
HAL Id: hal-01567619
https://hal.science/hal-01567619v2

Submitted on 26 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Next-generation Computer-aided Composition
Environment: A New Implementation of OpenMusic

Jean Bresson, Dimitri Bouche, Thibaut Carpentier, Diemo Schwarz, Jérémie
Garcia

To cite this version:
Jean Bresson, Dimitri Bouche, Thibaut Carpentier, Diemo Schwarz, Jérémie Garcia. Next-generation
Computer-aided Composition Environment: A New Implementation of OpenMusic. International
Computer Music Conference (ICMC’17), 2017, Shanghai, China. �hal-01567619v2�

https://hal.science/hal-01567619v2
https://hal.archives-ouvertes.fr


Next-generation Computer-aided Composition Environment:
A New Implementation of OpenMusic

Jean Bresson, Dimitri Bouche, Thibaut Carpentier, Diemo Schwarz
UMR STMS: IRCAM/CNRS/UPMC Sorbonne Universités, Paris, France

{bresson,bouche,carpenti,schwarz}@ircam.fr

Jérémie Garcia
Université de Toulouse – ENAC, France

jeremie.garcia@enac.fr

ABSTRACT

O7 is a new implementation of the OpenMusic computer-
aided composition environment. This paper gives a general
presentation of its visual programming framework, musical
structures, and in-built graphical editors. It also describes
embedded features for the interactive and dynamic execu-
tion of musical processes, and for digital signal processing.

1. INTRODUCTION

Computer-aided composition software provide composers
with computer tools and formalisms for the generation or
transformation of musical material [1]. After several gen-
erations of software, current computer-aided composition
frameworks like OpenMusic [2] have taken the form of ver-
satile domain-specific programming languages combining
expressive and computational power with the possibility to
interactively visualise and edit musical information through
symbolic representations.

Released in the late 90s and successor of the Patchwork
visual programming environment [3], OpenMusic (OM) is
today a widespread and common element of the contem-
porary music composers’ toolbox. OM can be considered
a graphical front-end of the Common Lisp programming
language [4], extended with musical functionalities and data
structures. 1 Initially dedicated to the processing of sym-
bolic musical material (musical scores), it is now operating
in a broad range of areas such as sound processing and syn-
thesis, spatial audio, mathematical music theory, and others.
A fairly developed and active user community lives within
user groups and institutional contexts worldwide. 2

This relative success and maturity shall not prevent from
looking forward: in this paper, we present a new implemen-
tation of the environment, introducing significant evolutions
of the computer-aided composition framework and concepts.
O7 is the main deliverable of a research project focused on
the idea of interactivity in compositional processes and
the development of innovative tools for the timed control of
music and signal processing [6]. The resulting software con-

1 Readers unfamiliar with OM should also consult previous publica-
tions and works such as [7] or the OM online documentation at http:
//repmus.ircam.fr/openmusic/.

2 The OM Composer’s Book series provides a rich overview of the
practice and use of the environment over the past decades through the
experience of an international sample of composers [5].

Copyright: c©2017 Jean Bresson. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 3.0
Unported, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

stitutes an original blend of traditional and more prospective
computer-aided composition features. 3

This paper is organised as follows: In Section 2 we first go
through general characteristics of the visual programming
environment. Section 3 then focuses on new embedded data
structures for computer-aided composition. In Section 4
we describe advanced interactive features related to the exe-
cution and rendering mechanisms of the software. Finally,
Section 5 is dedicated to digital signal processing.

2. ENVIRONMENT AND VISUAL
PROGRAMMING FRAMEWORK

An ambition at the beginning of this project was to simplify
and modernize the OM visual programming environment,
in order to facilitate its access for new users and to improve
the general user experience of more experimented ones.

Formally, visual programs (also called patches) mostly
follow the existing OpenMusic specification [4] — for this
reason we call this work a new implementation of the visual
language. They are shaped as standard directed acyclic
graphs made of functional boxes and object constructors
connected by “patch cords” [7] (see Figure 1).

Figure 1. A simple patch processing an input break-point function (BPF),
and generating a sequence of MIDI chords. The inspector at the right
displays and provides access to the properties of a selected component in
the visual program.

3 We actually consider this software as a research prototype more than
a full-featured implementation of OpenMusic. We provisionally call it O7
(with no “M”) so that its release and distribution do not interfere with the
use of current operating versions of OpenMusic (OM6).
Try it out!→ https://openmusic-project.github.io/

http://repmus.ircam.fr/openmusic/
http://repmus.ircam.fr/openmusic/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://openmusic-project.github.io/


An objective for the new interface was to provide cen-
tralized and homogenized access to the information about
the visual program components. All the objects of the vi-
sual language share a basic system of mutable “properties”.
Thanks to a dynamic interface-building mechanism based
on the declared type, defaults, documentation etc., of such
properties, selected attributes of any class can be visualized
and modified in an inspector window (as in Figure 1), in
dedicated editors (see for instance in Figure 2), or presented
as general system preferences (in this case the default value
for the attribute is displayed and edited).

Editor windows. Editors are usually attached to musical
structures manipulated in OM visual programs. They are
constructed using flexible and embeddable graphical lay-
outs, in such a way that compound editors can be easily
assembled for objects containing other kinds of object’s
editors as sub-components. Some examples will be given
and displayed in the following sections.

File system and persistence. The existing file system
and persistence mechanisms in OM are based on the concept
of workspace. These were mostly discarded and replaced
by standalone documents, so that users can easily step in
the environment just by opening and reading/executing doc-
uments and programs.

Documents are therefore handled by a centralized system
keeping track of used files and resources, cross-dependencies
(programs used in other programs), as well as package or
external library dependencies. We use a markup language-
style format to store the documents, written as structured
embedded lists in text files, which makes the resources and
visual programs both machine- and human-readable.

3. MUSICAL STRUCTURES

An initial set of data structures has been designed for the
environment, by composition of abstract super-classes deter-
mining fundamental features and behaviours of the musical
objects.
Timed sequences. One of the main abstract super-classes,
shared by most musical objects, is called TIMED-
SEQUENCE [8]. Every object inheriting from this class
is reducible to an ordered set of time-stamped events, which
can be:

– Visualized and manipulated as such on a timeline-based
representation.

– Transformed into a set of timed actions (predefined or
programmed by the user) during the execution (render-
ing/playback) of the musical object.

The first musical objects created in this framework are the
standard BPF (break-point function), automations, 2D/3D
curves, etc. Figure 2 shows a simple patch instantiating a
BPC object (2D curve), attached to a custom action to be
performed for each point at executing this curve.

The DATA-STREAM is another kind of TIMED-SEQUENCE,
gathering shared features for container objects simply con-
sisting of a sequence of timed data, and offering flexible
representation and rendering functionality. We call DATA-
FRAME the type of elements in this sequence: a super-
class for atomic musical objects such as MIDI-NOTE, OSC-
BUNDLE, SDIF-FRAME or other musical data specified at
some point of a time-line. The graphical representation

Figure 2. Instantiation and visualization/editing of a BPC (break-point
curve). An action (my-action, a lambda-function defined by a visual
program) is set to be applied to each point at reading the curve. The BPC
editor includes the auto-generated properties pane at the right, and the
time-line representation inherited from TIMED-SEQUENCE at the bottom.

(a)

(b)

Figure 3. Two kinds of DATA-STREAMs: (a) MIDI piano-roll and (b)
custom representation of a stream of OSC-bundles. In (b) the radius of the
circles depicts the amount of data contained in the bundles, and their color
and vertical position follow other arbitrary rules. The contents of a data
chunk can be inspected by hovering the mouse over it in the editor.



and behaviour of the DATA-STREAM contents in the edi-
tor can be easily specialised, facilitating the implementa-
tion of notes in a PIANO-ROLL, for instance, or of more
customized/user-programmed graphics (see Figure 3).
Compound objects and containers. The COLLECTION
object is proposed as a basic container for arbitrary sets
of objects of any given type (generalizing class-specific
containers such as BPF-LIB, BPC-LIB, etc. featured in OM).

The compound-layout editor model described above facil-
itates building editors for such composite structures. Fig-
ure 4 shows the COLLECTION editor: a simple browser,
whose main graphical component is built and updated au-
tomatically according to the type of its contents — in this
case, a set of 3DC objects (3D curves).

Figure 4. Editor of a COLLECTION containing 3DC objects. The main-
window layout embeds a small COLLECTION-specific header (A), and
the current contents’ editor at the bottom (B). Here the embedded 3DC
editor itself embeds a number of sub-editors as graphical components: the
standard properties pane (C), BPC editors for editing top and front views
(D, E), and the time-line editor inherited from TIMED-SEQUENCE (F).

Meta-scores. A major improvement of this implemen-
tation of OpenMusic concerns the maquette interface: a
hybrid visual program / sequencer allowing objects and pro-
grams to be arranged in time and connected by functional
relations — including dependencies to the temporal layout
and context, see [2, 9].

In O7 we call this tool a meta-score [10] (see Figure 6)
and emphasize a number of features, such as:

– A dual/switchable view including the classic “visual
programming” and a track-based, more “sequencer-
oriented” display (see Figure 6). The visual program-
ming mode (a) highlights functional relations between
objects and processes, while the tracks mode (b) hides
them to emphasize the temporal structure and authoring
in a closer way to traditional DAW interfaces.

– Dynamic aspects in execution, through a number of
features including on-the-fly computation or construc-
tion of the elements laid-out in the time structure (see
Section 4).

– Representation and access to the time-structure of inter-
nal musical objects, in order to apply local or global
time-transformations (shift, stretching, compression,
etc.) and synchronization [8].

4. INTERACTIVE PROCESSES

Reactivity and interaction. O7 provides a native and im-
proved support for reactive visual programs, an extension
of the execution model of OM proposed in [11]. While OM
visual programs are evaluated on-demand by explicit re-
quest of the user in order to update box values, this feature
makes for reactive outputs of visual program components to
propagate notifications of change to downstream-connected
components (e.g. after some data modification by the user,
change of an input value, reception of an external message,
etc. — see Figure 5). This notification ultimately triggers
an update request for specific values, which automatically
executes the corresponding part of the visual program [12].

Figure 5. A reactive visual program. Red-highlighted patch cords and
input/outputs are reactive: they propagate update notifications downwards
in the patch, leading to the evaluation and update of the corresponding
boxes.

On the example of Figure 5, reactive computations update
a set of interpolated curves. They can be triggered upon
reception of an OSC message [13] containing some curve
description data via the osc-receive box, or upon activation
by the user of the vertical slider component at the right,
which determines the number of interpolation steps.

This new and optional mode of execution somehow re-
minds of interactive/data-driven multimedia environments
such as Max [14]; however, visual programs are still “demand-
driven” (only notifications flow downstream in the func-
tional graph) and the overall computation model is pre-
served: no such thing as periodic audio callbacks or “hard”
real-time reactions to events is intended — this is generally
not compatible, nor desired in compositional processes and
computer-aided composition software.

Communication, control and transfer of data with exter-
nal systems is enabled through the easy instantiation of
active sender/receiver threads. A native OSC support based
on CNMAT’s odot library [15] facilitates the handling of
OSC-formatted data and the development of advanced coop-
erative scenarios with external multimedia frameworks [16].



(a)

(b)

Figure 6. The meta-score: a new implementation of the OpenMusic maquette. (a) Classic “visual programming” mode. (b) Tracks visualization mode. In
both visualization modes, red-framed (reactive) boxes can be executed on-the-fly at rendering time. On the left in (a), a control patch hosts the programming
of preliminary or runtime actions to execute with the global score structure. Temporal anchors and markers lifted on the top and bottom rulers in (b) are
used to move, stretch and synchronize the objects.

Dynamic scheduling. The environment integrates a new
scheduling kernel managing the tasks of computation and
musical execution (rendering/playback) in the computer-
aided composition framework. A multi-threaded engine
running at the core of the system concurrently handles in a
same execution context the computation of visual programs,
the dispatching of actions corresponding to musical objects
being rendered (e.g. calls to the audio system or messages
sent via MIDI or OSC), as well as the reactive scheduling of
user-defined actions and program computations [10]. Musi-
cal objects can therefore encapsulate actions or programs
producing other musical structures, integrated on-the-fly on
the rendering time flow. As a result, dynamic structures
such as the ones studied in the previous sections (e.g. meta-
scores containing both objects and programs, or musical ob-
jects containing actions triggering arbitrary computations)
can seamlessly execute. 4

On Figure 6, for instance, the box at the top and the three
boxes at the end of the sequence are processes (embedded
visual programs). Each process computation might turn its
container box value into a new object, integrated on-the-fly
in the execution flow. It can also modify the future of the

4 Here again we differentiate this approach from the one in real-time
systems, since computation is not meant to take place instantaneously, and
can impact the mid- or long-term future of executions.

sequence by generating new objects or processes, scheduled
at a later time. Depending on user’s settings for each box,
these processes can be executed either:

– before the rendering of the sequence starts;

– as part of the rendering (i.e. at the time determined by
their position in the sequencer);

– as part of the rendering, with some anticipation (as de-
picts for instance the dashed red segment at the left of
the process box in track #4).

5. DIGITAL SIGNAL PROCESSING

Another important aspect of the environment is its enhanced
capacity to manage and process audio resources. Sounds
are handled as memory-allocated audio buffers which can
be freely transferred and processed in the visual programs
— a difference with the current OM versions, which essen-
tially deal with sound files on disk and process them via
external calls to command-line tools. Audio rendering is
also controlled by the scheduling engine, which has the
possibility to dynamically address the audio output, syn-
chronously or asynchronously, with a flexible and adaptive
anticipation (from a few milliseconds to seconds to several
minutes ahead). The different features described in this pa-
per (reactive programming, dynamic objects manipulation,



scheduling and rendering, ...) are therefore connected to
this audio thread, extended and applied to work with audio
resources and processing.

In addition to existing DSP libraries (OM-SUPERVP, OM-
PM2...) that have been ported to the new environment, dy-
namic connections have been established with several audio
frameworks and libraries.

DSP features were developed for instance through connec-
tions with graphical controllers and DSP tools provided by
the IRCAM Spat library [17] for panning, spatial audio ren-
dering, and other audio processors like filters, reverbs, etc.
Audio processors are controlled using OSC-formatted data
structures (bundles) and associated to graphical interfaces
capable of producing this data. The corresponding DSP ob-
jects in O7 are TIMED-SEQUENCEs, internally considered
as sequences of such OSC control bundles and linked to
the audio processing and graphical controller components.
They allow to drive the signal processing “in-time” via peri-
odic calls and updates to these external components, either
in an offline context (generating sound files and buffers),
or as part of a rendering process (typically for real-time
audio playback). SPAT-SCENE [18] is one of these DSP ob-
jects, providing a mixed offline/dynamic control over spatial
sound scenes representation and synthesis (see Figure 7).

Figure 7. SPAT-SCENE: interface to Spat controllers and audio processing.

Figure 8 is another example of DSP using the IAE li-
brary [19] for content- or descriptor-based concatenative
and granular synthesis [20]. This audio engine is para-
metrized by a set of sound sources, which are analyzed at
initialization of the IAE box. The analysis produces a set of
audio descriptors via the IrcamDescriptors library [21]. The
IAE object can then generate sound grains upon requests of
descriptor value(s) and/or time regions (see iae-synth-desc,
producing a sound buffer on Figure 8). It also acts as a con-
tainer for larger sequences of such requests (as a sub-class
of DATA-STREAM — see the editor window in the lower
part of the figure). Requests for sound grains can therefore
be performed offline in a deferred-time set-up, or in (soft)
real-time, integrating results in the audio playback at execu-
tion time — an example of asynchronous connection of the
scheduling engine to the audio output thread.

Figure 8. Versatile use of the IAE audio engine for descriptor-based
granular synthesis: sound grain generator and container of contents-based
granular synthesis requests.

6. CONCLUSIONS

We presented a new implementation of the OpenMusic vi-
sual programming language and computer-aided composi-
tion environment. The main features we have highlighted
in this implementation are:

– An improved and redesigned visual programming
framework;

– New modular editors for musical objects, focusing
on time structuring and representation;

– A powerful, dynamic computation and scheduling
kernel handling musical rendering and program exe-
cutions;

– A new sequencing environment, merging the main
features of the OM maquette with dynamic/real-time
interactions and DAW-oriented visualization;

– Flexible and extensible audio framework including
connections to external DSP libraries.

We believe these features have the potential to set this
project as a landmark in the evolution of computer-aided
composition software. Some of them have been used and
proved relevant through preliminary experiments and ap-
plications, for instance in guided improvisation systems
or for the structured/interactive control of sound synthe-
sis processes [10]. A detailed example of compositional
application is presented in [22].



Although focusing significant parts of our research on in-
teractive aspects of compositional processes, we also wish
to emphasize how this approach differentiates itself from
real-time computer music systems. Indeed we position it as
complementary to recent “real-time computer-aided com-
position” projects such as the bach and cage libraries in
Max [23], where the real-time paradigm structures musical
processes extended to the symbolic domain of computer-
aided composition. If the performance of current computer
systems tends to assimilate the perceptions of deferred-time
and real-time — at least from the user’s point of view —,
the “deferred-time” approach of computer-aided compo-
sition tools, where computation of musical structures is
not enslaved to their own execution time, remains for us a
fundamental characteristics in the development of formal
processes related to music writing.

Finally, the O7 implementation currently includes a sub-
set only of existing OM features and functionalities. For
instance, scores or traditional music notation, which are
among the most crucial aspects of common computer-aided
composition systems and applications, are currently not
present in the new environment. For this reason we do not
yet consider it a valid/full-featured successor for OpenMu-
sic: 5 in its present state, this software addresses specific
applications, and suits specific needs of computer-aided
composition users. But work is still in going on: notation in
particular (traditional and “extended” music notations) will
be one of our main perspective for future developments.

7. REFERENCES

[1] G. Assayag, “Computer Assisted Composition Today,”
in 1st symposium on music and computers, Corfu, 1998.

[2] G. Assayag, C. Rueda, M. Laurson, C. Agon, and
O. Delerue, “Computer Assisted Composition at IR-
CAM: From PatchWork to OpenMusic,” Computer Mu-
sic Journal, vol. 23, no. 3, 1999.

[3] M. Laurson and J. Duthen, “Patchwork, a Graphic Lan-
guage in PreForm,” in International Computer Music
Conference (ICMC’89), Columbus, USA, 1989.

[4] J. Bresson, C. Agon, and G. Assayag, “Visual
Lisp/CLOS Programming in OpenMusic,” Higher-
Order and Symbolic Computation, vol. 22, no. 1, 2009.

[5] J. Bresson, C. Agon, and G. Assayag, Eds., The OM
Composer’s Book (3 volumes). Editions Delatour /
Ircam-Centre Pompidou, 2006/2008/2016.

[6] J. Bresson, D. Bouche, J. Garcia, T. Carpentier,
F. Jacquemard, J. Maccallum, and D. Schwarz, “Projet
EFFICACE : Développements et perspectives en com-
position assistée par ordinateur,” in Actes des Journées
d’Informatique Musicale, Montréal, Canada, 2015.

[7] C. Agon, “OpenMusic : Un langage visuel pour la com-
position musicale assistée par ordinateur,” Ph.D. disser-
tation, Université Pierre et Marie Curie (Paris 6), Paris,
France, 1998.

[8] J. Garcia, D. Bouche, and J. Bresson, “Timed Se-
quences: A Framework for Computer-Aided Composi-
tion with Temporal Structures,” in Proceedings of the

5 OM6 is the official and stable version of the computer-aided composi-
tion environment, see http://repmus.ircam.fr/openmusic/

International Conference on Technologies for Music
Notation and Representation, A Coruña, Spain, 2017.

[9] J. Bresson and C. Agon, “Temporal Control over Sound
Synthesis Processes,” in Proceedings of Sound and Mu-
sic Computing (SMC’06), Marseille, France, 2006.

[10] D. Bouche, J. Nika, A. Chechile, and J. Bresson,
“Computer-aided Composition of Musical Processes,”
Journal of New Music Research, vol. 46, no. 1, 2017.

[11] J. Bresson and J.-L. Giavitto, “A Reactive Extension of
the OpenMusic Visual Programming Language,” Jour-
nal of Visual Languages and Computing, vol. 25, no. 4,
2014.

[12] J. Bresson, “Reactive Visual Programs for Computer-
Aided Music Composition,” in IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC), Melbourne, Australia, 2014.

[13] M. Wright, “Open Sound Control: an enabling technol-
ogy for musical networking,” Organised Sound, vol. 10,
no. 3, 2005.

[14] M. Puckette, “Combining Event and Signal Process-
ing in the MAX Graphical Programming Environment,”
Computer Music Journal, vol. 15, no. 3, 1991.

[15] J. MacCallum, R. Gottfried, I. Rostovtsev, J. Bresson,
and A. Freed, “Dynamic Message-Oriented Middle-
ware with Open Sound Control and Odot,” in Proceed-
ings of the International Computer Music Conference
(ICMC’15), Denton, USA, 2015.

[16] J. Bresson, J. MacCallum, and A. Freed, “o.OM:
Structured-Functional Communication between Com-
puter Music Systems using OSC and Odot,” in ACM
SIGPLAN Workshop on Functional Art, Music, Model-
ing & Design (FARM) – ICFP’16, Nara, Japan, 2016.

[17] T. Carpentier, M. Noisternig, and O. Warusfel, “Twenty
Years of Ircam Spat: Looking Back, Looking Forward,”
in Proceedings of the International Computer Music
Conference (ICMC’15), Denton, USA, 2015.

[18] J. Garcia, T. Carpentier, and J. Bresson, “Interactive-
Compositional Authoring of Sound Spatialization,”
Journal of New Music Research, vol. 46, no. 1, 2017.

[19] N. Schnell, D. Schwarz, R. Cahen, and V. Zappi,
“IAE & IAEOU,” in Topophonie research project :
Audiographic cluster navigation (2009-2012), ser. Les
Carnets d’Experimentation de l’ENSCI, R. Cahen, Ed.
ENSCI – Les Ateliers / Paris Design Lab, 2012, pp.
50–51. [Online]. Available: https://topophonie.com

[20] D. Schwarz, “Corpus-Based Concatenative Synthesis,”
IEEE Signal Processing Magazine, vol. 24, no. 2, 2007.

[21] G. Peeters, “A large set of audio features for sound
description (similarity and classification) in the Cuidado
project,” IRCAM, Paris, France, Tech. Rep., 2004.

[22] S. Agger, J. Bresson, and T. Carpentier, “Landschaften –
Visualization, Control and Processing of Sounds in 3D
Spaces,” in Proceedings of the International Computer
Music Conference (ICMC’17), 2017.

[23] A. Agostini and D. Ghisi, “A Max Library for Musical
Notation and Computer-Aided Composition,” Computer
Music Journal, vol. 39, no. 2, 2015.

http://repmus.ircam.fr/openmusic/
https://topophonie.com

	 1. Introduction
	 2. Environment and Visual Programming Framework
	 3. Musical Structures
	 4. Interactive processes
	 5. Digital signal processing
	 6. Conclusions
	 7. References

