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ABSTRACT The polyol route is a versatile and up-scalable method to produce large batches of 

iron oxide nanoparticles with well-defined structures and magnetic properties. Importance of 
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parameters such as temperature and reaction time, heating profile, nature of polyol solvent or of 

organometallic precursors on nanostructure and properties has already been described in the 

literature. Yet, the crucial role of water in the forced hydrolysis pathway has never been reported 

despite its mandatory presence for nanoparticle production. This communication investigates the 

influence of the water amount and temperature at which it is injected in the reflux system for 

either a pure polyol solvent system or a mixture with poly(hydroxy)amine. Distinct 

morphologies of nanoparticles were thereby obtained, from ultra-ultra-small smooth spheres 

down to 4 nm in diameter to larger ones up to 37 nm. Well-defined multi-core assemblies with 

narrow grain size dispersity termed nanoflowers were also synthesized. A diverse and large 

library of samples was obtained by playing with the nature of solvents and amount of added 

water while keeping all other parameters constant. The different morphologies lead to magnetic 

nanoparticles suitable for important biomedical applications such as magnetic hyperthermia, 

MRI contrast agent, or both. 

INTRODUCTION  

Magnetic iron oxide nanoparticles (IONPs) find applications in the biomedical field as 

diagnostic tools and innovative therapies as they provide contrasting properties in magnetic 

resonance imaging (MRI) and also serve as heat mediators in magnetic fluid hyperthermia 

(MFH) and for triggered drug delivery.1 As IONPs are biocompatible, they are among the best 

candidates over alternative magnetic nanomaterials for health applications. Various synthetic 

pathways have been explored for their production,2 the most common ones being the alkaline co-

precipitation,3 the polyol process,4 the thermal degradation of organometallic precursors,5 and the 

hydrothermal treatment.6 The polyol route is an interesting compromise when taking into 

account the ease of synthesis, scalability, cost-efficiency, and control over the morphology. This 

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
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process leads to nanoparticles with morphologies ranging from smooth spheres to more complex 

structures such as the so-called “nanoflowers”. Other strategies were reported to directly produce 

flower-like structures in water such as the co-precipitation performed in presence of excess 

polysaccharide,7 or in a microwave reactor.8 The polyol synthesis of multi-core IONPs was 

introduced by Caruntu et al..4 In this reaction pathway, the solvent acts simultaneously as a 

complexing agent for iron chloride precursors and as high boiling point solvent, with reflux 

temperatures usually in the order of 220 °C. Nanoflowers are to date amongst the best IONPs in 

terms of efficiency for heating under an applied alternating magnetic field (AMF) and as 

negative (transverse T2) MRI contrast agents, as previously reported.9 At equivalent 

concentrations of iron, the outstanding heating properties of these assemblies of small grains into 

larger raspberry-like structures were related to a frustrated super-spin glass state.10 Regarding 

mechanistic pathway of the synthesis, tentative descriptions of the intermediary states of reaction 

were proposed,11 together with the role of the polyol solvent in orienting the morphology.12 

Different reaction conditions were studied in the literature, with variable parameters such as the 

choice of the polyol solvent,12 temperature and pressure,13 reaction time and heating ramp 

slope,14 alkaline pH,15 and presence of adsorbed capping agents.16 The main applications 

envisioned for nanoflowers are as nanoheaters for MFH and efficient negative (T2) contrast 

agents for MRI, as ascribed to their large magnetic moment and large intrinsic magnetization Md 

(magnetic mono-domain moment divided by the particle volume). The main challenge to 

overcome for utilizing these superior magnetic properties in biological media is to prevent 

particle aggregation that can be evidenced by a non-reversible magnetization curve in static 

magnetic field. With large magnetic moments, nanoflowers experiment strong magnetic dipolar 

interactions. Moreover, the coating of their surface by a residual organic layer can render them 

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
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difficult to peptize as stable aqueous colloidal suspensions, especially in physiological media. 

However, we found that all nanoparticles synthesized in our study, even the largest nanoflowers, 

show superparamagnetic behavior at room temperature with no hysteresis of their magnetization 

curve under DC field at room temperature, which is a prerequisite for their use in biological 

applications (yet still necessitating further coating to reach stealthiness in blood circulation). 

In the course of our studies, we evidenced the crucial role of water in the polyol synthesis of 

IONPs. We report thereafter an extensive study describing how the amount and way of adding 

water in the synthesis influence the final nanoparticle (NP) morphology. A library of water-

dispersible IONPs was therefore successfully synthesized, with tunable diameters from ∼4 to ∼37 

nm and superior magnetic properties for MFH and MRI. 

 

EXPERIMENTAL SECTION 

Materials 

Nitric acid (HNO3, 70%) was from Fisher, ethyl acetate (>99.5%) was from Sigma Aldrich, 

acetone (technical grade), ethanol (96%), and diethyl ether (100%) were from VWR. N-

methyldiethanolamine (NMDEA, 99%) was from Acros Organics, diethylene glycol (DEG, 

99%), sodium hydroxide microprills (NaOH, 98%), iron(III) nitrate nonahydrate 

(Fe(NO3)3⋅9H2O, >98%), and iron(II) chloride tetrahydrate (FeCl2⋅4H2O, 98%) were from Alfa 

Aesar. Iron(III) chloride hexahydrate (FeCl3⋅6H2O, >97%) was from Panreac. 

 

Synthesis of iron oxide nanoparticles 

Nanoparticles were produced by adapting reaction conditions reported by Caruntu et al.:4 80 

mL of either pure DEG or a mixture of DEG and NMDEA with volume ratios 1:1 v/v were 

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
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introduced in a three-neck round bottom flask flushed with nitrogen and stirred with a magnetic 

stir bar for one hour under inert atmosphere. 1.08 g (4 mmol) of FeCl3⋅6H2O and 0.40 g (2 

mmol) of FeCl2⋅4H2O were then dissolved overnight. In the meantime, 0.64 g (16 mmol) of 

NaOH was dissolved under magnetic stirring in 40 mL of either pure DEG or a 1:1 v/v mixture 

of DEG and NMDEA in a separate three-neck round bottom flask. The NaOH solution was 

flushed by bubbling nitrogen for one hour before mixing with the mixed iron(II,III) chloride 

solution. The color quickly turned from yellow to deep green. The mixture was then heated up to 

220 °C (temperature ramp in around 30 min) with an electronically controlled Digi-Mantle™ 

heating mantle (OMCA0250, Electrothermal™) set at full power, before letting the reaction to 

occur for a determined period of time, either with or without agitation at 500 rpm by a 

mechanical stirring Teflon shaft inserted through the condenser aperture. Nanoparticles were 

then separated over a strong permanent ferrite magnet (152×101×25.4 mm3, Calamit Magneti™, 

Milano-Barcelona-Paris), washed three times with a mixture of ethanol and ethyl acetate (1:1 

v/v), once with 10 % nitric acid, twice with acetone, and twice with diethyl ether. NPs were then 

readily redispersed in water by stirring in open air to remove volatile solvents. At this stage, a 

black monophasic dispersion of IONPs was obtained. 8.6 g of iron(III) nitrate was then added as 

a strong oxidant by heating at 80 °C for 45 min while mechanically stirring.17 The colloidal 

solution then turned from clear black to clear brown-orange. The IONPs were flocculated by 

addition of 10 % nitric acid and finally washed twice with acetone and twice again with diethyl 

ether. At this stage a deep orange-black dispersion of IONPs was obtained. The fluid was 

attracted by permanent magnets while staying in a single liquid phase, confirming that a true 

“ferrofluid” was obtained. 

 

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
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Sample nomenclature 

Each final product is designated according to the main synthesis parameters, i.e. the solvent (D 

for pure DEG, N for DEG/NMDEA 1:1), the volume of water in µL added to 120 mL of solvent 

(the subscript HI or HU being added to specify if water was injected to the reaction mixture at 

solvent reflux – hot injection – or by heating-up from room temperature, respectively), and the 

reaction time. For instance, the sample name N500HU-5h indicates that 500 µL of H2O were 

added to 120 mL DEG/NMDEA (1:1) and the reaction mixture was heated up to reflux for 5 

hours. The sample name D5000HI-20m indicates that 5,000 µL of H2O were added through a 

septum to 120 mL of iron(II,III) precursors in boiling DEG, then let for 20 min before cooling). 

 

Table 1: Batch names and their corresponding conditions of synthesis. Asterisk designates a 

reaction performed under ’natural mixing’ i.e. by diffusion and convection yet no stirring. 

Batch name Nomenclature 

15ff N1000HU-5h 

17ff D5000HI-20m 

25ff N500HU-4h 

30ff N1000HU-5h 

31ff N500HU-1h 

32ff N500HU-5h 

34ff N100HU-5h* 

35ff N100HU-5h 

36ff N100HU-5h 

 

Transmission Electron Microscopy (TEM) 

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
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TEM was performed on a Hitachi™ H7650 microscope with an acceleration voltage of 80 kV. 

TEM images were acquired with an ORIUS™ SC1000 large format (11 MPx) camera. Samples 

were prepared by nebulizing NP dispersions at 1 g∙L-1 concentration on Formvar™ carbon-coated 

200 mesh copper grids from Agar Scientific™ and leaving them to dry at room temperature. NP 

size distributions were obtained by measuring more than 100 NPs with the ImageJ freeware 

(https://imagej.nih.gov/ij/). Size-histograms were fitted to a log-normal distribution law of 

diameters P(d) with optimized values of median diameter α and non-dimensioned width β: 
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In addition, the mean sizes d0 = <d> (number-averages) and standard deviations σ = <(d-

<d>)2>1/2 were calculated using the classical Gaussian statistics formulas. 

 

Dynamic Light Scattering (DLS) and Zetametry 

A Nanosizer™ Nano ZS90 from Malvern™, UK, was used to measure ζ potentials, Z-average 

hydrodynamic diameters (Dh), and polydispersity indexes (PDI). The 2nd order Cumulant fit was 

used for analysing DLS data into a size distribution (the PDI being defined as the ratio of the 2nd 

order coefficient to the square of the 1st order one in the series18). The Smoluchowski equation 

was used to convert the measured electrophoretic mobility into a ζ potential value in mV. 

 

Attenuated total reflection infrared spectroscopy 

ATR-IR spectroscopy was carried on a GladiATR™ device from Pike Technologies mounted 

on a Bruker Vertex™ 70 FT-IR spectrometer. Typically a drop of sample was dried on the 

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
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diamond prism using a hair blower followed by a 64 scans measurement. Spectra were analyzed 

with the Opus™ software. 

 

Proton relaxometry 

Samples were prepared at concentrations of 6 mMFe. NMR tubes (7.5 mm outer diameter) were 

filled with 1 mL of each sample, and inserted in a Bruker™ mq60 relaxometer equipped with a 

60 MHz / 1.41 Tesla magnet. The samples were left to thermalize to 37 °C using a Julabo™ f25 

ED circulation bath. Following recommended protocols in proton relaxometry,19 longitudinal T1 

relaxation times were measured using an inversion-recovery sequence of first duration of 

∼0.1×T1 and final duration of ∼3×T1 with a recycling delay (RD) of ∼5×T1 between two of the 4 

acquisitions, 10 data points per scan, and an automatic RF receiver gain. Transverse T2 relaxation 

times were measured using Car-Purcell-Meiboom-Gill (CPMG) sequence, with delay time τ of 

0.04 ms between the 90° rotation to transverse plane and the 180° focusing pulse, a duration time 

of 3×T2, RD of 5×T1, and automatic receiver gain. The number of acquisition points was set by 

dividing the duration time by the delay time τ. 

 

Magnetic fluid hyperthermia 

NPs were dispersed at concentrations of 3 g⋅L-1 in diluted HNO3 (at pH∼2) to preserve their 

colloidal stability. The samples were placed in 500 µL plastic cuvettes, whose caps were pierced 

with a needle to introduce a fiber optics temperature probe of 420 µm outer diameter (medical 

range OTG-M420 fiber, Opsens™, Québec, QC, Canada) and measure temperature profiles 

versus time. Samples were thermalized at 37 °C using a glass-water jacket connected to a 

temperature bath until reaching equilibrium. The heat generation by magnetic NPs was triggered 

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
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using an induction coil (4-turn of 3.5 mm diameter hollow – 0.4 mm wall – copper tubing, 55 

mm outer diameter, 48 mm inner diameter, 34.5 mm height) fed by a Minimax Junior™ 1TS 3.5 

kW generator (Seit Elettronica™, Italy) applying an alternating magnetic field (AMF) at 

maximum amplitude Happ of 10.2 kA.m-1 and at a frequency f of 755 kHz as determined by finite 

element modelling.20 The amplitude and frequency of the magnetic field were corroborated by 

measuring the electromotive force in a scout coil (made of a single turn of 17.5 mm diameter) 

and an oscilloscope (Agilent™ 54641 A). The AMF was applied for 5 min while recording the 

elevation of temperature and measuring its slope at early times (within first 5 s). 

 

Static (DC) magnetization 

DC magnetization curves of the NP aqueous dispersions were obtained up to 1.79 Tesla on a 

homemade vibrating sample magnetometer (VSM) at the SGIker facility (UPV/EHU). The 

magnetic field was measured by a gaussmeter whereas the signal was conditioned by a 

Stanford™ SR810DSP lock-in amplifier controlled by a PC under a LabVIEW™ program. All 

VSM measurements were performed at room temperature, the applied field Happ being cycled 

from 1.43×106 A⋅m-1 to -1.43×106 A⋅m-1 and then back to 1.43×106 A⋅m-1. 

 

Zero field cooling – field cooling (ZFC-FC) magnetometry 

ZFC-FC experiments were conducted on a magnetic property measurement system (MPMS™ 

7T from Quantum Design™, San Diego, CA, USA). This ultrasensitive magnetometer was 

previously calibrated by Y3Fe5O12 garnet 1 mm diameter sphere (standard reference materials 

2853) and reset after each measurement. Estimates of the blocking temperature were made 

according to a previously published protocol.21, 22 

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
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Equivalent iron titration in IONP suspensions 

The equivalent iron molarity [Fe] was measured by a disruptive photometric assay, using the 

characteristic absorption peak at 350 nm of the [Fe(Cl)6]3- complex when an aliquot of the 

suspension was dissolved in concentrated hydrochloric acid (HCl 5 M), according to previous 

calibration law OD350nm, 2mm=0.5043 ×[Fe]mM+0.0172. Then [Fe] was converted into iron oxide 

weight assuming pure γ-Fe2O3 composition (∼80 g per mol of iron). 

 

Small angle neutron scattering (SANS) 

SANS curves were acquired on the PACE spectrometer of the LLB-CEA Saclay, France, 

equipped with an isotropic BF3 detector made of 30 concentric rings of 1 cm width each. Three 

configurations were used to cover overlapping q ranges of 3.1×10-3 – 3.3×10-2, 1.4×10-2 – 

1.5×10-1, and 4.7×10-2 – 0.48 Å-1, with the following values of sample-to-detector distance D and 

neutron wavelength λ: D=4.57 m and λ=13 Å, D=2.85 m and λ=4.6 Å, D=0.87 m and λ=4.6 Å. 

After dividing scattered intensity by the transmission factor, subtracting the incoherent 

background, and normalizing by the flat signal of a cuvette filled with light water to correct the 

detector efficiency, the absolute intensity in cm-1 was obtained.23 Curve fitting by a polydisperse 

sphere form factor gave the RSANS radius and its standard deviation, and Porod’s law at high q 

knowing volume fraction φ gave an estimate of the specific area Aspe (Figure S1). 

 

RESULTS AND DISCUSSIONS 

In the course of our work, we postulated that water traces are incorporated in the highly 

hygroscopic polyol solvent and that this initial water content in the mixture before reaction is a 

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
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key parameter to produce well-defined magnetic IONPs. This led us to carry out an extensive 

study on the role of controlled additions of water in the synthesis of iron oxide nanoparticles in a 

mixture of polyols (DEG, NMDEA). Different batches of IONPs were thereby produced by 

varying reaction parameters such as reaction time, solvent system, amount and timing of 

injections of water amounts, i.e. hot injection at solvent reflux vs. heating-up of the reaction 

mixture including water. Since the two major biomedical applications of IONPs are for MFH and 

as MRI contrast agents, we have dedicated our efforts to produce well-defined IONPs suitable 

for these two applications. Large (several tens of nm) IONPs were produced for MFH, while 

ultra-ultra-small superparamagnetic iron oxide NPs (UUSPIO) of just a few nm were synthesized 

for use as positive MRI contrast agents with T1-weighted sequences.24-27 

 

Study and optimization of the forced hydrolysis pathway in polyol 

The main reaction parameter to control IONP morphology (and therefore magnetic properties) 

was the solvent composition. A mixture of DEG and NMDEA (1:1 volume ratio) was used to 

yield large IONPs, while UUSPIO NPs were produced in pure DEG. In both cases, the same 

quantity and stoichiometric ratio of iron(II,III) chlorides and hydroxides were used 

(Fe3+/Fe2+/OH- 2:1:8, i.e. one hydroxide anion per chloride).  

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
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Figure 1. TEM micrographs of γ-Fe2O3 NPs of mono- or multi-core morphology: a) 36ff 

(32.3±5.0 nm), b) 35ff (29.1±4.4 nm), c) 34ff (18.5±3.2 nm), d) 32ff (14.5±3.4 nm), e) 31ff 

(27.5±4.2 nm), f) 30ff (46.9±8.5 nm), g) 15ff (36.9±4.8 nm), and h) 17ff (4.3±1.1 nm). TEM 

sizes in parentheses correspond to the mean outer diameters and respective standard deviations. 

Reactants were heated from room temperature (RT) to reflux (approximately 30 min to reach 

220 °C) to obtain IONPs. Different quantities of water were injected to the reaction mixture 

either at RT before heating (heating-up, HU) or at reflux (hot injection, HI). Solvents used for 

the syntheses were freshly ordered and preserved from moisture. In the case of the 

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
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DEG/NMDEA solvent system, water was injected in different amounts, from 100 μL to 2 mL, 

into 120 mL of the total polyol solvent mixture, representing 0.083 % to 1.67 % volume ratios 

(v/v) or 5.5 to 11 mmol H2O, i.e. stoichiometric (not catalytic) water quantity compared to the 

total iron(II,III) salts (6 mmol). Lower water amounts did not allow producing IONPs, while 

larger quantities of water led to ill-defined IONPs. As seen on data (Figure 1 and Table 1), 

optimal control, in terms of size-distribution and morphology homogeneity, was achieved when 

mixing a determined amount of water in the solvent system with the precursors before heating 

(HU), as supposedly ascribed to a more homogeneous composition of the starting mixture.  

Surprisingly, using anhydrous iron(III) chloride instead of the hexahydrate compound did not 

allow producing magnetic IONPs, even when traces of water were added before heating (HU). 

This evidences the critical role of water and its necessary presence in the starting iron salt 

precursors for the positive outcome of the reaction. In the polyol/poly(hydroxy)amine 

(DEG/NMDEA) synthesis indeed, the solvents act simultaneously as multivalent chelators for 

iron(II,III) cations, as well as a high boiling temperature medium to achieve a good control over 

the nucleation and separation from growth of IONPs. The chloride counter-ions of the iron(II,III) 

salts are thus exchanged by complexing solvent molecules and subsequently by hydroxide anions 

or by water molecules when adding the NaOH solution. It was described by Caruntu et al. that 

the actual precursors of inorganic polymerization are iron(II,III) hydroxides in which the metallic 

centers are also chelated by DEG.11 Therefore, the polyol route is also referred to in literature as 

a “forced hydrolysis” mechanism. This salt metathesis can be observed by eye when mixing the 

reactants from the color changes of the organometallic solution turning into a black colloidal 

suspension of magnetite (Fe3O4) NPs. Studying the medium of synthesis by 1H NMR 

spectroscopy helped understanding the mechanism of reaction (Figure S2). It was observed that 

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
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controlled water addition shifts the broad peak attributed to the labile protons of hydroxyl groups 

in DEG and NMDEA (at respectively 3.43 and 3.07 ppm). Apart from further shifting of this 

labile protons peak ascribed to pH variation occurring during the synthesis (hydroxyl groups 

being converted into oxides), the NMR spectrum does not show any evidence of polyol 

molecules degradation. It is worth noting that the IONPs are, in most cases, covered by a layer of 

chelating solvent molecules even after several washing steps using a mixture of ethanol and 

ethylacetate.14 This affects the colloidal stability of the samples, and their ability to be oxidized 

by the boiling Fe(NO3)3 addition.17 During the oxidation step, the sample color is expected to 

turn from black to dark red as IONPs are oxidized from magnetite to maghemite. In some cases, 

especially for nanoflowers, the color of the colloidal solution remained black. This protective 

layer of DEG and NMDEA at the surface of IONPs was also evidenced by ζ potential 

measurement at varying pH (Figure S3). The isoelectric point (IEP) of maghemite is expected at 

around pH=7, while the IEP of IONPs still covered by a layer of solvent ligands was shifted to 

about pH=9, which is consistent with the expected pKa value of the tertiary amine in NMDEA. 

Washing IONPs by a precipitation-redispersion process in aqueous alkaline media revealed to be 

an efficient means to completely remove the remainder of chelated solvents as evidenced by the 

shift of the curve of ζ vs. pH after extensive washing and by the ATR-IR spectrum on Figure S3. 

 

Structure and properties of the synthesized IONPs 

In the case of the sole DEG solvent, amounts of water as large as 5 mL, representing 4.2 % of 

the total solvent volume or 275 mmol H2O molecules, were injected at reflux temperature with a 

syringe needle through a septum (hot injection, HI), generating much smaller IONPs, with 

diameters typically in the order of 3-5 nm. The fast introduction of a water excess at high 
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temperature immediately generated a sudden nuclei burst, with a solution turning from deep 

green to black. This hot injection method lead to ’ultra-ultra-small’ IONPs (UUSPIOs) as there is 

a limited quantity of precursors in solution available for crystal growth. The time-scale of 

reaction was usually much shorter than when synthesizing larger IONPs in DEG/NMDEA. 

Typically, reactions in sole DEG were completed after only 15-20 min. When letting an aliquot 

of the reaction mixture at rest over a strong permanent magnet, the supernatant became colorless, 

evidencing the total conversion of the colored iron(II,III) organometallic precursors into a 

colloidal magnetite phase. 

The final products of all the different batches greatly differed in sizes and shapes according to 

the solvent composition: only DEG or DEG/NMDEA, or amount and timing of water addition. 

Smooth spheres as well as more complex structures previously reported as “nanoflowers” were 

obtained. TEM images enabled to determine both the overall diameters and the individual grain 

sizes for these multi-core IONPs. These estimates can be compared to other available techniques 

for particle sizing, namely the fit of the magnetization curve by the Langevin function convolved 

with a distribution law of diameters, or of the SANS curve by a polydisperse sphere form factor, 

these two methods being shown in supporting information (Figures S1 and S4). Smooth spheres 

were produced with adjustable sizes from ∼4 nm to ∼20 nm when the mixture was left at rest 

during all the reaction (under ‘natural convection’), while nanoflowers were obtained when the 

mixture was continuously homogenized with a stirring shaft, with sizes from ∼27 to ∼37 nm 

(Figure 1). The size-histograms could be well-fitted using a log-normal distribution law of 

parameters α and β (Figure 2). In order to express diameters as d0 ± σ, the mean values d0 along 

with standard deviations σ were calculated according to the following formulas:  

2
0

2βαedd ==   and  ( ) ( )1
22

0
2

0
2 −=−= βσ eddd  
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Figure 2. High magnification (HM) TEM micrographs of γ-Fe2O3 nanoflowers: a) 36ff, b) 35ff, 

c) 30ff, and d) 15ff. Distribution of e) grain sizes of the 15ff batch (7.4±1.4 nm), and f) outer 

diameter (36.9±4.8 nm), measured on HM-TEM micrographs and log-normal fits. 

Size distributions characterized by β parameters below 0.2 were considered sufficiently narrow 

and suitable for further characterization. The condition N100HU-5h, using mechanical stirring, 

proved to be both optimal and robust for the reproducible synthesis of nanoflowers as evidenced 

by the similar TEM images obtained for the 35ff and 36ff batches (Figure 2). In contrast, similar 

conditions without stirring (N100HU-5h*) led to smooth spherical iron oxide NPs (34ff) of 

narrow size-distribution 18.5±3.2 nm as determined by TEM analysis, or 18.8±6.5 nm as 

obtained by fitting the DC magnetization curve (Figure S4). This observation highlights the 

critical role of mixing (diffusion – reaction vs. active stirring) as experimental parameter on the 

resulting IONP morphology. 
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Figure 3. DLS correlograms and intensity-averaged distribution of diameters of a) 35ff 

nanoflowers (Dh=36 nm, PDI=0.13), and b) 20ff UUSPIO smooth spheres (Dh=16 nm, 

PDI=0.21). Values in parentheses correspond to the Z-average hydrodynamic diameter (Dh,) 

obtained from the 2nd order cumulant fit, and polydispsersity index (PDI). See all DLS plots on 

Figure S5. 

On the other hand, the dispersion state of the different IONP batches synthesized was probed 

by dynamic light scattering (DLS) in a weakly acidic aqueous medium (pH∼2). The fit of 

correlograms by the 2nd order cumulant method provides the Z-average hydrodynamic diameter 

(Dh) and polydispersity index (PDI). Typical values of Z-average diameters were in the order of 

30 nm, ranging from 16 to 55 nm when considering all synthesized batches (Figure S5). For 

instance, the Z-average hydrodynamic diameter of 35ff nanoflowers was measured at Dh=36 nm 

(PDI=0.13), while 20ff UUSPIO smooth spheres were sized at Dh=16 nm (PDI=0.21) (Figure 3). 

Hydrodynamic diameters estimated by DLS are always found larger than diameters determined 

by TEM due to the dried state of the TEM sample. The DLS sizes however represent better the 

real dispersion state of NPs. 
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Figure 4. a) Temperature profiles vs. time of different samples  of iron oxide concentration set at 

3 g⋅L-1, under application of an AMF at Happ=10.2 kA⋅m-1 and f=755 kHz. The full list of 

samples and corresponding initial slopes (within first 5 s) is given, on Table S1; b) Deduced SAR 

vs. mean diameter (determined by TEM) for smooth nanospheres (blue) and nanoflowers (red). 

Solid lines are power law fits of exponents 2.2 and 0.48, respectively.  

The efficiency of the different NP batches for magnetic hyperthermia was evaluated by 

applying an AMF for 5 min and by recording the temperature rise of the solvent, with iron oxide 

concentrations set to 3 g⋅L-1. While no significant heating under AMF was obtained for a few 

samples like the 17ff UUSPIOs with the smallest size, a temperature rise from 37 °C to 70 °C 

was recorded for the largest dispersible nanoflowers 15ff (Figure 4). Therapeutic hyperthermia 

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
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requires that IONPs heat cancerous tissues up to 43–44 °C to deposit a suitable “thermal dose”, 

usually by IONP intratumoral injection.28 This temperature may potentially be reached in vivo 

with the best heating samples after few minutes, even at a concentration as low as the one used in 

our study (3 g⋅L-1), assuming that their heating properties are preserved in physiological 

intracellular conditions.29 The heating properties of our sample library were thus quantified using 

the specific absorption rate (SAR) determined experimentally using the commonly used formula: 

( ) mCtTSAR Pt 0→∆∆=  

where (∆T/∆t)t→0 is the temperature raise slope at early times of AMF application (first 5 s) to 

simulate adiabatic conditions,30 m is the mass of nanoparticles in 1 mL of suspension and CP is 

approximated by the specific heat of pure water.2 

We have used the SAR to evaluate the heating properties of our nanoparticles instead of the 

intrinsic loss power (ILP)31, because the SAR variation with field intensity can depart 

significantly from a quadratic law. The plot of SAR at given field amplitude (Happ=10.2 kA⋅m-1) 

and frequency (f=755 kHz) vs. diameter measured by TEM clearly evidences a correlation 

between the SAR and IONP outer diameter measured by TEM. (Figure 4b) Nanospheres 

experimentally follow a quadratic law with diameter while nanoflowers follow a lower exponent 

(nearly square-root). This is qualitatively in agreement with the most advanced models on the 

optimal size of magnetic NPs for MFH at given values of their other physical properties (specific 

magnetization and magnetic anisotropy).32 Results compiled in Table S1 evidence that all 

nanoflowers and smooth spheres larger than 12-14 nm are efficient nanoheaters, while UUSPIOs  

smaller than 5-6 nm do not generate sufficient heat but are likely useable as positive (T1-

weighted) MRI contrast agents, as shown later in this article. Smooth spheres of intermediate 

diameters (10-14 nm) are ideal to be used both as nanoheaters for MFH and as negative (T2-
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weighted) MRI contrast agents (vide infra), once coated with appropriate ligands,  while larger 

ones might be more difficult to stabilise in physiological media. 

An in-depth characterization of magnetic heating properties was carried out on selected IONP 

samples with interesting morphologies and core size in 20-40 nm range as evidenced by TEM, 

with outstanding heating efficiency (SAR>200 W⋅g-1 at Happ=10.2 kA⋅m-1 and f=755 kHz). Large 

smooth spheres (34ff) and nanoflowers of different grain size and increasing outer diameters 

(31ff, 35ff, and 15ff) were thus selected to be further examined with an in-house developed pick-

up coil set-up, allowing SAR measurement on a broad range of AMF frequencies and 

amplitudes.33 AC magnetization curves of NPs are plotted on Figure 5a versus amplitude Happ 

up to 21 kA.m-1 at fixed frequency (f=1030 kHz). Similar curves at different frequencies are 

provided as supporting information accompanying this manuscript (Figures S6, S7, S8 and S9). 

 

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956


 
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic 
Chemistry, 2017, 56(14), 8232−8243, after peer review and technical editing by the publisher. Copyright © American 
Chemical Society. To access the final edited and published work see http://pubs.acs.org/doi/abs/ 
10.1021/acs.inorgchem.7b00956 

 21 

Figure 5. a) AC hysteresis loops of samples 31ff, 34ff and 35ff at 1023 kHz fixed frequency 

(left); b) SAR of samples 31ff, 34ff and 35ff versus field amplitude at different frequencies 

(right).  

Such AC hysteresis loops reflect that magnetic moments of IONPs under AMF excitation 

oscillate with a phase lag relatively to the magnetic field, leading to a partial conversion of the 

radiofrequency magnetic energy into heat that then dissipates in the surrounding aqueous 

medium. Larger AC hysteresis loops areas are obtained at higher amplitudes Happ and higher 

frequencies, while stronger magnetic anisotropy of the materials tends to change the shapes of 

the curves from sigmoidal to more square-like shapes. Carrey et al. interpreted such dynamic 

hysteresis loops by a two-level Stoner-Wohlfarth model instead of the classical linear response 

theory involving Néel and Brown relaxation times of the magnetic moments.32, 34, 35 The larger 

the surface of the hysteresis loops, the larger the energy dissipated by the IONPs per AMF cycle. 

These AC magnetization curves can be compared to the calorimetric experiments by multiplying 

the surface of the hysteresis loop with the frequency and by dividing by iron oxide concentration 

to get the SAR. The resulting values are then plotted as a function of frequency and amplitude, as 

shown in Figure 5b.  
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Figure 6. a) SAR and b) hysteresis loop area A vs. applied intensity Happ of the oxidized 15ff 

nanoflower batch. As can be appreciated on the zoomed curves at low Happ (two upper graphs), 

the 15ff sample behaves as a superparamagnetic materials at low field (SAR varies as the square 

of Happ). At higher field (bottom graphs), it rather shows ferromagnetic behavior with a 

hysteresis area that first rises above threshold anisotropy field Han and then reaches a plateau. 

SAR values as high as 2000 W⋅g-1 were obtained at a frequency of 1023 kHz and amplitude of 

20 kA⋅m-1, although out-passing by a factor 4 the upper limit of 5×109 A⋅m-1⋅s-1 of the f⋅Happ 

product recommended for human treatment by MFH.36 Whereas the ILP parameter was 

previously introduced in the literature by dividing the SAR with frequency and the square of 

Happ,1 the assumption that SAR is a quadratic function only works at low field amplitude (Figure 

6a). We have therefore preferred to report the ratio (in J⋅g-1) of the SAR and frequency, which 

represents the area A of a hysteresis loop (i.e. thermal losses per AMF cycle). This enables to 

directly compare the heating properties of the magnetic IONPs synthesized in this work to 

different ones reported in literature, although measured under various conditions and setups. As 

reported by Carrey et al.,32 the plot of hysteresis surface area vs. Happ expected for ferromagnetic 

NPs exhibits a sigmoidal shape: it starts with a slow increase as long as the AMF amplitude is 

lower than the anisotropy field Han of the nanomaterials, then increases rapidly (i.e. with an 
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exponent larger than two, value expected for superparamagnetic NPs), and finally plateaus in the 

high-field limit. The plot of A vs. Happ for the 15ff sample perfectly fits this description (Figure 

6b), with a threshold anisotropy field Han∼104 A⋅m-1. The plateau value around 0.7 mJ⋅g-1 for the 

oxidized 15ff sample is not particularly outstanding as a maximal value of 1.8 mJ⋅g-1 was 

previously reported for IONPs obtained by coprecipitation followed by hydrothermal 

treatment.37 The oxidized 15ff sample however illustrates the complex magnetic behaviour of 

nanoflowers reflected in the dependence of their hysteresis loss area A with the amplitude Happ of 

the AMF: For the six probed frequencies, the plots of the hysteresis area A vs. Happ collapse 

almost perfectly on a unique master curve. The field dependence remains quadratic up to a 

threshold Happ ascribed to the anisotropy field Han of the multi-core structure, characteristic of 

collective dynamics of sintered grains as in a multiple-domain magnet. For any applied AMF 

strength below Han, nanoflowers exhibit pure superparamagnetic response as evidenced by the 

quadratic variation of their SAR vs. Happ plot, each of their magnetic mono-domains being 

excited individually by the AMF. Other IONP batches of lower outer sizes (below 30 nm) exhibit 

even superior plateau values of the hysteresis area per cycle vs. Happ (which exact value slightly 

varies with frequency), from ∼1.6 mJ⋅g-1 for 31ff nanoflowers (Figure S10) and 34ff smooth 

nanospheres (Figure S11) to ∼2.5 mJ⋅g-1 for 35ff nanoflowers (Figure S12) or a bit lower (2 

mJ⋅g-1) at the lowest frequency of 149 kHz. To the best of our knowledge, these are the highest 

hysteresis area values reported so far for synthetic magnetic IONPs, excluding the case of 

needle-like submicron γ-Fe2O3 particles commercialized for magnetic recording applications, 

that can reach hysteresis areas up to 8 mJ⋅g-1, but necessitate to apply an AMF stronger than a 

thrice higher threshold field, Han∼30 kA⋅m-1.38 
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a)  b)  

Figure 7. a) Static magnetization curve of 15ff nanoflowers measured by VSM at room 

temperature in water before and after oxidation (red and blue curves, respectively). In a narrow 

range -1.6<Happ<1.6 kA⋅m-1 only, the curves can be approximated by Md=χ⋅Happ, the 

susceptibility reaching a value as high as χ=59 in both cases; b) Enlargements of the VSM 

curves in the low field region (-10<Happ<10 kA⋅m-1) of 15ff nanoflowers dispersed in an agar gel 

(upper curve) or in glycerol (lower curve), showing that the coercive field (Hc) and remnant 

magnetization (Mr) – if any – lay near the limit of sensitivity of the field probe i.e. ∼500 A⋅m-1. 

To get an insight into the peculiar structure-property relationships and complex magnetic 

behavior of nanoflowers, the DC magnetization curves of 15ff IONPs (with or without the 

oxidation step) were also measured with a lab-made VSM setup (Figure 7). In both cases, the 

IONPs were dispersed in water acidified with dilute HNO3 (pH∼2.5). The magnetization curve of 

both samples exhibits null coercive field (Hc=0) and zero remanence (Mr=0), which corresponds 

to pure superparamagnetic behavior. This evidences the good dispersion state of these IONPs in 
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water, as a remnant magnetization would have been expected in case of an aggregated sample. 

The saturation magnetization of the non-oxidized sample obtained after synthesis and washings 

is 350 kA⋅m-1, below the value of bulk magnetite (Fe3O4) (500 kA⋅m-1), as ascribed to spin-

canting defects at the NP surface,39 or to partial oxidation already starting during the purification 

steps, as no particular precautions were taken to prevent it. In contrast, total oxidation of sample 

15ff obtained by heating with iron(III) nitrate, led to a magnetization at saturation of 300 kA⋅m-1, 

which is again below the expected value of 400 kA m-1 for bulk maghemite (γ-Fe2O3) but 

nevertheless quite a satisfying value for IONPs. Therefore, all the IONP batches were oxidized 

intentionally to control the magnetic phase of the IONPs, despite lowering the magnetic 

saturation and, presumably, their heating efficiency for MFH. All samples reported in this study 

exhibit similar saturation magnetization (Figure S4). 

 A second useful information provided by VSM magnetometry can be obtained by fitting the 

DC magnetization curves by the Langevin function characteristic of superparamagnetism, 

convolved by a log-normal distribution of diameters to take into account size-dispersity.21 The 

resulting magnetic domain diameters lay below the outer diameter measured by TEM for 

nanoflowers: 25.1±12.0 nm for 35ff, 21.9±10.6 nm for 31ff, while almost identical to TEM 

(within experimental uncertainty) for 34ff smooth nanospheres: 18.8±6.5 nm. 

 

Sensitive magnetometry performed on the commercial MPMS system on the oxidized and 

non-oxidized 15ff nanoflowers (Figure S13) led to ZFC and FC magnetization curves vs. 

temperature both lower for the non-oxidized as compared to the oxidized 15ff NPs. Such non-

classical ZFC-FC curve profile has been already reported for large (18 and 22 nm) Fe3O4 NPs 

synthesized by iron(III) oleate thermal decomposition,40 and was partially explained by the so-

http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956
http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00956


 
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic 
Chemistry, 2017, 56(14), 8232−8243, after peer review and technical editing by the publisher. Copyright © American 
Chemical Society. To access the final edited and published work see http://pubs.acs.org/doi/abs/ 
10.1021/acs.inorgchem.7b00956 

 26 

called Verwey or charge ordering transition,40, 41 when such IONPs undergo a slight 

crystallographic distortion from cubic, electrically conducting, to inverse spinel, electrically 

insulating, structure, this change of crystalline structure also impacting the magnetic properties. 

A suitable method to estimate the blocking temperature TB, defined at the transition from the 

ferrimagnetic state to the superparamagnetic regime, consists in plotting the derivative of the 

MFC-MZFC curve difference with respect to temperature.22 For the two different batches (non-

oxidized and oxidized 15ff), the plot exhibits three maxima (Figure S13). The peak near 90 K is 

ascribed to the Verwey transition of magnetite, yet it is not clear why it also appears on the 

oxidized sample. The two other peaks correspond to characteristic temperatures, respectively 

near 200 and 300 K. It is rather uncommon for a sample to exhibit two values of blocking 

temperatures. One hypothesis is that TB1≈200 K is ascribed to individual magnetic domains of 

diameter 7.4±1.4 nm and TB2≈300 K to the whole magnetic multi-core structure of outer 

diameter 36.9±4.8 nm. The complete interpretation of these data, e.g. in term of superspin glass 

transition, would necessitate complementary AC susceptometry experiments vs. temperature, to 

study the slow relaxation dynamics of the frustrated spins in multi-core nanoflowers as reported 

by Kostopoulou et al.,10 but it is beyond the scope of this article. 
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Figure 8. Ratio of transverse (r2) to longitudinal (r1) relaxivities at 1.41 T/60MHz (37°C) vs. 

average TEM diameters of IONPs, for nanosphere (blue) and nanoflower (red) samples. Solid 

lines are power law fits of exponents respectively 0.92 and 0.48.  

In order to assess the efficiency of the different batches synthesized by the polyol route to relax 

nuclear spins of water protons, their transverse (r2) and longitudinal (r1) relaxivities were 

measured at physiological temperature (37 °C) with a 60 MHz relaxometer based on a 1.41 Tesla 

magnet (i.e. close to the 1.5 Tesla magnetic field of most clinical MRI machines used in 

hospitals) (Figure 8). Practically, the longitudinal (T1) and transverse (T2) relaxation times of 

water protons were measured with an inversion-recovery and a CPMG sequence, respectively at 

decreasing equivalent [Fe] concentrations starting from 6 mM, in acidified water to maintain 

colloidal stability. Relaxivities are obtained from the slope of the linear variation with [Fe] of the 

longitudinal (respectively transverse) decay rate of water proton spins, according to:19 

[ ] ( )water2or1 1Fe1 iii TrT +×==  

where (1/Ti)water represents diamagnetic contribution of water. 

In the “outer sphere” model of MRI contrast agents introduced by Ayant and Freed for 

paramagnetic agents, and adapted by Gillis et al. to superparamagnetic IONPs,42 the increase 
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relaxation rate 1/T2 compared to pure water originates from fluctuating dipolar interactions 

between nuclear spins of water protons and the electronic magnetic moment of IONPs. For a 

limited range of diameters called “motional averaging regime”, the superparamagnetic particle 

can be considered immobile during the echo time (TE) of the sequence compared to random 

trajectories of water molecules diffusing all around the magnetic sphere. In this case, Vuong et 

al. have shown that r2 follows a universal scaling law that is quadratic both with the 

magnetization and with the radius of the “outer sphere”, defined as the minimum approach 

distance between H2O molecules and the IONP center.43 For the IONP batches prepared in this 

study, the quadratic law is perfectly observed for the smooth sphere NPs (Figure S14), 

validating the proton diffusive model. This brings additional evidence that no organic layer 

remains on their surface after the washing steps. If not, water protons could not reach IONP 

surface and the quadratic law would not be observed. In the case of nanoflowers, the variation of 

r2 vs. size appears erratic, presumably because of their rough geometry and very high specific 

area mentioned before, that can be up to 60% larger than the geometrical area of a smooth sphere 

(see case of ff35 batch on Figure S1). Proton relaxivity may arise by a combination of “outer 

sphere” and “inner sphere” mechanisms, meaning that water molecules can be transiently 

adsorbed in the porosity of nanoflowers, relaxation dynamics can therefore not be modelled by a 

single translational diffusion constant of water molecules around the particle. 

The ratio of relaxivities r2/r1 is commonly used to determine whether NPs are most suitable as 

T1 (positive) or T2 (negative) MRI contrast agents. With r2/r1 ratios larger than 5, most of the 

IONPs synthesized here are suitable as negative contrast agents for T2 weighted MRI 

applications, such as commercial medical products Resovist®, Feridex®, Cliavist® or Clariscan®.44 

With much smaller r2/r1 ratios, UUSPIOs of just a few nm diameters synthesized in pure DEG 
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would rather be perfectly suitable as T1-type, positive contrast agents. Such UUSPIO-based T1-

type contrast agents not yet commercially available would however be an excellent alternative to 

gadolinium chelates currently used and suspected of toxicity.45 Free gadolinium ions (i.e. not 

complexed by very strong ligands) are indeed nephrotoxic and neurotoxic, and undesirable side 

effects may arise in patients with renal insufficiency. Iron oxides having been proven perfectly 

safe in clinical use, these UUSPIOs are likely to find applications as alternative T1 contrast 

agents in clinical MRI in a near future. 

 

CONCLUSIONS 

We have presented herein a comprehensive study of IONPs synthesis and characterization. 

IONPs were synthesized by the forced hydrolysis of iron(II, III) chlorides either in pure DEG 

polyol or in a mixture with NMDEA poly(hydroxy)amine. We have evidenced the importance of 

controlling the amount and timing of water addition for a successful synthesis and proper control 

over IONP morphology. A library of samples was obtained, ranging from “ultra-ultra-small” (∼3 

nm) UUSPIOs obtained by water “hot injection” in DEG at 220°C and fast growth (20 min), to 

large IONPs (up to 37 nm) obtained by a longer “heating up” protocol in a DEG/NMDEA 1:1 

mixture. Depending on reaction conditions (natural mixing vs. mechanical stirring), either 

smooth sphere or nanoflower morphologies were obtained. The structural and magnetic 

properties of these nanoparticles were extensively studied. They all exhibit superparamagnetic 

behavior characterized by a reversible magnetization curve in static magnetic field, with a strong 

saturation magnetization above 3×105 A⋅m-1. On the physical point of view, the specific 

absorption rate (SAR) was first tested at given AMF conditions (755 kHz, 10.2 kA⋅m-1) and iron 

oxide concentration (3 g⋅L-1). These parameters were also varied over a broad range of field 
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strength and frequencies with the use of an AC magnetometer that is much faster than 

calorimetric experiments for estimating the SAR. The efficiency of most of synthesized batches 

as MRI contrast agents were also evaluated by proton relaxometry measurements. Several 

scaling laws were derived for the SAR and the relaxivity ratio r2/r1, both being estimated at 

physiological body temperature (37 °C). At given AMF condition, the SAR exhibits quadratic 

variation with diameter for smooth nanospheres and slower variations (viz. square root) for 

nanoflowers. Transverse relaxivity r2 exhibits also quadratic variation with diameter for smooth 

nanospheres, in line with the “motional averaging regime” of the “outer sphere” model of MRI 

contrast agents. The r2/r1 ratios, calculated to distinguish IONPs better suited as T1 or T2 MRI 

contrast agents, varies linearly on diameter for nanospheres, and with a lower exponent (viz. 

square root) for nanoflowers. In the case of the smallest diameter IONPs synthesized (USPIOs), 

their longitudinal relaxivity r1 at 1.41 T associated with moderate r2/r1 ratio make them 

alternatives to gadolinium chelates as positive MRI contrast agents, with lower risk of side 

effects on patients. 

 The AC hysteresis loops measured at varying AMF frequency and intensity brought more 

information on the magnetic hyperthermia mechanisms. In the case of nanoflowers and large 

nanospheres, the SAR vs. field intensity curve shows an inflexion point between low and high 

fields. Below this threshold field, they present perfect superparamagnetic behavior, whereas 

above this field they behave more like ferromagnets. The threshold field can be associated with 

an anisotropy field as was done in the two-level Stoner-Wohlfarth model developed by Carrey et 

al. for blocked magnetic moments.32 

Besides these obvious applications as nanoheaters in magnetic fluid hyperthermia and as MRI 

contrast agents, other uses can be envisioned. These very large diameter IONPs yet forming 
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stable colloidal suspensions exhibit extremely large magnetic susceptibility in DC magnetic field 

(χ up to 100), which can be a requested property for delicate experimental setups based on weak 

DC magnetic fields such as the “magnetic tweezers” to manipulate living tissues or embryos,46 or 

micromechanical experiments to assess the flexural rigidity of magnetic wires.47 

Another application could also be magnetic particle imaging (MPI) that requires IONPs 

optimally in the 20-25 nm diameter range so that magnetization saturates at low field strengths.48 

Such versatility of sizes, morphologies and thus of physical properties was achieved by playing 

only on the nature of polyols as well as the amount and way of introducing water in the reaction 

vessel (“hot injection” vs. “heating up”), in solvent reflux conditions. In brief, robust, gram-scale 

and easily reproducible synthesis protocols were described to prepare from ultra-ultra-small 

superparamagnetic cores to very large size magnetic smooth nanospheres and nanoflowers, the 

latter offering among the highest magnetic heating properties reported so far for synthetic iron 

oxide nanoparticles. 
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ABBREVIATIONS 

AMF, alternating magnetic field; DEG, diethylene glycol; DLS, dynamic light scattering; 

ATR-IR, attenuated total reflection infrared spectroscopy; ILP, intrinsic loss power; IONP, iron 

oxide nanoparticle; IEP, isoelectric point; MFH, magnetic fluid hyperthermia; MPMS, magnetic 

property measurement system; NMDEA, N-methyl diethanolamine; NP, nanoparticle; OD, 

optical density (or absorbance); SANS, small angle neutron scattering; SAR, specific absorption 

rate; UUSPIO, ultra-ultra-small superparamagnetic iron oxide. 
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For Table of Contents Only. The polyol route offers an excellent compromise between size and 

shape control and industrial up-scalability for the synthesis of iron oxide nanoparticles. However, 

this study highlights the critical role played by stoichiometric amounts of water during the forced 

hydrolysis mechanism, and describes a full library of samples of varying structures (mono-core 

vs. multi-core) and properties optimized for magnetic fluid hyperthermia and/or MRI contrast. 
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