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Abstract

We are interested by the general problem consisting of minimizing a functional of a
state field solution of a PDE state equation. In Particular in this work, we optimize a 3D
wing shape immersed an in inviscid flow to reduce drag. Whence, each evaluation of the
cost functional is computationally expensive.

For improving the convergence rate of the optimization algorihm, we propose a multi-
scale algorithm inspired from the Full Multi-Grid method [1], and referred to as the Full
and Adaptive Multi-Level Optimum-Shape Algorithm (FAMOSA), originally defined in [5].

The proposed method include the following strategies:

• The simplest scheme “one way up “ by choosing the parametrization of Bézier type
to construct a hierarchy of embedded parametric spaces, via the classical degree
elevation process [3].

• V-cycle algorithm by using (on the coarse level) “ perturbation “ unknowns from
the latest fine estimate, i.e deformation instead of shapes.

• Parametrization adaption; from an approximate optimal shape, the parameteriza-
tion is automatically adapted in order to improve the convergence rate and reach
shapes of better fitness.

Numerical experiment will be presented to demonstrate the efficiency of the method.
We use the free-form deformation approach for 3D tensorial Bézier paramerization [2],
and the Nelder-Mead simplex algorithm for minimizing the cost functional.
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1 Shape parameterization

1.1 Properties of Bézier curve

Consider a Bézier parmaterization of degree n given by the usual formula

P(t) =
n∑

k=0

Bk
n(t) Pk (1)

in which
Bk

n(t) = Ck
n tk (1 − t)n−k (k = 0, 1, ...,n) (2)

are the Bernstein polynomials, which form a basis of polynomials of degree ≤ n, and Pk =

(xk, yk) are control points.
A very important property of Bézier parameterizations, and their natural extensions (B-
splines, NURBS) is related to the classical degree-elevation process [3]. To introduce this process
in a precise manner, multiply (1) by (1 − t) + t one gets:

P(t) =
n∑

k=0

Ck
n tk (1 − t)n+1−k Pk +

n∑

k=0

Ck
n tk+1 (1 − t)n−k Pk

︸                       ︷︷                       ︸

n+1∑

ℓ=1

Cℓ−1
n tℓ (1 − t)n+1−ℓ Pℓ−1

=

n+1∑

k=0

Ck
n+1 tk (1 − t)n+1−k P′k

=

n+1∑

k=0

Bk
n+1 P′k

(3)

provided the following definitions are made:




P′0 = P0

P′k =
Ck−1

n Pk−1 + Ck
n Pk

Ck
n+1

=
k

n + 1
Pk−1 + (1 −

k

n + 1
) Pk (1 ≤ k ≤ n)

P′n+1 = Pn

(4)

This proves the following classical result [3]:

Theorem 1

Consider the Bézier curve defined by (1), and associated with the n + 1 control points Pk =

(xk, yk) (k = 0, 1, ...,n); the new sequence of n+ 2 points P′
k
= (x′

k
, y′

k
) (k = 0, 1, ...,n+ 1) defined

by P′0 = P0, P′
n+1 = Pn, and for 1 ≤ k ≤ n, by

P′k =
k

n + 1
Pk−1 + (1 −

k

n + 1
) Pk (5)

constitutes an alternate control polygon of the same geometrical curve, here viewed as a
Bézier curve of degree n + 1, and described identically as the parameter t varies.
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This remarkable property, illustrated by Fig. 1 is the building-block of our construction
embedded parameterized-shape search spaces.

Figure 1: A Bézier curve is initially constructed from the degree-5 parameterization as-
sociated with the control polygon connecting the points {Pk } (k = 0, 1, ..., 5); an alternate
control polygon is constructed thereafter by connecting the new points {P′

k
} (k = 0, 1, ..., 6)

obteained by convex combinations of the former; this new polygon results in a degree-6
Bézier parameterization of the same curve described identically as the parameter t varies.

1.2 Free-Form Deformation approach

One of the inconvenients of The classical Bézier representations is that they describe only
smooth objects. An other alternative, which comes from Computer Graphics [2], consists to
represent the deformation and not the shape itself. The free form deformation deforms the
lattice that was built around the object, the object inside the lattice is deformed by using the
tensorial Bézier formula for each node x of the computattional domain:

x(s, t,u) = x0 +

l∑

i=0

m∑

j=0

n∑

k=0

Bi
l(s) B

j
m(t) Bk

n(u) δPi jk (6)

x0 denotes the position of the node x in the original configuration.
This method has the following advantages:

• it inherits the differentiability and degree-elevation properties of Bézier curves

• can parameterize complexe configuration (e.g. a complete aircraft fuselage)

• the update of the volumic mesh is ncluded in the procedure

2 Hierachical algorithms in shape optimization

The simplest scheme is “one-way up”. Its analog in the context of solving a PDE using
several mesh discretizations would be: nested iteration also referred to as cascadic multigrid.
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The optimization problem is solved first using a low-degree shape parameterization. This
initial step is carried at moderate computational cost, because with a small number of design
parameters, the process is not stiff. The converged solution is interpolated onto the support
of a higher-degree parameterization. This interpolation, by virtue of our construction, is
exact. This precaution is demonstrated in a forthcoming subsection to be essential to the success of
the multiscale strategy. The optimizer is then restarted, with more design parameters, but an
excellent initial guess. At convergence, another degree elevation can be made for an even
finer optimal shape description.

Referring momentarily to the analogous context of hierarchical PDE solving, it is very
well known today that the key to “O(N) algorithms” is the V-cycle, in which the iteration is
initiated, contrary to basic intuition, at the upper (fine) level, and not the coarse. This concept
can be generalized to optimum-shape design, by using (on the coarse level) “perturbation”
unknowns from the latest fine estimate, i.e. deformations instead of shapes. This is depicted
skematically in Fig. 2. Again, in this sketch, the upward transfers are exact if the supports of
the parameterizations of different degrees are constructed to be embedded.

N2 design iterations
in B2 : Γ1

N2 design iterations
in B2 : Γ′′1

ց ր

N1 design iterations
in B1 : Γ′1 = Γ1 ⊕ δΓ

′
1

Figure 2: Skematic of two-level optimization V-cycle (B1 and B2 are the search spaces
associated with the coarse and fine Bézier parameterizations respectively); Γ1, Γ′1, and Γ′′1 ,
are shapes; δΓ′1 is a free-form deformation potentially expressed identically in the fine (B2), or
coarse (B1) parameterization provided embedded supports are used.

Finally, combining both of the “one-way up” method and V-cycle, a new method, FMOSA,
Full and Multilevel Optimum Shape Algorithm can be defined formally analogously to the Full
Multigrid Method (FMG).

3 Numerical experiments of piaggio-wing shape optimization

3.1 Testcase description

• Mach Number: 0.83

• Angle of attack: 2◦

• Cost function:

The cost function reflects a drag minimization subject to the constraint of a constant lift
coefficient. This constraint is weakly enforced by penalization:

J =
CD

CD0

+ 104 ·max

(

0, 0.999 −
CL

CL0

)

,

The calculations are made using a planform provided by Piaggio and depicted on Fig. 3.
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Figure 3: Planform provided by Piaggio.

Our flow solver is based on unstructered grids. The initial cross sections are homothetic
to the classical NACA0012 airfoil, but this has little inference on the final results.

This mesh is deformed by the optimization process only in a region about the wing
defined as the “bounding-box”. This box is depicted on Fig. 4.

Figure 4: Bounding box in which the 3D mesh is subject to the free-form deformation.

An iteration has been constructed based on the Nelder-Mead Simplex method.
Three methods corresponding to different ways of handling the geometrical parameteri-

zation are compared:

• Basic method: single parameterization throughout the whole convergence process;

• Progressive degree elevation: here only 2 levels (coarse and fine) have been considered
for simplicity;

• FMOSA: using the same 2 levels of parameterization in strategy including a V-cycle.
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3.2 Aerodynamic coefficients

The aerodynamic coefficients obtained after 500 iterations of each method are compiled in
Table 1. The lift coefficient is approximately maintained or slightly increased by the shape
optimization process. Significant reductions in the drag coefficient are observed.

Because method C produces a much better-converged solution, as demonstrated subse-
quently, the drag reduction is far superior (5 % more reduction).

Method CL CD Cost
Reference 0.319201 0.026353 1.
Test A Single Param. (9-1-1) 0.322667 0.014522 0.551042044
Test B Degre Elev (3-1-1,9-1-1) 0.319363 0.013736 0.521216929
Test C FMOSA (3-1-1,9-1-1) 0.319854 0.013252 0.502875191

Table 1: Aerodynamic coefficients compared to reference values as given by three methods
after 500 iterations by the simplex methods

3.3 Convergence history plots

Fig. 5 depicts the convergence history of the basic method (single parameterization) for
three different parameterizations. With a coarse parameterization, a very fast convergence
is observed, but the converged value of the cost functional is not very small (poor accuracy).
Increasing the number of geometrical parameters results in an improved accuracy at the cost
of the numerically more costly computation of a greater number of iterations.

Fig. 6 depicts the convergence for the three methods under consideration. The method
based on progressive degree elevation is significantly faster (more than a factor of 2). FMOSA
is still more efficient. In fact, 500 iterations is insufficient to achieve full convergence in the
other cases.

3.4 Flows

Fig. 7 depicts the Mach number on the wing upper surface in the original configuration, and
Fig. 8 as a result of shape optimization by each method. The supersonic region has been
reduced in extent, and the shock in strength.
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Figure 5: Basic method (single-parameterization): convergence history plot for three different
parameterizations (blue: coarse; red: medium; black: fine).
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Figure 6: Comparison of three methods in terms of iterative convergence: blue: basic
(single-parameterization); red: degree-elevation (2 parameterizations); black: FMOSA (2
parameterizations).
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Figure 7: Mach number field in original configuration
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Figure 8: Mach number field after 500 iterations for the three methods under comparison
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