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Abstract—The theory of belief functions is an effective tool to
deal with the multiple uncertain information. In recent years,
many evidence combination rules have been proposed in this
framework, such as the conjunctive rule, the cautious rule,
the PCR (Proportional Conflict Redistribution) rules and so
on. These rules can be adopted for different types of sources.
However, most of these rules are not applicable when the number
of sources is large. This is due to either the complexity or the
existence of an absorbing element (such as the total conflict
mass function for the conjunctive-based rules when applied on
unreliable evidence). In this paper, based on the assumption that
the majority of sources are reliable, a combination rule for a
large number of sources, named LNS (stands for Large Number
of Sources), is proposed on the basis of a simple idea: the more
common ideas one source shares with others, the more reliable the
source is. This rule is adaptable for aggregating a large number
of sources among which some are unreliable. It will keep the
spirit of the conjunctive rule to reinforce the belief on the focal
elements with which the sources are in agreement. The mass
on the empty set will be kept as an indicator of the conflict.
Moreover, it can be used to elicit the major opinion among the
experts. The experimental results on synthetic mass functions
verify that the rule can be effectively used to combine a large
number of mass functions and to elicit the major opinion.

Index Terms—Theory of belief functions, combination, large
number of sources, reliability.

I. INTRODUCTION

The theory of belief functions (also called Dempster–Shafer
Theory, DST) provides effective tools to modele the uncertain
information and to combine them using a combination rule.
One of the classical combination rule in the belief function
framework is the Dempster’s rule [1]. But this rule has been
criticized because of its unexpected behavior under some
situations enlightened by the famous Zadeh’s example. Smets
proposed a modification of Dempster’s rule, often called
“conjunctive rule”, where the empty set can be assigned with
a non-null mass under the Transferable Belief Model (TBM)
[2]. In fact the conjunctive rule is equivalent to the Dempster
rule without the normalization process. It has a fast and clear
convergence towards a solution.

Smets supports that the mass on the empty set, called also
global conflict, can play a role of alarm [2]. When the global
conflict is high, it indicates that there is strong disagreement
among the sources of mass functions to be fused. However,
as observed in [3], [4], the mass on the empty set is not
sufficient to exactly describe the conflict since it includes an
amount of auto-conflict [5]. Even if the sources are reliable,
they can be of high conflict in sense of the mass assigned
to the empty set. When using the conjunctive rule, even if
there is only a small amount of concordant evidence, the total

conflict mass function, i.e. m(∅) = 1 will be an absorbing
element. Consequently, when combining a large number of
(incompatible) mass functions using the conjunctive rule, the
global conflict may tend to 1. This makes it impossible to
reveal the cause of high global conflict. We do not know
whether it is due to the sources to fuse or caused by the
absorption power of the empty set [3]. In other words, even the
combined mass function by the conjunctive rule is m(∅) ≈ 1,
the proposition that the sources are highly conflicting may be
incorrect.

In order to rectify the drawbacks of the classical Dempster’s
rule and conjunctive rule, many approaches have been made
through the modification of the combination rule. However,
most of them are not efficient when applied on a large
number of sources either due to the ineffective way to handle
conflict or the high complexity of the computation. Moreover,
the major opinion among all the participants is not easy to
found. In some applications such as crowdsourcing, there are
usually a large number of sources. An important problem for
crowdsourcing systems is to identify the experts who tend to
answer the questions correctly among participants. Finding
the reliable workers in the system can improve the quality
of knowledge one can extract from crowds. One of the most
commonly used assumptions in crowdsourcing systems is that
the majority of participants can give correct answers. Thus if
the major opinion among the participants could be elicited,
the reliable workers can be easily found.

We propose in this paper, a conjunctive-based combination
rule, named LNS (stands for Large Number of Sources), in
order to aggregate a large number of mass functions. This
rule is based on the idea that combining mass functions
from different sources is similar to combining opinions from
multiple stake-holders in group decision-making. Hence, the
more one’s opinion is consistent with the other experts, the
more reliable the source is. To build our rule, we assume that
all the mass functions available are separable mass functions.
A separable mass function can be expressed by a group of
simple support mass functions, such as non-dogmatic mass
functions. In many applications, the mass assignments are
directly in the form of Simple Support Functions (SSF) [6].
Hence, we can group the SSFs in such a way that sources in
the same group have the same focal elements or have focal
element without conflict. Mass functions in each small group
are first fused and then discounted according to the proportions
of SSFs in each group. After that the number of mass functions
to fuse is the number of groups which is independent of the
number of sources. Therefore, the problem brought by the



absorbing element (the empty set) using the conjunctive rule
can be avoided.

The rest of this paper is organized as follows. In Section
2, some basic knowledge of belief function theory is briefly
introduced. The proposed evidence combination approach is
presented in detail in Section 3. Numerical examples are
employed to compare different combination rules and show
the effectiveness of LNS rule in Section 4. Finally, Section 5
concludes the paper.

II. BACKGROUND

A. Basic knowledge on the theory of belief functions

We consider Θ = {θ1, θ2, . . . , θn} such as the discernment
frame. A mass function is defined on the power set 2Θ = {A :
A ⊆ Θ}. The mass function m : 2Θ → [0, 1] is said to be a
Basic Belief Assignment (BBA) on 2Θ, if it satisfies:∑

A⊆Θ

m(A) = 1. (1)

If m(A) > 0, with A ∈ 2Θ, A is called a focal element, and
the set of focal elements is denoted by F .

The frame of discernment Θ can also be a focal element.
If Θ is a focal element, the mass function is called non-
dogmatic. The mass assigned to the frame of discernment,
m(Θ), is interpreted as a degree of ignorance. In the case of
total ignorance, m(Θ) = 1. This mass function is also called a
vacuous mass function. If there is only one focal element, i.e.
m(A) = 1, A ⊂ Θ, the mass function is categorical. Another
special case of assignment is named consonant mass functions,
where the focal elements include each other as a subset, i.e.
if A,B ∈ F , A ⊂ B or B ⊂ A.

In order to combine information sources assumed reliable
and cognitively independent, the conjunctive combination is
usually used, given by:

mconj(X) = ( ∩©
j=1,··· ,S

mj)(X) =
∑

Y1∩···∩YS=X

S∏
j=1

mj(Yj),

(2)
where mj(Yj) is the mass allocated to Yj by expert j. Another
kind of conjunctive combination is Dempster’s rule [7] given
by:

mDempster(X) =

{
0 if X = ∅,
mconj(X)

1−mconj(∅) otherwise.
(3)

The item κ , mconj(∅) is generally called Dempster’s degree
of conflict of the combination or the inconsistency of the
combination.

The disjunctive rule [8] can be used if we only assume that
at least one of the sources is reliable.

If information sources are dependent the cautious rule [9]
can be applied. Cautious combination of S non-dogmatic mass
functions mj , j = 1, 2, · · · , S is defined by the BBA with the
following weight function:

w(A) =
S
∧
j=1

wj(A), A ∈ 2Θ \Θ. (4)

We thus have

mCautious(X) = ∩©
A(Θ

A

S
∧
j=1

wj(A)
, (5)

where Awj(A) is the simple support function focused on A
with weight function wj(A) issued from the canonical decom-
position of mj . Note also that ∧ is the min operator. Moreover,
in the case of dependant sources, the average combination rule
can be choosen.

In order to manage the κ value by redistributing it on partial
ignorance, the Dubois and Prade rule (DP rule) [10], can be
applied. It can be seen as a mixed conjunctive and disjunctive
rule.

Moreover the PCR6 proposed by [5] is one of the most
popular rule to combine hight conflicting sources.

B. Discounting process based on source-reliability

When the sources of evidence are not completely reliable, a
discounting operation proposed by [6] can be applied. Denote
the reliability degree of mass function m by α ∈ [0, 1], then
the discounting operation can be defined as:

m
′
(A) =

{
α×m(A) ∀A ⊂ Θ,

1− α+ α×m(Θ) if A = Θ.
(6)

If α = 1, the evidence is completely reliable and the BBA will
remain unchanged. On the contrary, if α = 0, the evidence
is completely unreliable. In this case the so-called vacuous
belief function, m(Θ) = 1 can be got. It describes our total
ignorance.

Before evoking the discounting process, the reliability of
each sources should be known. One possible way to estimate
the reliability is to use confusion matrices [11]. Generally,
the goal of discounting is to reduce global conflict before
combination. One can assume that the conflict comes from
the unreliability of the sources. Therefore, the source reliability
estimation is to some extent linked to the estimation of conflict
between sources.

Hence, Martin et al. proposed to use a conflict measure to
evaluate the relative reliability of experts [3]. Once the degree
of conflict is computed, the relative reliability of the source
can be computed accordingly. Suppose there are S sources,
S = {s1, s2, · · · , sS}, the reliability discounting factor αj of
source sj can be defined as follows:

αj = f (Conf (sj ,S)) , (7)

where Conf (sj ,S) quantifies the degree that source sj con-
flicts with the other sources in S, and f is a decreasing
function. The following function is suggested by the authors:

αj =
(

1− Conf (sj ,S)
λ
) 1
λ

, (8)

where λ > 0.



C. Simple support functions

Suppose m is a BBA defined on the frame of discernment Θ.
If there exists a subset A ⊆ Θ such that m could be expressed
in the following form:

m(X) =


w X = Θ,

1− w X = A,

0 otherwise.
(9)

where w ∈ [0, 1], then the belief function related to BBA m
is called a Simple Support Function (SSF) (also called simple
mass function) [6] focused on A. Such a SSF can be denoted
by Aw(·) where the exponent w of the focal element A is
the basic belief mass (bbm) given to the frame of discernment
Θ, m(Θ). The complement of w to 1, i.e. 1− w, is the bbm
allocated to A [12]. If w = 1 the mass function represents the
total ignorance, if w = 0 the mass function is a categorical
BBA on A.

A belief function is separable if it is a SSF or if it is the
conjunctive combination of some SSFs [13]. In the work of
[13], this kind of separable masses is called u-separable where
“u” stands for “unnormalized”, indicating the conjunctive rule
is the unnormalized version of Dempster-Shafer rule. The
set of separable mass functions is not obvious to obtain. It
is easy to see consonant mass functions (the focal elements
are nested) are separable.Smets [12] defined the Generalized
Simple Support Function (GSSF) by relaxing the weight w
to [0,∞). Those GSSFs with w ∈ (1,∞) are called Inverse
Simple Support Functions (ISSF). He proved all non-dogmatic
mass functions are separable if one uses GSSFs.

III. A COMBINATION RULE FOR A LARGE NUMBER OF
MASS FUNCTIONS

The conjunctive combination rule tries to reinforce the belief
on the focal elements with which most of the sources agree.
However, in this rule, the empty set is an absorbing element.
When combing inconsistent BBAs, the mass assigned to the
empty set tends quickly to 1 with the increasing number of
sources [3]. Consequently, when using Dempster rule, the
gap between κ and 1 may rapidly exceed machine precision,
even if the combination is valid theoretically. In that case the
fused BBAs by the conjunctive rules (normalized or not) and
the pignistic probability are inefficient due to the limitation
of machine precision. Moreover, the conjunctive combination
rule assumes that all the sources are reliable, which is difficult
to reach or to verify in real applications.

In the theory of belief functions, the idea to the reinforce
belief and the alarm role of the empty set in the conjunctive
rule are essential. In order to propose a rule which can be
applicable when the number of mass functions to combine is
large and keep the previous behavior, the following assump-
tions are made:
• The majority of sources are reliable;
• The larger extent one source is consistent with others, the

more reliable the source is;
• The sources are cognitively independent [8].

Based on these assumptions, the proposed rule will discount
the mass functions according to the number of sources pro-
viding BBAs with the same focal elements. The discounting
factor is directly given by the proportion of mass functions
with the same focal elements. As a result, the rule will give
more importance to the groups of mass functions that are in a
domain, and it is free of auto-conflict [5]. This procedure can
be used to elicit of the majority opinion.

The simple support mass functions are considered here. In
this case, the mass functions can be grouped in the light of
their focal elements (except the frame Θ). To make the rule
applicable on separable mass functions, the decomposition
process should be performed to decompose each BBA into
simple support mass functions. In most of applications, the
basic belief can be defined using separable mass functions,
such as simple support functions [14] and consonant mass
functions [15].

Hereafter we describe the proposed LNS rule for simple
support functions, and then an approximation calculation
method of LNS rule is suggested.

A. Combination of many simple support functions

Suppose that each evidence is represented by a SSF. Then
all the BBAs can be divided into at most 2n groups (where
n = |Θ|). It is easy to see that there is no conflict at all
in each group because of consistency. The focal elements of
the SSF are singletons and Θ itself. For the combination of
BBAs inside each group, the conjunctive rule can be employed
directly. Then the fused BBAs are discounted according to the
number of mass functions in each group. Finally, the global
combination of the BBAs of different groups is preformed also
using the conjunctive rule. Suppose that all BBAs are defined
on the frame of discernment

Θ = {θ1, θ2, · · · , θn},

and denoted by

mj = (Ai)
wj , j = 1, · · · , S, i = 1, 2, · · · , c,

where c ≤ 2n. The detailed process of the combination is listed
as follows. Our proposed rule called LNS for Large Number
of Sources rule is composed of the four following steps:

1) Cluster the simple BBAs into c groups based on their
focal element Ai. For the convenience, each class is
labeled by its corresponding focal element.

2) Combine the BBAs in the same group. Denote
the combined BBA in group Ak by SSF
m̂k = (Ak)ŵk , k = 1, 2, · · · , c. For the conjunctive
combination rule we have:

m̂k = ∩©
j=1,··· ,sk

mj = (Ak)

sk∏
j=1

wj

(10)

where the number of BBAs in group Ak is sk. In order
to consider the total ignorance as a neutral element of
the rule, if Ak = Θ we allow sk = 0.



3) Reliability-based discounting. Suppose the fused BBA
of all the mass functions in Ak be m̂k. At this time,
each group can be regarded as a source, and there are
c sources in total. The reliability of one source can be
estimated by comparing to the group of sources. In our
opinion, the reliability of source Ak is related to the
proportion of BBAs in this group. The larger the number
of BBAs in group Ak is, the more reliable Ak is. Then
the reliability discounting factor of m̂k, denoted by αk,
can be defined as:

αk =
sk
c∑
i=1

si

. (11)

Another version of the discounting factor can be deter-
mined by a factor taking into account the precision of
the group:

αk =
βηksk
c∑
i=1

βηi si

, (12)

where

βk =
|Θ|
|Ak|

. (13)

Parameter η can be used to adjust the precision
of the combination results. The larger the value of
η is, the less imprecise the resulting BBA is. The
discounted BBA of m̂k can be denoted by SSF
m̂

′

k = (Ak)ŵ
′
k with ŵ

′

k = 1 − αk + αkŵk. As we can
see, when the number of BBAs in one group is larger,
α is closer to 1. That is to say, the fused mass in this
group is more reliable.

4) Global combine the fused BBAs in different groups
using the conjunctive rule:

mLNS = ∩©
k=1,··· ,c

m̂′k = ∩©
k=1,··· ,c

(Ak)ŵ
′
k (14)

The previous mentioned methods in Section II-B to estimate
reliability are much more complex than the proposed method
here. Indeed, usually the distance between BBAs should be
calculated or a special learning process is required. In LNS
rule, to evaluate the reliability discounting factor, we only
need to count the number of SSFs in each group. But other
reliability estimation methods can also be used.

In the last step of combination, as the number of mass
functions that takes part in the global combination is small (at
most 2n), other combination rules such as DP rule [10] and
PCR rules [5] are also possible in practice instead of Eq. (14).

B. LNS properties

The proposed rule is commutative, but not associative. The
rule is not idempotent, but there is no absorbing element. The
vacuous mass function is a neutral element of the LNS rule.

There are four steps when applying LNS rule1: decomposi-
tion (not necessary for simple support mass functions), inner-
group combination, discounting and global combination. The
LNS rule has the same memory complexity as some other
rules such as conjunctive, Dempster and cautious rules if all
the rules are combined globally using FMT method. Only DP
and PCR6 rules have higher memory complexity because of
the partial conflict to manage. Suppose the number of mass
functions to combine is S, and the number of elements in the
frame of discernment is n. The complexity for decomposing2

mass functions to SSFs is O(Sn2n). For combining the
mass functions in each group, due to the structure of the
simple support mass functions, we only need to calculate the
product of the masses on only one focal element Θ. Thus
the complexity is O(S). The complexity of the discounting is
O(2n). In the process of global combination, the BBAs are
all SSFs. If we use the Fast Möbuis Transform method, the
complexity is O(n2n). Moreover there are at most 2n mass
functions participating the following discounting and global
conjunctive combination processes. Since in most application
cases with a large number of mass functions, we have 2n � S,
the last two steps are not very time-consuming. The total
complexity of LNS is O(Sn2n + S + 2n + n2n) and so is
equivalent to O(Sn2n).

We remark here that one of the assumptions of LNS rule
is that the majority of sources are reliable. However, this
condition is not always satisfied in every applicative context.
Consider here an example with two sensor technologies: TA
and TB. The system has two TA-sensors (S1 and S2), and
one TB-sensor S3. Suppose also a parasite signal causes
TA sensors to malfunction. In this situation, the majority of
sensors are unreliable, and we could not get a good result
if the LNS rule is used directly as LNS(S1, S2, S3) at this
time. Actually there is an underlying hierarchy in the sources
of information, LNS rule could be evoked according to the
hierarchy, such as LNS(LNS(S1, S2), S3). We will study that
more in the future work.

IV. EXPERIMENTS

To illustrate the behavior of the proposed combination
rule LNS and to compare with other classical rules, several
experiments will be conducted here. Some different types of
randomly generated mass functions will be used. The function
RandomMass in R package ibelief [16] is adopted to generate
random mass functions.
Experiment 1. In the crowdsourcing applications, all the users
can provide some imprecise and uncertain answers. But only a
few are trusty. The elicitation of the majority opinion is very
important to identify the experts. Assume that the answers
by different uses are in the form of the mass functions over
the same discernment frame Θ = {θ1, θ2, θ3}, denoted by

1The source code for LNS rule could be found in R package ibelief [16].
2In the decomposing process, the Fast Möbuis Transform method is used.



mj , j = 1, 2, · · · , 6. The assignments of all the mass functions
are as follows:

m1 : m1({θ2}) = 0.9, m1(Θ) = 0.1,

m2 : m2({θ1}) = 0.1, m2(Θ) = 0.9,

m3 : m3({θ1}) = 0.2, m3(Θ) = 0.8,

m4 : m4({θ1}) = 0.3, m4(Θ) = 0.7,

m5 : m5({θ1}) = 0.1, m5(Θ) = 0.9,

m6 : m6({θ1}) = 0.2, m6(Θ) = 0.8.

As can be seen from the above equations, there are five
out of six mass functions (m2,m3,m4,m5,m6) assigning
a large value on θ1, while m1 delivers a function strongly
committed to another solution. It indicates that the first source
is obviously different from the other five sources.

The combination results by conjunctive rule, Dempster
rule, disjunctive rule, DP rule, PCR6 rule, cautious rule,
average rule and the proposed LNS rule3 are depicted in Table
I. As can be observed, the conjunctive rule assigns most of
the belief to the empty set, regarding the sources as highly
conflictual. Dempster rule, DP rule, PCR6 rule and average
rule redistribute all the global conflict to other focal elements.
Disjunctive rule gives the total ignorance mass functions.
Cautious rule and the proposed LNS rule keep some of the
conflict and redistribute the remaining. From the original six
BBAs, we can see that there are five mass functions supporting
{θ1}, while only one supporting {θ2}. The six mass functions
are not conflicting, because the majority of evidence shows
the preference of {θ1}. We consider here source 1 is not
reliable since it contradicts with all the other sources. But
the belief given to {θ2} is more than that to {θ1} when using
Dempster, DP, PCR6, and the cautious rule, which indicates
that these rules are not robust to the unreliable evidence. The
result by the average rule gives equal evidence to {θ1} and
{θ2}. The obtained fused BBA by the proposed rule assigns
the largest mass to focal element {θ1}, which is consistent
with the intuition. It keeps a certain level of global conflict,
and at the same time reflects the superiority of {θ1} compared
with {θ2}. From the results we can see that only the LNS rule
can correctly elicit the major opinion.

Experiment 2. We test here the influence of parameters η and
β in LNS rule. Simple support mass functions are utilized in
this experiment. Suppose that the discernment frame under
consideration is Θ = {θ1, θ2, θ3}. Three types of SSFs are
adopted. First s1 = 60 and s2 = 50 SSFs with focal element
{θ1} and {θ2} respectively (the other focal element is Θ)
are uniformly generated, and then s3 = 50 SSFs with focal
element θ23 , {θ2, θ3} are generated. The value of masses
are randomly generated. Different values of η ranging from
0 to 6 are used to test. The mass values in the fused BBA

3As the focal elements are singletons except Θ, parameter η has no effects
on the final results by the proposed combination rule.

by LNS varying with η are displayed in Figure 1, and the
corresponding pignistic probabilities are shown in Figure 2.
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Fig. 1. The BBA after the combination for three types of SSFs using LNS
rule. The mass functions are generated randomly, and LNS rule is evoked
with different values of η ranging from 0 to 6.
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Fig. 2. The Pignistic probability after the Combination for three types of
SSFs using LNS rule. The mass functions are generated randomly, and LNS
rule is evoked with different values of η ranging from 0 to 6.

From these figures, we can see that η can have some
effects on the final decision. Figure 1 shows that with the
increasing of β, the mass function assigned to the singleton
focal elements increases. On the contrary, the mass given to the
focal element whose cardinality is bigger than one decreases.
In fact parameter β in LNS aims at weakening the imprecise



TABLE I
THE COMBINATION OF SIX MASSES. FOR THE NAMES OF COLUMNS, θij IS USED TO DENOTE {θi, θj}.

Conjunctive DS Disjunctive DP PCR6 Cautious Average LNS
∅ 0.57341 0.00000 0.00000 0.00000 0.00000 0.27000 0.00000 0.07964
θ1 0.06371 0.14935 0.00000 0.06371 0.10644 0.03000 0.15000 0.45129
θ2 0.32659 0.76558 0.00000 0.32659 0.45139 0.63000 0.15000 0.07036
θ12 0.00000 0.00000 0.00011 0.08165 0.00000 0.00000 0.00000 0.00000
θ3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
θ13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
θ23 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Θ 0.03629 0.08506 0.99989 0.03629 0.44217 0.07000 0.70000 0.39871

evidence which gives only positive mass to focal elements
with high cardinality, and the exponent η allows to control the
degree of discounting. If η is larger, we give more weights
to the sources of evidence whose focal elements are more
specific, and more discount will be committed to the imprecise
evidence. As a result, in the experiment when η is larger than
1.2, BetP(θ1) > BetP(θ2) (Figure 2). At this time the mass
functions with focal element {θ2, θ3} make little contribution
to the fusion process, while the final decision mainly depends
on the other two types of simple support mass functions with
singletons as focal elements.

In real applications, η could be determined based on specific
requirement. This work is not specially focusing on how to
determine η, thus in the following experiment we will set η =
1 as default.
Experiment 3. The goal of this experiment is to show how
Dempster’s degree of conflict is dealt with by most of rules
when combining a large number of conflicting sources.

In this experiment, the frame of discernment is set to Θ =
{θ1, θ2}. Assume that there are only 2 focal elements on each
BBA. One is the whole frame Θ, and the other is any of the
singletons ({θ1} or {θ2}). The number of BBAs which have
the focal element {θ1} is set to s1, while that with {θ2} is
s2. We fix the value of s2, and let s1 = t ∗ n2, with t a
positive integer. We generate S = s1 + s2 such kind of BBAs
randomly, but only withholding the BBAs for which the mass
value assigned to {θ1} or {θ2} is greater than 0.5.

Four values of t are considered here: t = 1, 2, 3, 4. If t = 1,
s1 = s2 = S/2. If t = 2, the number of mass functions
supporting {θ1} is two times of that supporting {θ2}, and so
on. The global conflict (mass given to the empty set) after the
combination with different values of s2 for the four cases is
displayed in Figures 3–6 respectively. The mass assigned to
the focal element {θ1} with different combination approaches
is shown in Figures 7–10.
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Fig. 3. The global conflict after the combination with s1 = s2.

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

G
lo

b
a
l 
C

o
n
fl
ic

t

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● Conjunctive

Cautious

Average

LNS

2s

Dempster

Fig. 4. The global conflict after the combination with s1 = 2 ∗ s2.
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Fig. 5. The global conflict after the combination with s1 = 3 ∗ s2.
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Fig. 6. The global conflict after the combination with s1 = 4 ∗ s2.

It is intuitive that when t becomes larger, the global conflict
should be smaller and we should give more belief to the focal
element {θ1}. From Figures 3–10 we can see that only the
results by LNS rule are in accordance with this common sense.
The simple average rule assigns larger BBA to {θ1}, but it does
not keep any conflict. Dempster rule could not work at all
when s2 is larger than 204, as it regards these BBAs as highly
conflict. Although the conjunctive rule and cautious rule could
work when combining a larger number of mass functions, the
obtained fused mass function is m(∅) ≈ 1, which is useless
for decision in practical.

4In Figures 7–10, the mass given to {θ1} by Dempster rule is not
displayed when S is large (and also for some small S), because in these
cases the global conflict is 1 and the normalization could not be processed.
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Fig. 7. The mass on {θ1} after the combination with s1 = s2.
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Fig. 8. The mass on {θ1} after the combination with s1 = 2 ∗ s2.

From Figures 3–6, we can see a kind of limit of the global
conflict for the LNS rule. In fact, the mass on the empty
set for this rule is also depending on the size of the frame
of discernment and more directly on the number of groups
created in the first step of the rule. The limit value of the
global conflict will tend to 1 with the increase of the size
of discernment when considering only categorical BBAs on
different singletons.

V. CONCLUSION

There is usually a lot of uncertain information in big
data applications. The theory of belief functions is a flexile
framework to deal with imprecise and uncertain information,
especially it provides many ways for the task of information
fusion. However, although lots of combination rules have been
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Fig. 9. The mass on {θ1} after the combination with s1 = 3 ∗ s2.
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Fig. 10. The mass on {θ1} after the combination with s1 = 4 ∗ s2.

designed in recent years in this framework, most of them are
not applicable when the number of source to combine is quite
large due to the complexity or the existing absorbing element.

We propose here a new combination rule, named LNS rule,
preserving the principle of the conjunctive rule. This rule
first groups the mass functions according to their set of focal
elements (without auto-conflict). After the inner combination,
the mass functions in each group can be summarized by one
mass function. The reliability of the source is estimated by the
proportion of BBAs in one group. Therefore, after discounting
the mass function of each group by the reliability factor, the
final combination can be proceeded by the conjunctive rule
(or another rule according to the application).

The LNS rule is able to combine a large number of mass
functions. The only existing method applicable for a large

number of sources is the average rule. However, that rule may
give more importance to few sources with a high belief (even
if the source is not reliable). It cannot capture the conflict
between the sources. The proposed rule has a reasonable
complexity (lower than the DP and PCR6 rules). Moreover,
it can provide reasonable combination results and can be used
to elicit the major opinion. This is of practical value in the
crowdsourcing system.

Overall, this work provides a perspective for the application
of belief functions on big data. We will study how to apply
LNS rule on the problems of social network and crowdsourc-
ing in the future research work.
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