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Motivations

Many physics-based models of the human vocal apparatus were proposed to help understanding the phonation and its pathologies, with a compromise between the complexity introduced in the modelling and the vocal features that can be reproduced by analytical or numerical calculations. Except recent works based on nite elements methods applied to the glottal ow dynamics, most of the models rely on the description of the aerodynamics provided by van den Berg [START_REF] Van Den Berg | On the Air Resistance and the Bernoulli Eect of the Human Larynx[END_REF] for a glottal ow in static geometries, i.e., that ignores the motion of the vocal folds. Even if enhancements appeared accounting for various eects, they failed to represent correctly the energy exchanges between the ow and the surface of the vocal folds that bounds the glottis.

The port-Hamiltonian approach oers a framework for the modelling, analysis and control of complex system with emphasis on passivity and power balance [START_REF] Van Der Schaft | Port-Hamiltonian Systems Theory: an Introductory Overview[END_REF]. A PHS for the classical body-cover model has been recently proposed [START_REF] Encina | Vocal fold modeling through the port-Hamiltonian systems approach[END_REF] without connection to a glottal ow nor to a vocal tract, so that no self-oscillations can be produced. The current paper proposes a minimal PHS model of the full vocal apparatus. This power-balanced numerical tool enables the investigation of the various regimes that can be produced by time-domain simulations. Sec. 2 is a reminder on the port-Hamiltonian systems, Sec. 3 is dedicated to the description of the elementary components of the full vocal apparatus and their interconnection. Sec. 4 presents simulation and numerical results for typical healthy and pathological laryngeal congurations.

Port-Hamiltonian Systems

Port-Hamiltonian systems are open passive systems that full a power balance [START_REF] Van Der Schaft | Port-Hamiltonian Systems Theory: an Introductory Overview[END_REF][START_REF] Maschke | An intrinsic Hamiltonian formulation of network dynamics: nonstandard Poisson structures and gyrators[END_REF]. A large class of such nite dimensional systems with input u(t) ∈ U = R P , output y(t) ∈ Y = U, can be described by a dierential algebraic equation

  ẋ w -y   = S(x, w)   ∇ x H z(w) u   , with S = -S T =   J x -K G x K T J w G w -G T x -G T w J y ,   (1) 
where state x(t) ∈ X = R N is associated with energy E = H(x) ≥ 0 and where variables w(t) ∈ W = R Q are associated with dissipative constitutive laws z such that P dis = z(w) T w ≥ 0 stands for a dissipated power. Such a system naturally fulls the power balance dE/dt + P dis -P ext = 0, where the external power is P ext = y T u. This is a straightforward consequence of the skew-symmetry of matrix S, which encodes this geometric structure (Dirac structure, see [START_REF] Van Der Schaft | Port-Hamiltonian Systems Theory: an Introductory Overview[END_REF]). Indeed, rewriting Eq. ( 1) as B = SA, it follows that A T B = A T SA = 0, that is,

∇ x H(x) T ẋ + z(w) T w -u T y = 0 (2) 
Moreover, connecting several PHS through external ports yields a PHS. This modularity is used in practice, by working on elementary components, separately.

Vocal apparatus

Beneting from this modularity, the full vocal apparatus is built as the interconnection of the following elementary components: a subglottal pressure supply, two vocal folds, a glottal ow, and an acoustic resonator (see Fig. 1). 
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Components of the vocal apparatus. The interconnection takes place via pairs of eort (P ) and ux (Q) variables. The 0 connection expresses the equality of eorts and the division of ux. See Ref. [START_REF] Maschke | An intrinsic Hamiltonian formulation of network dynamics: nonstandard Poisson structures and gyrators[END_REF] for an introduction to bond graphs.

The one-mass model of vocal folds

The left and right vocal folds (F i = L or R with i = l or r, respectively), are modelled as classical single-d.o.f. oscillators (as in Ref. [START_REF] Flanagan | Self-Oscillating Source for Vocal-Tract Synthesizers[END_REF], mass m i , spring k i and damping r i ) with a purely elastic cover (as in Ref. [START_REF] Awrejcewicz | Numerical Analysis of the Oscillations of Human Vocal Cords[END_REF], spring κ i ). Their dynamics relates the momentum π i of the mass, and the elongations ξ i and ζ i of the body and cover springs, respectively, to the velocity v i = ζi + ξi of the cover imposed by the glottal ow, and to the transverse resultants of the pressure forces on the upstream (P sub i

) and downstream (P sup i ) faces of the trapezoid-shaped structures (see Fig. 2, left part) :

πi = -k i ξ i -r i ξi + κ i ζ i -P sub i S sub i -P sup i S sup i . ( 3 
)
F p i = -κ i ζ i
is the transverse feedback force opposed by the fold to the ow. The motion of the fold produces the additional owrates Q sub i (pumping from the subglottal space, i.e., positive when the fold compresses) and Q sup i (pulsated into the supraglottal cavity, i.e., positive when the fold inates).

Port-Hamiltonian modelling of a vocal fold F i : 

x Fi =   π i ξ i ζ i   , u Fi =   P sub i P sup i v i   , y Fi =   -Q sub i Q sup i -F p i   , H Fi = 1 2 x T Fi   1/m i k i κ i   x Fi , w Fi = ξi , z Fi (w Fi ) = r i w Fi , J Fi w = 0, G Fi w = O 1×3 , J Fi y = O 3×3 , J Fi x =   0 -1 1 1 0 0 -1 0 0   , K Fi =   1 0 0   , and G Fi x =   -S sub i -S sup i 0 0 0 0 0 0 1   . ki ri mi κi P sub i P sup i F p i S sub i S sup i Glottal ow Sr S l | - | 0 | x yr(t) y l (t)

Glottal ow

We consider a potential incompressible ow of an inviscid uid of density ρ between two parallel mobile walls located at y = y l (t) and y = y r (t), respectively. The glottis G has width L, length 2 and height h = y l -y r , its mid-line being located at y = y m = (y r + y l )/2 (see Fig. 2, right part). The simplest kinematics for the uid velocity v(x, y) obeying the Euler equation

v + 1 ρ ∇ p + 1 2 ρ|v| 2 = 0 (4) 
and satisfying the normal velocity continuity on the walls is given by:

v = v x v y = v 0 -x ḣ h ẏm + ḣ h (y -y m ) ∀(x, y) ∈ Ω = [-, ] × [y r , y l ]. (5) 
The velocity eld is thus parametrised by four macroscopic quantities: h, its time derivative ḣ, and the mean axial and transverse velocities v 0 =< v x > Ω and ẏm =< v y > Ω , respectively. Choosing these quantities as the state allows the exact reduction of the innite-dimensional problem to a nite-dimension system. The pressure eld p(x, y, t) can also be obtained from Eq. ( 4), as well as the total pressure p + 1 2 ρ|v| 2 , but are not expanded here for brevity. The dynamics for the glottal ow is controlled by the mean total pressures P - tot and P +

tot on the open boundaries S -(x = -) and S + (x = + ), respectively, and the resultant F p r and F p l of the pressure forces on the right and left walls, respectively (see App. A for the derivation of the equations). The kinetic energy of the uid on the domain writes as

ε(t) = H G (x G (t)) = 1 2 m(h)v 2 0 + m(h) ẏ2 m + m 3 (h) ḣ2 (6) 
with the total mass of the uid m(h) = 2ρ Lh(t) , and the eective mass for the transverse expansion motion m 3 (h) = m(h) 1 + 4 2 /h 2 /12. The energy could be written as a function of the momenta to yield a canonical Hamiltonian representation (see Ref. [START_REF] Lopes | Energy balanced model of a jet interacting with a brass player's lip[END_REF] for a similar PHS based on normalised momenta). Downstream the glottis, the ow enters the supraglottal space which has a cross section area much larger than that of the glottis. For positive owrate (Q + = Lhv x ( ) > 0), the ow separates from the walls at the end point of the (straight) channel. The downstream jet then spreads due to the shear-layer vortices until the jet has lost most of its kinetic energy into heat and fully mixed with the quiescent uid. This phenomenon is modelled as a dissipative component with variable w G = Q + and dissipation function z G (w G ) = (1/2)ρ(w G /Lh) 2 Θ(w G ) where Θ is the Heaviside step function. The pressure in the supraglottal space then writes

P + = P + tot -z G .
Port-Hamiltonian modelling of the glottal ow G :

x G =     v 0 ẏm ḣ h     , u G =     P - tot P + F p l F p r     , y G =     -Q -= -Lhv x (-) +Q + = Lhv x ( ) -v l = + ẏl -v r = -ẏr     , H G (x G ) = m(h) 2 v 2 0 + ẏ2 m + m 3 (h) 2 ḣ2 , w G = Q + , z G = ρ 2 w G Lh 2 Θ(w G ), J G w = O 1×1 , G G w = O 1×4 and J G y = O 4×4 , J G x =     0 0 0 0 0 0 0 0 0 0 0 -1 m3 0 0 1 m3 0     , K G =     Lh m 0 -L m3 0     , and G G x =     Lh m -Lh m 0 0 0 0 -1 m 1 m L m3 L m3 -1 2m3 -1 2m3 0 0 0 0     .

Vocal tract

We assume a modal representation of the input impedance of the vocal tract as seen from the supraglottal cavity, i.e., the supraglottal pressure P ac is dened as the sum of pressure components p n (for n = 1, N , denoted P n in the Fourier domain) related to the input owrate Q ac through 2nd order transfer functions:

Z in (ω) = P ac (ω) Q ac (ω) = N n=1 P n (ω) Q ac (ω) = N n=1 jωa n ω 2 n + jq n ω n ω -ω 2 (7)
where ω is the angular frequency, ω n are the modal angular frequencies, q n are the modal dampings and a n the modal coecients. Each mode corresponds to a resonance of the vocal tract, and so to an expected formant in the spectrum of the radiated sound. We follow the convention dened in Ref. [START_REF] Lopes | Approche passive pour la modélisation, la simulation et l'étude d'un banc de test robotisé pour les instruments de type cuivre[END_REF] for the internal variables of this subsystem.

Port-Hamiltonian modelling of the acoustic resonator A :

x A = p 1 /a 1 , . . . , p N /a N , t 0 p 1 (t )dt , . . . , t 0 p N (t )dt T , H A (x A ) = N n=1 1 2 p 2 n a n + ω 2 n a n t 0 p n (t )dt 2 , w A = (p 1 , . . . , p N ) T , z A = q 1 ω 1 a 1 w A1 , . . . , q N ω N a N w A,N , u A = (Q ac ) , y A = (-P ac ) , J A x = O N ×N -I N ×N I N ×N O N ×N , K A = I N ×N O N ×N , G A x = 1 N O N ×1 , G A w = O N ×1 , J A w = O N ×N , and J A y = O 1×1 .
where I N ×N is the identity matrix of dim N × N , and 1 N is the column vector N × 1 lled with 1.

Full system

We assume that the lower airways acts as a source able to impose the pressure P sub in the subglottal space of the larynx. The owrate Q sub coming from this source splits into the owrate Q -entering the glottis and the owrate Q sub l and Q sub r pumped by the lower conus elasticus of the left and right vocal folds, respectively, so that

Q sub = Q -+ Q sub l + Q sub r with P sub = P sub r = P sub l = P - tot .
Conversely, the owrate Q + sums up with the owrates Q sup l and Q sup r pulsated by the left and right vocal folds, respectively. The resulting owrate Q ac that enters the acoustic resonator is then Q ac = Q + +Q sup l +Q sup r with P ac = P sup r = P sup l = P + . The elementary components described above are now put together to assembly the full vocal apparatus. In order to simplify the Dirac structure, the ports of the subsystems have been chosen to be complementary: a port with sink convention is always connected to a port with source convention. As a result, it is trivial to expand the port Hamiltonian modelling of the full system with the following variables, dissipation functions, ports and energy:

x =     x R x L x G x A     , w =     w R w L w G w A     , z =     z R z L z G z A     , u = P sub , y = -Q sub , H(x) = H R (x R ) + H L (x L ) + H G (x G ) + H A (x A ).
The matrices J x , K, G x , G w , J w and J y can be obtained using automated generation tools like the PyPHS software [START_REF] Falaize | PyPHS: Passive modeling and simulation in python[END_REF]. [START_REF] Maschke | An intrinsic Hamiltonian formulation of network dynamics: nonstandard Poisson structures and gyrators[END_REF] 

Simulations and results

We here briey present some preliminary results. In the port-Hamiltonian modelling of the full system, the dissipation variables w do not explicitly depend on z (i.e., J w = O), so that they can be eliminated leading to a dierential realisation that can be numerical integrated (e.g., using the Runge-Kutta 4 scheme). The parameters have the following values: m i = 0.2 g, r i = 0.05 kg/s, L = 11 mm, = 2 mm, ρ = 1.3 kg/m 3 . Due to the sparse data available on the input impedances of vocal tract notably in terms of modal amplitudes a n , we consider a resonator with a single pole (N = 1) with ω n = 2π×640 rad/s, q n = .4 and a n = 1 MΩ (from Ref. [START_REF] Badin | Notes on vocal tract computation[END_REF]). The system is driven by a subglottal pressure P sub that increases from 0 to 800 Pa within 20 ms and is then maintained.

In the rst simulation, the folds are symmetric (k r = k l = 100 N/m, κ r = κ l = 3k r ) and initially separated by a width h = 1 mm. In such conditions, the folds are pushed away from their rest position (until h ∼ 3 mm), but this equilibrium does not become unstable and the system does not vibrate.

If some adduction is performed bringing the folds closer together (h = 0.1 mm), the glottis rst widens (until h ∼ 2 mm) and the folds then start to vibrate and the acoustic pressure oscillates in the vocal tract (see Fig. 3, top). The sound is stable even if the two folds are slightly mistuned (k r = 100 N/m and

k l = 97 N/m).
The right fold is then hardened (k r = 150 N/m). The system still succeeds to vibrate, but, as visible on Fig. 3 (bottom), the oscillation is supported by the soft left fold at rst, and then this latter decays while the hardened right fold starts to vibrate and nally maintains the sound production (even if the oscillations seem intermittent). 

Conclusion

To the best knowledge of the authors, this paper proposes the rst port-Hamiltonian model of a full vocal apparatus. This ensures passivity and the power balance. Simulations provide a variety of regimes that can be qualitatively related to aphonia (stable equilibrium), phonation (nearly periodic regimes) and dysphonia (irregular oscillations). This preliminary work provides a proof-of-concept for the relevance/interest of the passive and geometric approach.

Further work will be devoted to: (1) analyse regimes and bifurcations of the current model with respect to a few biomechanic parameters, (2) improve the realism of elementary components (separately), (3) account for possible contact between the vocal-folds, and (4) investigate on the synchronisation of coupled asymmetric vocals-folds and explore strategies to treat pathological voices [START_REF] Giovanni | Nonlinear behavior of vocal fold vibration:The role of coupling between the vocal folds[END_REF].
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 2 Fig. 2. Left: Schematic of a vocal fold. Right: Schematics of the glottal ow with open boundaries S -and S + and mobile walls S l and Sr.

Fig. 3 .

 3 Fig. 3. Adducted (top) and asymmetric (bottom) congurations.
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A Dynamics of the glottal ow

The dynamics for the mean velocities can also be derived from the volume integration of the Euler equation ( 4). Using the gradient theorem, it comes that

The energy balance for the glottal ow writes down as:

where n is the outgoing normal. As the normal velocity is uniform on the walls, the last term of the energy balance reduces to

The same applies on S -∪ S + where v • n = ±v x (x = ± ) does not depend on y:

tot . In the meanwhile, the kinetic energy in Eq. ( 6) can be derived against time:

The identication of the contribution of the mean axial and transverse velocities (see Eq. ( 8)) leads to the dynamics of the glottal channel expansion rate : (12)