Damien Fourure 
email: damien.fourure@univ-st-etienne.fr
  
Rémi Emonet 
email: remi.emonet@univ-st-etienne.fr
  
Elisa Fromont 
email: elisa.fromont@univ-st-etienne.fr
  
Damien Muselet 
email: damien.muselet@univ-st-etienne.fr
  
Alain Tremeau 
email: alain.tremeau@univ-st-etienne.fr
  
Christian Wolf 
email: christian.wolf@liris.cnrs.fr
  
  
  
Residual Conv-Deconv Grid Network for Semantic Segmentation

published or not. The documents may come   L'archive ouverte pluridisciplinaire

Introduction

Convolutional Neural Networks (CNN) have become tremendously popular for a huge number of applications [START_REF] Bai | Text/non-text image classification in the wild with convolutional neural networks[END_REF][START_REF] Pham | Convolutional neural network language models[END_REF][START_REF] Shahroudy | Multimodal multipart learning for action recognition in depth videos[END_REF] since the success of AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] in 2012. AlexNet, VGG16 [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF] and ResNet [START_REF] He | Deep residual learning for image recognition[END_REF], are some of the famous architectures designed for image classification which have shown incredible results. While image classification aims at predicting a single class per image (presence or not of an object in an image) we tackle the problem of full scene labelling. Full scene labelling or semantic segmentation from RGB images aims at segmenting an image into semantically meaningful regions, i.e. at providing a class label for each pixel of an image. Based on the success of classical CNN, new networks designed especially for semantic segmentation, named fully convolutional networks have been developed. The c 2017. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms. main advantage of these networks is that they produce 2D matrices as output, allowing the network to label an entire image directly. Because they are fully convolutional, they can be fed with images of various sizes.

In order to construct fully convolutional networks, two strategies have been developed: conv-deconv networks and dilated convolution-based networks (see Section 2 for more details). Conv-deconv networks are composed of two parts: the first one is a classical convolutional network with subsampling operations which decrease the feature maps sizes and the second part is a deconvolutional network with upsampling operations which increase the feature maps sizes back to the original input resolution. Dilated convolution-based networks [START_REF] Yu | Multi-scale context aggregation by dilated convolutions[END_REF] do not use subsampling operations but a "à trous" algorithm on dilated convolutions to increase the receptive field of the network.

If increasing the depth of the network has often gone hand in hand with increasing the performance on many data rich applications, it has also been observed that the deeper the network, the more difficult its training is, due to vanishing gradient problems during the back-propagation steps. Residual networks [START_REF] He | Deep residual learning for image recognition[END_REF] (ResNet) solve this problem by using identity residual connections to allow the gradient to back-propagate more easily. As a consequence, they are often faster to train than classical neural networks. The residual connections are thus now commonly used in all new architectures.

Lots of pre-trained (usually on Imagenet [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF]) ResNet are available for the community. They can be fine-tuned for a new task. However, the structure of a pre-trained network cannot be changed radically which is a problem when a new architecture, such as ours, comes out.

In this paper we present GridNet, a new architecture especially designed for full scene labelling. GridNet is composed of multiple paths from the input image to the output prediction, that we call streams, working at different image resolutions. High resolution streams allow the network to give an accurate prediction in combination with low resolution streams which carry more context thanks to bigger receptive fields. The streams are interconnected with convolutional and deconvolutional units to form the columns of our grid. With these connections, information from low and high resolutions can be shared.

In Section 2, we review the network architectures used for full scene labelling from which GridNet take inspiration and we show how our approach generalises existing methods. In Section 3, we present the core components of the proposed GridNet architecture. Finally, Section 4 shows results on the Cityscapes dataset.

Related Work

In traditional CNN, convolutional and non-linearity computational units are alternated with subsampling operations. The purpose of subsampling is to increase the network receptive field while decreasing the feature maps sizes. A big receptive field is necessary for the network to get bigger context for the final prediction while the feature maps size reduction is a beneficial side effect allowing to increase the number of feature maps without overloading the (GPU) memory. In the case of semantic segmentation where a full-resolution prediction is expected, the subsampling operators are detrimental as they decrease the final output resolution.

To get a prediction at the same resolution than the input image, Long, Shelhamer et al. proposed recently Fully Convolutional Networks (FCN) [START_REF] Shelhamer | Fully convolutional networks for semantic segmentation[END_REF] by adding a deconvolution part after a classical convolutional neural network. The idea is that, after decreasing in the con-volutional network, a deconvolution part, using upsampling operator and deconvolution (or fractionally-strided convolution) increases the feature maps size back to the input resolution. Noh et al. [START_REF] Noh | Learning deconvolution network for semantic segmentation[END_REF] extended this idea by using maximum unpooling upsampling operators in the deconvolution part. The deconvolution network is the symmetric of the convolution one and each maximum pooling operation in the convolution is linked to a maximum unpooling one in the deconvolution by sharing the pooling positions. Ronneberger et al. [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] are going even further with their U-Net by concatenating the feature maps obtained in the convolution part with feature maps of the deconvolution part to allow a better reconstruction of the segmented image. Finally, Lin et al. [START_REF] Lin | Refinenet: Multi-path refinement networks for high-resolution semantic segmentation[END_REF] used the same idea of U-Net but instead of concatenating the feature maps directly, they used a refineNet unit, containing residuals units, multi-resolutions fusions and chained residual pooling, allowing the network to learn a better semantic transformation.

All of these networks are based on the idea that subsampling is important to increase the receptive field and try to override the side effect of resolution loss with deconvolutionnal technics. In our GridNet, composed of multiple streams working at different feature map sizes, we use the subsampling and upsampling operators as connectors between streams allowing the network to take decisions at any resolution. The upsampling operators are not used to correct this side effect but to allow multi-scale decisions in the network. In a recent work, Newell et al. [START_REF] Newell | Stacked hourglass networks for human pose estimation[END_REF] stacked many U-Net showing that successive steps of subsampling and upsampling are important to improve the performance of the network. This idea is improved in our GridNet with the strong connections between streams.

Yu et al. [START_REF] Yu | Multi-scale context aggregation by dilated convolutions[END_REF] studied another approach to deal with the side effect of subsampling. They show that, for a semantic labelling task, the pooling operations are harmful. Therefore, they remove the subsampling operators to keep the feature maps at the same input resolution. Without subsampling, the receptive field is very small so they use dilated convolution to increase it. Contrarily to classical convolutions, where the convolution mask is applied onto neighbourhood pixels, dilated convolutions have a dilatation parameter to apply the mask to more and more apart pixels. In their work Wu et al. [START_REF] Wu | Wider or deeper: Revisiting the resnet model for visual recognition[END_REF] adapt the popular ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] pre-trained on ImageNet [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF] for semantic segmentation. ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] are very deep networks trained with residual connections allowing the gradient to propagate easily to the first layers of the network correcting the vanishing gradient problems. Wu et al. only keep the first layers of ResNet and change the classical convolutions into dilated ones. For memory problems, they also keep 3 subsampling operators so the final output prediction is at 1/8 of the input size, and then use linear interpolations to retrieve the input resolution. In [START_REF] Zhao | Pyramid scene parsing network[END_REF], Zhao et al. replace the linear interpolation by a Pyramid Pooling module. The pyramid pooling module is composed of multiple pooling units of different factors, followed by convolutions and upsample operators to retrieve the original size. All the feature maps obtained with different pooling sizes are then concatenated before a final convolution operator that gives the prediction. When Zhao et al. add a module at the end of the network to increase the feature maps size and allow a multi-scale decision, we incorporate this multi-scale property directly into our network with the different streams.

In their work, He et al. [START_REF] He | Identity mappings in deep residual networks[END_REF] study the importance of residual units and give detailed results on the different strategies to use residual connections (whether batch normalisation should be used before the convolutions, whether linearity operator should be used after the additions, etc.). GridNet also benefits from these residuals units.

With their Full Resolution Residual Network (FRRN) [START_REF] Pohlen | Fullresolution residual networks for semantic segmentation in street scenes[END_REF], Pohlen et al. combine a convdeconv network with a residual one. They also use different streams but only two of them: one for the residual network linked with upsampling and subsampling operations, and one for
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Figure 1: GridNet: each green unit is a residual bloc, which does not change the input map resolution nor the number of feature maps. Red blocks are convolutional units with resolution loss (subsampling) and twice the number of feature maps. Yellow units are deconvolutional blocks which increase the resolution (upsampling) and divide by two the number of feature maps. A zoom on the red square part with a detailed compositions of each blocks is shown in Figure 2 the conv-deconv network which does not have any residual connections. GridNet subsumes FRNN and can be seen as a generalisation of this network. The idea of networks with multiple paths is not new [START_REF] Huang | Multi-scale dense convolutional networks for efficient prediction[END_REF][START_REF] Saxena | Convolutional neural fabrics[END_REF][START_REF] Zhou | Interlinked convolutional neural networks for face parsing[END_REF]. Zhou et al. studied a face parsing task with interlinked convolutional neural networks [START_REF] Zhou | Interlinked convolutional neural networks for face parsing[END_REF]. An input image is used at different resolutions by multiple CNN whose feature maps are interconnected. Huand et al. [START_REF] Huang | Multi-scale dense convolutional networks for efficient prediction[END_REF] use the same architecture but make it dynamically adaptable to computational resource limits at test time. Recently, Saxena et al. have presented Convolutional Neural Fabrics [START_REF] Saxena | Convolutional neural fabrics[END_REF] which structure forming a grid is very similar to ours and which also use the full multiscale grid to make predictions. However, to better scale to full resolution images and large size datasets, we make use of residual units and we introduce a new dropout technique to better train our grids. Besides, we constrain our network, similarly to conv-deconv ones, to have down-sampling layers, followed by upsampling blocks, where [START_REF] Saxena | Convolutional neural fabrics[END_REF] use up and down sampling across all network layers.

GridNet

The computation graph of GridNet is organised into a two-dimensional grid pattern, as shown in Figure 1. Each feature map X i, j in the grid is indexed by line i and column j. Maps are connected through computation layers. Information enters the model as input to the first block of line 0 and leaves it as output from the last block of line 0. Between these two points, information can flow in several paths, either directly between these entry/exit points in a straight line or in longer paths which also involve lines with indexes = 0.

Information is processed in layers which connect blocks X i, j . The main motivation of our model is the difference between layers connecting feature maps horizontally or vertically: We call horizontal connections "streams". Streams are fully convolutional and keep feature map sizes constant. They are also residual, i.e. they predict differences to their input [START_REF] He | Deep residual learning for image recognition[END_REF]. Stream blocks are green in Figure 1. Vertical computing layers are also convolutional, but they change the size of the feature maps: according to the position in the grid, spatial sizes are Green units are residual units keeping feature map dimensions constant between inputs and outputs. Red units are convolutional + subsampling and increase the feature dimensions. Yellow units are deconvolutional + upsampling and decrease the feature dimensions (back to the original one to allow the addition). Trapeziums illustrate the upsampling/subsampling operations obtained with strided convolutions. BN=Batch Normalization.

X i,j X i,j+1 X i+1,j X i+1,j+1
reduced by subsampling or increased by upsampling, respectively shown as red and yellow blocks in Figure 1. Vertical connections are NOT residual. The main idea behind this concept is an adaptive way to compute how information flows in the computation graph. Subsampling and upsampling are important operations in resolution preserving networks, which allow to increase the size of the receptive fields significantly without increasing filter sizes, which would require a higher number of parameters1 . On the other hand, the lost resolution needs to be generated again through learned upsampling layers. In our network, information can flow on several parallel paths, some of which preserve the original resolution (horizontal only paths) and some of which pass through down+up sampling operations. In the lines of the skip-connections in U-networks [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], we conjecture that the former are better suited for details, whereas high-level semantic information will require paths involving vertical connections.

Following the widespread practise, each subsampling unit reduces feature map size by a factor 2 and multiplies the number of feature maps by 2. More formally, if the stream X i takes as input a tensor of dimension (F i × W i × H i ) where F i is the number of feature maps and W i , H i are respectively the width and height of the map, then the stream

X i+1 is of dimension (F i+1 × W i+1 × H i+1 ) = (2F i × W i /2 × H i /2).
Apart from border blocks, each feature map X i, j in the grid is the result of two different computations: one horizontal residual computation processing data from X i, j-1 and one vertical computation processing data from X i-1, j or X i+1, j depending if the column is a subsampling or upsampling one. Several choices can be taken here, including concatenating features, summing, or learning a fusion. We opted for summing, a choice which keeps model capacity low and blends well with the residual nature of the grid streams. The details are given as follows: let Θ Res (.), Θ Sub (.) and Θ U p (.) be respectively the mapping operation for the residual unit (green block in Figure 1), subsampling unit (red block) and upsampling unit (yellow block). Each mapping takes as input a feature tensor X and some trainable parameters θ .

If the column j is a subsampling column then:

X i, j = X i, j-1 + Θ Res (X i, j-1 , θ Res i, j ) + Θ Sub (X i-1, j , θ Sub i, j )
Otherwise, if the column j is an upsampling one then:

X i, j = X i, j-1 + Θ Res (X i, j-1 , θ Res i, j ) + Θ U p (X i+1, j , θ U p i, j )
Border blocks are simplified in a natural way. An alternative to summing is feature map concatenation, which increases the capacity and expressive power of the network. Our experiments on this version showed that it is much more difficult to train, especially since it is trained from scratch. The capacity of a GridNet is defined by three hyper parameters, N S , N Cs and N Cu respectively the number of residual streams, the number of subsampling columns and the number of upsampling columns. Inspired by the symmetric conv-deconv networks [START_REF] Shelhamer | Fully convolutional networks for semantic segmentation[END_REF], we set N Cs =N Cu in our experiments, but this constraint can be lifted.
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U-Net Full-Resolution residual Network

Fully convolutional network GridNet generalize several classical resolution preserving neural models, as shown in Figure 3. Standard models can be obtained by removing connections between feature maps in the grid. If we keep the connections shown in blue in Figure 3, we obtain conv-deconv networks [START_REF] Shelhamer | Fully convolutional networks for semantic segmentation[END_REF] (a single direct path). U-networks [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] (shown by green connections) add skipconnections between down-sampling and corresponding up-sampling parts, and Full Resolution Residual Networks (FRRN) [START_REF] Pohlen | Fullresolution residual networks for semantic segmentation in street scenes[END_REF] (shown as yellow connections) add a more complex structure.

Blockwise dropout for GridNets

A side effect of our 2D grid topology with input and output both situated on line 0 is that the path from the input to the output is shorter across the high resolution stream (blue path in figure 4) than with the low resolution ones (e.g. the orange path in Figure 4). Longer paths in deep networks may fall into the well known problems of vanishing gradients. As a consequence, paths involving lower resolution streams take more time to converge and are generally more difficult to train. To force the network to use all of its available streams, we employed a technique inspired by dropout, which we call total dropout. It consists in randomly dropping residual streams and setting the corresponding residual mappings to zero.
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Figure 4: The blue path only using the high resolution stream is shorter than the orange path which also uses low resolution streams. To force the network to use all streams we randomly drop streams during training, indicated by red crosses.

More formally, let r i, j = Bernoulli(p) be a random variable taken from a Bernoulli distribution, which is equal to 1 with a probability p and 0 otherwise. Then, the feature map computation becomes: X i, j = X i, j-1 + r i, j (Θ Res (X i, j-1 , θ Res i, j )) + Θ {Sub;U p} (X i±1, j , θ {Sub;U p} i, j )

Parameter count and memory footprint for GridNets

In neural networks, the memory footprint depends on both the number of activations and the number of trainable parameters. In many architectures, these two numbers are highly correlated. While it is still the case in a GridNet, the grid structure provides a finer control over these numbers. Let us consider a GridNet built following the principles from Section 3: with N S streams, N Cs subsampling columns and N Cu upsampling columns, with the first stream having F 0 feature maps at resolution W 0 ×H 0 , and the others streams obtained by downsampling by 2×2 and increasing the feature maps by 2. From the exact computation of the number of parameters nb param and the number of activation values nb act , we can derive meaningful approximations:

nb param ≈ 18 × 2 2 * (N s -1) F 2 0 (2.5N Cs + N Cu -2)
This approximation illustrates that the number of parameters is most impacted by the number of streams N S , followed by the number of feature maps (controlled by F 0 ), and only then, by the number of columns.

nb activ ≈ 6 H 0 W 0 F 0 (4N Cu + 3N Cs -2)
This shows that the number of activations mainly depends on the first stream size (width, height and number of feature maps) and grows linearly with the number of columns. In practice, the total memory footprint of a network at training time depends not only on its number of parameters and on the number of activations, but also on both the choice of the optimizer and on the mini-batch size. The gradient computed by the optimizer requires the same memory space as the parameters themselves and the optimizer may also keep statistics on the parameters and the gradients (as does Adam). The mini-batch size mechanically increases the memory footprint as the activations of multiple inputs need to be computed and stored in parallel.

Experimental results

We evaluated the method on the Cityscapes dataset, which consists in high resolution (1024× 2048 pixels) images taken from a car driving across 50 different cities in Germany. 2975 training images and 500 test images have been fully labelled with 30 semantic classes. However, only 19 classes are taken into account for the automatic evaluation on the Cityscapes website 2 , therefore we trained GridNet on these classes only. Semantic classes are also grouped into 8 semantic categories. The ground truth is not provided for the test set but an online evaluation is available on the Cityscapes website. The dataset contains also 19998 images with coarse (polygonal) annotations but, we chose not to use them for training because they increase the unbalance ratio of the label distribution which is harmful to our performance measures.

The Cityscapes performance are evaluated based on the Jaccard Index, commonly known as the Pascal VOC Intersection-over-Union (IoU) metric. The IoU is given by

T P T P+FP+FN
where T P, FP and FN are the number of True Positive, False Positive and False Negative classified pixels. IoU is biased toward object instances that cover a large image area so, an instance-level intersection-over-union metric iIoU is also used. The iIoU is computed by weighting the contribution of each pixel by the ratio of the class average instance size, to the size of the respective ground truth instance. Finally, they give results accuracy for two semantic granularities (class and category) with the weighted and not weighted IoU metric leading to 4 measurements.

We tested GridNet with 5 streams with the following feature map dimensions 16, 32, 64, 128 and 256. GridNet is composed of 3 subsampling columns (convolutional parts) followed by 3 upsampling columns (deconvolutional parts). This "5 streams / 6 columns" configuration provides a good tradeoff between memory consumption and number of parameters: the network is deep enough to have a good modelling capacity with few enough parameters to avoid overfitting phenomena. This configuration allows us to directly fit in our GPU memory a batch of 4 400 × 400 input images. As a consequence, the lowest resolution stream deals with feature maps of size (256 × 25 × 25).

We crop patches of random sizes (between 400 × 400 and 1024 × 1024) at random locations in the high resolution input images (1024 × 2048). All the patches are resized to 400 × 400 and fed to the network. For data augmentation, we also apply random horizontal flipping. We do not apply any post-processing for the images but we added a batch normalization layer at the input of the grid. We use the classical cross-entropy loss function to train our network using the Adam optimizer with a learning rate of 0.01, a learning rate decay of 5 × 10 -6 , β 1 = 0.9, β 2 = 0.999 and an ε = 1 × 10 -8 . After 800 epochs, the learning rate is decreased to 0.001. We stopped our experiments after 10 days leading to approximately 1900 training epochs. For testing we fed the network with images at resolutions 1 1 , 1 1.5 , 1 2 , 1 2.5

and used a majority vote over the difference scale for the final prediction.

Discussion

We conducted a study to evaluate the effects of each of our architectural components and design choices. The results are presented in Table 1 and 2.

In Table 1, Sum † is the results given by the network presented in section 3 with total dropout operators (see section 3.1). Total dropout proved to be a key design choice, which lead to significative improvement in accuracy. We also provide results of a fully residual version of GridNet, where identity connections are added in both horizontal and vertical computing connections (whereas the proposed method is residual in horizontal streams only). Full residuality did not prove to be an advantage. Total dropout did not solve learning difficulties and further impacted training stability negatively. Finally, concatenation of horizontal and vertical streams, instead of summing, did also not prove to be an optimal choice. We conjecture that the high capacity of the network did not prove to be an advantage. Table 2 presents the impact of the number of columns and streams used in GridNet. We started with a GridNet composed of 8 columns (4 subsampling followed by 4 upsampling) and 5 streams (results using networks with other configurations of the subsampling/upsampling units are presented in Table 3). Instead of using 16 feature maps in the first stream, we used only 8 to reduce the memory consumption and allow us to increase the number of columns and/or streams while still coping with our hardware constraints. Networks are trained until convergence and the tests are performed without data augmentation (only one scale and no majority vote). From Table 2, we can see that increasing the number of streams increases the performance (from 57.5 to 59.2 for the IoU class accuracy), but increasing only the number of columns (from 8 to 16) do not improve the accuracy while increasing the training complexity. A low number of streams limits the abstraction power of the network. Increasing both the number of streams and of the columns (up to the hardware capacity), improves all the performance measures.

Qualitative and Quantitative Results

Figure 5 shows segmentation results of some sample images. In Table 3, we compare the results of our GridNet compared to state-of-the-art results taken from the official Cityscapes website. We restrict the comparison to methods that the same input information as us (no coarse annotations, no stereo inputs). Our network gives results comparable with the stateof-the-art networks, in particular, the FRNN network presented in Section 2. All other results on the Cityscapes website have been obtained by networks pre-trained for classification using the Imagenet dataset. Nevertheless, among the 9 other reported results, only one of them (RefineNet) give slightly better results than our network. Table 3: Results on the Cityscapes dataset benchmark. We only report published papers which use the same data as us (no coarse annotations, no stereo inputs). "GridNet -Alternative" is another structure closer to [START_REF] Saxena | Convolutional neural fabrics[END_REF] where up and down sampling columns are interleaved.

Conclusion

We have introduced a novel network architecture specifically designed for semantic segmentation. The model generalizes a wide range of existing neural models, like conv-deconv networks, U-networks and Full Resolution Residual Networks. A two-dimensional grid structure allows information to flow horizontally in a residual resolution-preserving way or vertically through down-and up-sampling layers. GridNet shows promising results even when trained from scratch (without any pre-training). We believe that our network could also benefit from better weight initialisation, for example by pre-training it on the ADE20K dataset.

Figure 2 :

 2 Figure2: Detailed schema of a GridBlock. Green units are residual units keeping feature map dimensions constant between inputs and outputs. Red units are convolutional + subsampling and increase the feature dimensions. Yellow units are deconvolutional + upsampling and decrease the feature dimensions (back to the original one to allow the addition). Trapeziums illustrate the upsampling/subsampling operations obtained with strided convolutions. BN=Batch Normalization.

Figure 3 :

 3 Figure3: GridNets generalize several classical resolution preserving neural models such as conv-deconv networks[START_REF] Shelhamer | Fully convolutional networks for semantic segmentation[END_REF] (blue connections), U-networks[START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] (green connections) and Full Resolution Residual Networks (FRRN)[START_REF] Pohlen | Fullresolution residual networks for semantic segmentation in street scenes[END_REF] (yellow connections).

Figure 5 :

 5 Figure 5: Semantic segmentation results obtained with GridNet. On the left, he input image, in the middle the ground truth and on the right, our results.

Table 1 :

 1 Results of different GridNet variants on the Cityscapes validation set: "Fusion" indicates how feature maps are fused between horizontal and vertical blocks. The second and third columns indicate whether horizontal (resp. vertical) computations are residual. † stands for the final proposed method.

	Performance measures

Table 2 :

 2 Results of the impact of different number of columns and streams. No data augmentation (only one scale) was use in testing.
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An alternative would be to use dilated convolutions with the à trous algorithm[START_REF] Yu | Multi-scale context aggregation by dilated convolutions[END_REF].

https://www.cityscapes-dataset.com/

Acknowledgment

Authors acknowledge the support from the ANR project SoLStiCe (ANR-13-BS02-0002-01). They also want to thank Nvidia for providing two Titan X GPU.