100 % 100 % 95.3 %

40 dep.
20 arr.

Max <0.1s 0.3s 46s 300s <0.1s 0.4s 8.5s 300s
Avg <0.1s <0.1s 1.7s 44s <0.1s <0.1s 0.9s 23s

% solved 100 % 100 % 100 % 87.5 % 100 % 100 % 100 % 96.0 %

60 dep.
0 arr.

Max <0.1s 1.8s 300s 300s <0.1s 5.5s 300s 300s
Avg <0.1s 0.1s 12s 262s <0.1s 0.8s 41s 267s

% solved 100 % 100 % 99.0 % 15.9 % 100 % 100 % 94.1 % 12.2 %

60 dep.
20 arr.

Max <0.1s 3.2s 107s 300s <0.1s 5.3s 300s 300s
Avg <0.1s 0.2s 8.6s 270s <0.1s 0.9s 80s 292s

% solved 100 % 100 % 100 % 11.3 % 100 % 100 % 91.8 % 3.6 %
Max= maximum computation time over all iterations
Avg= average computation time over all iterations
% solved= percentage of iterations solved before the time limit of 300 s

Table 3: Computation times

Two main results come out from these tables. Firstly, Table 2 shows that MIP and IPrs perform
significantly better than IPr and FCFS . We conclude that a better integration of ground routing and
runway sequencing is valuable. Nevertheless, Table 3 reveals that the computation times of MIP and
IPrs are long and do not match the industrial requirements for all instances. MIP particularly suffers
from long computation times: the time limit is reached very often on instances with 60 departures.

17

Secondly, IPrs provides good solutions and even finds better solutions than MIP for some instances
with 60 departures. It highlights that most of routing conflicts are successfully captured. Furthermore
IPrs offers much shorter computation times than MIP. Average computation times are short enough
for instances with 40 departures, but they are still too long for instances with 60 departures, particularly
for flight mix 10-70-20. In Section 7.4, we explore how our reformulations and filtering improve these
computation times.

Figure 5 additionally presents the results in terms of average completion time and taxi time. Average
completion times are significantly improved by MIP and IPrs: approximately 30 seconds are earned on
instances with 40 departures and 1 minute on instances with 60 departures. Improvements in average
taxi time are less important but still significant.

FCFS IPr IPrs MIP

40 dep.
0 arr.

40 dep.
20 arr.

60 dep.
0 arr.

60 dep.
20 arr.

9min

10min

10min

11min

12min

13min

14min

(a) Completion time for mix 5-90-5

40 dep.
0 arr.

40 dep.
20 arr.

60 dep.
0 arr.

60 dep.
20 arr.

7min

8min

9min

(b) Taxi time for mix 5-90-5

40 dep.
0 arr.

40 dep.
20 arr.

60 dep.
0 arr.

60 dep.
20 arr.

8min

9min

10min

11min

12min

13min

14min

15min

16min

17min

18min

(c) Completion time for mix 10-70-20

40 dep.
0 arr.

40 dep.
20 arr.

60 dep.
0 arr.

60 dep.
20 arr.

7min

8min

9min

10min

(d) Taxi time for mix 10-70-20

Figure 5: Average taxi time and completion time

In conclusion, significant benefits rise from a better integration of the GRP and the RSP. Nevertheless,
the proposed methods are not suitable for a direct application because of excessive computation times.
The next section shows how the improvements proposed for IPrs (see sections 6.2, 6.3 and 6.4) address
this problem.

18

7.4. Improving computation times of IPrs

In this section, we will study the effect of implementing the improvements of (IPrs) presented in
Section 6. These improvements will be referred to as follows.

• Taxi time & stand blockage (Section 6.2): Taxi time and stand blockages constraints (25-27) are
reformulated by constraints (31-33).

• Filter short (Section 6.3): Stand separation constraints are filtered.

• Using previous time window solution (Section 6.4): The solution of the previous time window can
be used to heuristically reduce the number of variables and constraints.

We will also study the following combinations of the above variations : Taxi time & stand blockage +
Filter short and Taxi time & stand blockage + Filter short + Previous time window.

Effect of reformulations and filtering. Figure 6 presents the effect on computation times of the reformu-
lations and filtering. The figures above the bars are the number of iterations for which the time limit
was reached.

IPrs Taxi time &
stand blockage

Filter short
Taxi time &
stand blockage
+ Filter short

40 dep.
0 arr.

40 dep.
20 arr.

40 dep.
0 arr.

40 dep.
20 arr.

0s

1s

2s

3s

A
v
e
ra

g
e
C
P
U

0s

10s

20s

30s

40s

50s

Flight mix 5-90-5 Flight mix 10-70-20

M
a
x
im

u
m

C
P
U

(a) Instances with 40 departures

60 dep.
0 arr.

60 dep.
20 arr.

60 dep.
0 arr.

60 dep.
20 arr.

0s

30s

60s

90s

A
v
e
ra

g
e
C
P
U

0s

150s

TL=
300s

Flight mix 5-90-5 Flight mix 10-70-20

2 11 5 4 5 23 3 16 1

M
a
x
im

u
m

C
P
U

(b) Instances with 60 departures

Figure 6: Effect of reformulations and filtering on computation times

For instances with 40 departures, using both techniques is the fastest approach for flight mix 5-
90-5, but their effect is more mitigated for flight mix 10-70-20. Nevertheless, it brings the maximum
computation times below 10 seconds and average computation times below 1 second.

However, this is not the case of instances with 60 departures and particularly for flight mix 10-70-
20. The time limit is reached for some iterations and the average computation times remain excessive,
though they are significantly reduced.

Each iteration admits several optimal solutions. Therefore using exact reformulations, such as (31)-
(33), does not guarantee to find the same solution. Moreover, our filtering of stand separation constraints
is heuristic and finding the same solution is not guaranteed too. Because of the sliding time window

19

approach, it can potentially lead to significant differences in the final solutions. We observed that
solutions are actually different, but within an average gaps of 0.2 % close. Finally, no approach appears
to be systematically better than the others.

In conclusion, these experiments highlight that using both our constraints reformulations and our
filtering is generally preferable and significantly reduces computation times. Unfortunately, it is not
sufficient for an industrial application. In the next paragraph, we try to tackle this problem by using
the solution of the previous time window, as explained in Section 6.4.

Using the previous time window. As explained in Section 6.4, the solution of the previous time window
can be used to heuristically reduce the number of variables and constraints. It is supposed to speed up
the solving, but it can also deteriorate the quality of the solution.

Table 4 show how computation times are reduced when implementing this principle. The gaps are
computed with respect to the best solutions known so far.

The computation times presented do not account for the first iteration since no previous solution is
available, thus they are not representative of the method. The gaps are computed with respect to the
best solution known so far. They are not counted for the other method as well.

Taxi time & stand blockage + Filter
short + Using previous time window so-
lution

Taxi time & stand blockage + Filter
short

Gap CPU Gap CPU
Max Avg Max Avg Max Avg Max Avg

Flight mix
5-90-5

40 dep. 0 arr. 0.86 % 0.44 % 1.1s 0.2s 1.05 % 0.52 % 5.1s 0.5s
40 dep. 20 arr. 1.66 % 0.74 % 1.7s 0.3s 1.52 % 0.62% 5.6s 0.9s
60 dep. 0 arr. 1.71 % 0.22 % 17s 0.8s 1.45 % 0.5% 100s 5.1s
60 dep. 20 arr. 4.12 % 1.38 % 11s 0.9s 2.81 % 0.71 % 68s 4.1s

Flight mix
10-70-20

40 dep. 0 arr. 0.46 % 0.11 % 2.1s 0.2s 0.46 % 0.19 % 4.1s 0.6s
40 dep. 20 arr. 1.94 % 0.87 % 1.1s 0.3s 2.18 % 0.8 % 4.3s 0.9s
60 dep. 0 arr. 0.56 % 0.14 % 20s 2.5s 1.11% 0.28 % 300s 32s
60 dep. 20 arr. 3.14 % 0.88 % 45s 3.0s 2.29 % 0.91 % 300s 29s

Table 4: Using the solution of previous iteration

Table 4 highlights that this process is very efficient. Firstly, almost all test sets are solved with an
average gap below 1 %. Note that the gap of one method is not systematically better than the other
method. It is again due to the sliding time window scheme. Secondly, the average computation times are
appropriate to an industrial application and the time limit is never reached. The maximum computation
time over the instances with 60 departures and 20 arrivals are still a bit long for flight mix 10-70-20, but
it remains reasonable. Note that a fine tuning of ∆i can allow to better control computation times, but
it may further deteriorate the quality of the solutions.

8. Conclusion

This paper has focused on the management of the departure process, from push back to take-off,
through an integration of the GRP and the RSP. We have shown that an integration of both problems
results in a better synchronization of ground movements and take-offs. We have proposed a heuristic
sequential algorithm based on an innovative IP formulation of the RSP that takes into account stand
area conflicts. In a numerical study based on Copenhagen Airport (CPH) layout, we have shown that

20

our approach provides high quality solutions, while offering significantly shorter computation times than
an exact approach from the literature which integrates both problems in a single MIP. In the end, our
approach fits the industrial requirements.

Numerical experiments were performed on a specific layout and one may wonder to what extent our
results could be generalized to other airports. Our approach relies on the fact that the stand area and
the runway are the main bottlenecks during departure peaks. It is the case for many airports (see e.g.
Atkin et al. (2012), Guépet et al. (2016)) but may not be not true for some other layouts. Another
perspective of research would be to include the optimization of landing times, which are considered as
an input in our numerical experiments. We have explained how to adapt the IP formulation of the
RSP to deal with arrivals, but computational complexity will certainly be increased. It would be also of
interest to model more finely stand separation constraints. The numerical study could also be refined
by including a fairness criterion, speed limits that depend on the aircraft type or additional take-off
constraints (e.g. SID separation times).

However, the methodology we followed to design our method could be applied to other airports:
(1) analyze the bottlenecks of the traffic through an analysis of ground movements (Guépet et al.,
2016), (2) propose a simplified model of integration focusing on these bottlenecks (current paper). It is
consequently more likely to be tractable than a global and direct integration.

Appendix A. Computing the bounds eiu and liu

A flight i is subject to an earliest time at origin Toi and a latest time at destination Ldi . Note that
flight i cannot reach node uk ∈ Pi = (oi, u2, . . . , uk, . . . , u|Pi|−1, di) before

Toi +

k−1∑
k′=1

Tmin
iuk′uk′+1

(A.1)

because of the speed restrictions. Also note that flight i must have left node uk ∈ Pi before

Ldi −
|Pi|−1∑
k′=k

Tmin
iuk′uk′+1

(A.2)

to meet latest time at destination Ldi . Also, arrival i has to free the runway as soon as the landing is
over, thus it necessarily leaves node uk ∈ Pi before

Toi +
k−1∑
k′=1

Tmax
iuk′uk′+1

(A.3)

Therefore, flight i is subject to slot restrictions [eiu, liu] at every node u of its path, where

eiu = (A.1) ∀i ∈ F ,∀u ∈ Vi and liu =

{
(A.2) ∀i ∈ Fdep, ∀u ∈ Vi

min{(A.2), (A.3)} ∀i ∈ Farr, ∀u ∈ Vi

For a departure i, note that eioi = Toi and lidi = Ldi . For an arrival i, note that eioi = lioi = Toi and
that lidi ⩽ Ldi .

21

Appendix B. Identifying the stand area conflicts

Conflicts in the stand area have been described in Section 1 (see Figure 1). Consider two flights i
and j, we will determine if they are in conflict in the stand area, i.e. compete for the same taxiway
segment(s) or node(s). In that case, we will determine a conflicting interval, i.e. two bounds aij and bij
such that if i pushes back / parks in at time t then j cannot push back / park in during the interval
[t+ aij , t+ bij]. The interval must be as large as possible in order to capture the whole conflict. It must
be remarked that aij and bij do not depend on time t since separation times Siju neither. Hence, we
assume that i pushes back / parks in at time 0 in what follows.

For each flight i, we will note V r
i and Er

i the node and edges sub-set of Vi and Ei in the sand area.
We thus have V r

i = {oi, u2, .., uki} if i is a departure, and V r
i = {uki , . . . , u|Pi|−1, di} if i is an arrival.

Algorithms 1 and 2 compute respectively aij and bij . They use four methods:

• buildSchedule(i, t) computes the shortest schedule in the stand area such that flight i pushes back
/ parks in at time t. More precisely, it returns the schedule (tu)u∈V r

i
defined as follows:

– if i is a departure, tioi = t and tiuk
= tiuk−1

+ Tmin
iuk−1uk

, ∀k = 2, . . . , ki

– if i is an arrival, tidi = t and tiuk
= tiuk+1

− Tmin
iukuk+1

, ∀k = |Pi| − 1, . . . , ki (reverse order)

Note that the duration of the shortest schedule does not depend on t since minimum travel times
Tmin
iuv neither. This duration is equal to

∑
uv∈Er

i

Tmin
iuv and is hereafter referred to as duration(i).

• isFeasible(schedulei, schedulej) indicates if schedulei and schedulej (outputs of the previous
buildSchedule method) are compatible in the stand area, i.e. respect minimum separation at each
node and overtake and head-on constraints on each edge of the stand area.

• lb(i, j) returns a lower bound of aij . For example, −(duration(i) + duration(j) +
∑

u∈V r
i ∩V r

j
Sjiu)

fits: it is clear that if j pushes back / parks at this time, it uses the stand area first and does not
interfere with i (pushing back / parking in at time 0). Note that any other lower bound can be
used.

• Similarly, ub(i, j) is an upper bound of bij , e.g. duration(i) + duration(j) +
∑

u∈V r
i ∩V r

j
Siju.

The principle of Algorithm 1 is to look for the earliest time of conflict aij iteratively from lb(i, j) to
ub(i, j). If upper bound ub(i, j) is reached, flights i and j are not in conflict in the stand area. In the
other case, Algorithm 2 is called for computing the latest time of conflict bij . Its principle is similar to
Algorithm 1.

Note that depending on the structure of the stand area, there could be compatible times in the
interval [t + aij , t + bij], but they would require an accurate and tight synchronization, which is not
robust and explain why we do not consider them. Algorithm 1 and 2 can be adapted to find these times
and compute multiple conflicting intervals.

References

J.A.D. Atkin, E.K. Burke, J.S. Greenwood, and D. Reeson. A metaheurisitc approach to aircraft de-
parture scheduling at London Heathrow Airport. In Electronic proceeding of the 9th international
conference on computer-aided scheduling of public transport, San Diego, California, USA, 2004.

22

Data: flights i and j
Result: aij
schedulei = buildSchedule(i, 0);
aij = lb(i, j);
schedulej = buildSchedule(j, aij);
while isFeasible(schedulei, schedulej) and aij ⩽ ub(i, j) do

aij = aij + 1;
schedulej = buildSchedule(j, aij);

end
Algorithm 1: Computing aij

Data: flights i and j, aij
Result: bij
schedulei = buildSchedule(i, 0);
bij = ub(i, j);
schedulej = buildSchedule(j, bij);
while isFeasible(schedulei, schedulej) and bij ⩾ aij do

bij = bij − 1;
schedulej = buildSchedule(j, bij);

end
Algorithm 2: Computing bij

J.A.D. Atkin, E.K. Burke, J.S. Greenwood, and D. Reeson. Hybrid metaheuristics to aid runway schedul-
ing at London Heatrhow Airport. Transportation Science, 41(1):90–106, 2007.

J.A.D. Atkin, E.K. Burke, J.S. Greenwood, and D. Reeson. An examination of take-off scheduling
constraints at London Heatrhow Airport. Public Tranport, 1:169–187, 2009a.

J.A.D Atkin, E.K. Burke, and S. Ravizza. The airport ground movement problem: past and current
research and future directions. In proceedings of the 4th International Conference on Research in Air
Transportation, Budapest, Hungary, 2010.

J.A.D. Atkin, G. De Maere, E.K. Burke, and J.S. Greenwood. Addressing the pushback time allocation
problem at Heathrow airport. Transportation Science, 47(4):584–602, 2012.

Jason AD Atkin, Edmund K Burke, John S Greenwood, and Dale Reeson. An examination of take-off
scheduling constraints at london heathrow airport. Public Transport, 1(3):169–187, 2009b.

H. Balakrishnan and B. Chandran. Algorithms for scheduling runway operations under constrained
position shifting. Operations Research, 58(6):1650–1665, 2010.

J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and D. Abramson. Scheduling aircraft landings -
the static case. Transportation Science, 34(2):180–198, 2000.

J. A. Bennell, M. Mesgarpour, and C. N. Potts. Airport runway scheduling. 4OR - A Quaterly Journal
of Operations Research, 9:115–138, 2011.

C. Bosson, M. Xue, and S. Zelinski. Optimizing integrated terminal airspace operations under un-
certainty. In Digital Avionics Systems Conference (DASC), 2014 IEEE/AIAA 33rd, pages 1A3–1,
2014a.

23

C. Bosson, M. Xue, and S. Zelinski. Optimizing integrated arrival, departure and surface operations
under uncertainty. 2014b.

G.L. Clare and A.G. Richards. Optimization of taxiway routing and runway scheduling. Intelligent
Transportation Systems, IEEE Transactions on, 12(4):1000–1013, 2011.

R. Deau, J.-B. Gotteland, and N. Durand. Runways sequences and ground traffic optimization. In
proceedings of the 3rd International conference on Research in Air Transportation, Fairfax, USA,
2008.

R. Deau, J.-B. Gotteland, and N. Durand. Airport surface management and runways scheduling. In
proceedings of the 8th USA/Europe Air Traffic Management R&D Seminar, Napa, USA, 2009.

Eurocontrol. Airport CDM leaftlet, January 2009. URL http://www.euro-cdm.org/library/cdm_
leaflet.pdf.

T. Fahle, R. Feldmann, S. Gotz, and B. Monien. The aircraft sequencing problem. Computer Science
in perspective, pages 152–166, 2003.

J. Guépet, O. Briant, J.P. Gayon, and R. Acuna-Agost. The aircraft ground routing problem: Analysis
of industry punctuality indicators in a sustainable perspective. European Journal of Operational
Research, 248(3):827–839, 2016.

Julien Guepet. Optimization of airport operations : stand allocation, ground routing and runway sequenc-
ing. PhD thesis, Université Grenoble Alpes, December 2015. URL https://tel.archives-ouvertes.
fr/tel-01257637.

Y. Jung, T. Hoang, J. Montoy, G. Gupta, W. Malik, and L. Tobias. A concept and implementation of
optimized operations of airport surface traffic. In 10th AIAA Aviation Technology, Integration, and
Operations (ATIO) Conference, Fort Worth, TX, 2010.

Y. Jung, T. Hoang, J. Montoya, G. Gupta, W. Malik, L. Tobias, and H. Wang. Performance evaluation of
a surface traffic management tool for Dallas/Fort Worth International Airport. In Ninth USA/Europe
Air Traffic Management Research and Development Seminar, pages 1–10, 2011.

G. Keith and A. Richards. Optimiztion of taxiway routing and runway scheduling. In proceedings of
AIAA Guidance, Navigation and Control Conference, Honolulu, Hawaii, USA, 2008.

B. Kim, L. Li, and J.P. Clarke. Runway assignment by minimizing emissions in terminal airspace. In
Proceedings of AIAA Guidance, Navigation and Control Conference, Toronto, Canada, 2010.

H. Lee and H. Balakrishnan. A comparison of two optimization approaches for airport taxiway and
runway scheduling. In Digital Avionics Systems Conference (DASC), 2012 IEEE/AIAA 31st, pages
4E1–1, 2012.

A. Lieder, D. Briskorn, and R. Stolletz. A dynamic programming formulation for the aircraft landing
problem with aircraft classes. European Journal of Operational Research, 243:61–69, 2015.

W. Malik, G. Gupta, and Y. Jung. Managing departure aircraft release for efficient airport surface
operations. In AIAA Guidance, Navigation, and Control Conference, 2010.

S. Rathinam, Z. Wood, B. Sridhar, and Y.C. Jung. A generalized dynamic programming approach for a
departure scheduling problem. In AIAA Guidance, Navigation, and Control Conference, pages 10–13,
2009.

24

http://www.euro-cdm.org/library/cdm_leaflet.pdf
http://www.euro-cdm.org/library/cdm_leaflet.pdf
https://tel.archives-ouvertes.fr/tel-01257637
https://tel.archives-ouvertes.fr/tel-01257637

	Introduction
	Literature review
	The integrated runway sequencing and ground routing problem
	A heuristic sequential approach
	A stronger formulation of the RSP (step 2.b)
	Formulations from the literature
	Reformulation of separation constraints using wake vortex categories
	Comparison of formulations

	Integrating stand area conflicts (step 2.c)
	Discrete time formulation
	Reformulation of taxi time and stand blockages constraints
	Filtering stand separation constraints
	Using the solution of previous time window

	Numerical experiments
	Sliding time window scheme
	Instances and test environment
	Comparison of algorithms
	Improving computation times of IPrs

	Conclusion
	Computing the bounds eiu and liu
	Identifying the stand area conflicts

