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Abstract: This paper deals with the use of control theoretical concepts in the context of private
communication. It is proposed a new and systematic methodology to design a cryptographic
architecture belonging to the special class of ciphers called Self Synchronizing Stream Ciphers
(SSSC). Till now, the constructions of SSSC were based on automata with finite input memory
involving shifts or triangular functions (T–functions) as state transition functions. Besides, only
ad-hoc approaches were available in the literature. The contribution of this paper is to propose
not only a general framework to design SSSC, but with potentially more general state transition
functions as well. Two control-theoretical issues are treated to this end: as a new paradigm, the
construction of flat dynamical systems, and on the other hand, the notion of mortality of a set
of matrices, a problem which is in general not decidable.
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1. INTRODUCTION

Synchronization has been an important topic in automatic
control for years. Roughly speaking, by synchronization, it
is meant correlated (according to given criteria) behaviors
of at least two or more interconnected entities in virtual or
physical networks. Throughout the past centuries, scien-
tists have attempted to explain the emergence of order
through the concept of synchronization. C. Huygens in
1665 can be considered as a pioneer. There is an out-
standing number of examples of synchronized phenomena
(see Strogatz (2003)) borrowed from nature, biology, neu-
roscience, physiology and more recently social networks.
Synchronization can be a very efficient way of tackling
engineering issues as well. For example, there is a growing
interest in cooperative control problems. Such problems
involve several autonomous entities (also called agents)
which try to collectively reach a global objective by a suit-
able connectivity or couplings. The related applications
are mobile robots, unmanned and autonomous vehicles,
satellites, air traffic control. Synchronization is also cen-
tral in communication: video, broadcasting, Phase Lock
Loop-based equipments. When synchronization must oc-
cur in a peer-to-peer communication setup without any
external control, it is called self-synchronization. It turns
out that self-synchronization is central in cryptography,
more specifically, in symmetric cryptography involving the
so-called Self-Synchronizing Stream Ciphers (SSSC) (see
Menezes et al. (1996)). Such ciphers are based on genera-
tors which can take the form of dynamical systems oper-
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ating on finite fields and must deliver complex sequences.
Those sequences are used to scramble the information
to be safely transmitted. For proper decryption, those
sequences must be self-synchronized.
In this paper, we aim at addressing SSSC-based cryptog-
raphy in terms of control theoretical concepts. The main
result is that the concept of flatness together with graph-
theory allows to provide a convenient and systematic way
to construct general classes of SSSC, the ciphers being
viewed as dynamical systems. The flatness on one hand
and the SSSC on the other hand are detailed a little bit
more below.
Differential flatness is a property of some continuous-
time controlled dynamical systems introduced in Fliess
et al. (1995). The counterpart for discrete-time systems is
called difference flatness. For a flat discrete-time system,
the state variables as well as the input are written as
a function of the flat output (including forward and
backward shifts in the output). Difference flatness has
been first reported in Fliess and Marquez (2000); Sira-
Ramirez and Agrawal (2004) although we should mention
that a closely related notion, namely the dynamic feedback
linearization, was addressed earlier in Aranda-Bricaire
et al. (1996). Flatness-based control has been involved
in many applications and has an outstanding interest in,
for instance, trajectory planning as reported in Meurer
(2011); Chamseddine et al. (2012), predictive control and
constraint handling as detailed in De Donà et al. (2009);
Kandler et al. (2012). The reader can also refer to the
book of Sira-Ramirez and Agrawal (2004) for further
applications. Since in this paper, only discrete-time finite



state dynamical systems are considered, throughout this
paper, the word flatness will be often used for short
without confusion.
Self-Synchronizing Stream Ciphers were patented in 1946.
This self-synchronization property has many advantages
and is especially relevant to group communications. Since
1960, specific SSSC have been designed and are still
used to provide bulk encryption (for hertzian line, RNIS
link, . . . ) in military applications or governmental radio
mobile networks. In the early 90s, studies have been
performed in Maurer (1991); Daemen et al. (1992) to
propose secure designs of SSSC. These works have been
followed by effective constructions (Daemen et al. (1992);
Sarkar (2003); Daemen and Kitsos (2008)), but till now,
all of these SSSC have been broken, which motivates the
search of new constructions of SSSC. It is this issue that
is investigated in this paper. It is shown here that the
consideration of the special class of flat Linear Parameter
Varying (LPV) systems, with the help of graph theory,
allow for a convenient and systematic design of such
ciphers.
The paper is organized as follows. Section 2 is de-
voted to the problem statement. The architecture of Self-
Synchronizing Stream Ciphers is presented in terms of
dynamical systems. In Section 3, the special class of LPV
dynamical systems is presented, the definition of differ-
ence flatness is introduced and is particularized for LPV
systems. An algebraic characterization in terms of state
space matrix representation is provided. The connection
between flatness and SSSC is made. In Section 4, an
effective construction of SSSC is proposed. It is based on
the interpretation of flatness in terms of the structure of a
graph associated to the LPV system. A basic example is
given to make a clear understanding of the method.

2. SELF-SYNCHRONIZING STREAM CIPHERS AND
DYNAMICAL SYSTEMS

2.1 Generalities on stream ciphers

For a stream cipher, it must be given an alphabet A,
that is, a finite set of basic elements named symbols.
Hereafter, the index k will stand for the discrete-time. On
the transmitter part, a plaintext (also called information
or message) u ∈ M (M is the message space) consisting
of a string of symbols mk ∈ A is encrypted according
to an encryption function e which depends on a so-called
running key (also called keystream) zk which is invertible
for any prescribed zk. Hence, the ciphering is performed
with

ck+b = e(zk+b,mk) (1)
where e is the ciphering function, mk is the plaintext sym-
bol and ck ∈ B is the ciphertext symbol which belongs to
an alphabet B usually (and assumed hereafter) identical to
A. The integer b ≥ 0 stands for a potential delay between
the plaintext mk and the corresponding ciphertext ck+b.
This is explained by computational reasons, for instance
pipelining (see Daemen and Kitsos (2005) for instance).
Consequently, for stream ciphers, the way how to encrypt
each plaintext symbol changes on each iteration. The re-
sulting ciphertext c ∈ C (C is called the ciphertext space), a
string of symbols ck, is conveyed through a public channel

to the receiver.
At the receiver side, the ciphertext c is decrypted according
to a decryption function d which depends on the running
key ẑk. The decryption function d obeys the following rule.
For any two keystream symbols ẑk+b, zk+b, it holds that

m̂k+b := d(ck+b, ẑk+b) = mk whenever ẑk+b = zk+b. (2)
From (2), it is clear that, beyond the equality of the secret
keys, the running keys zk and ẑk must be synchronized for
a proper decryption. The distinct classes of stream ciphers
differ each other by the way on how the keystreams are
generated and synchronized. The generators delivering the
keystreams will be parametrized by a secret key denoted in
the sequel by θ. Next, we detail the special class of stream
ciphers called Self-Synchronizing Stream Ciphers.

2.2 Keystream generators for Self-Synchronizing Stream
Ciphers

A well-admitted approach to generate the keystreams has
been first suggest in Maurer (1991). It is based on the
use of state automata with finite input memory. This is
typically the case in the cipher Moustique Kasper et al.
(2004). At the ciphering side, the automaton delivering
the keystream takes the form:{

qk+1 = gθ(qk, ck+b)
zk+b = hθ(qk) (3)

where qk is the internal state. As previously stressed,
the delay b is due to the fact that the output (also
called filtering) function h is pipelined with an architecture
involving b layers. If such an automaton has a finite input
memory, it means that by iterating (3) a finite number of
times, there exists a function lθ and a finite integer M such
that

qk = lθ(ck+b−1, . . . , ck+b−M ) (4)
and thus

zk+b = hθ(lθ(ck+b−1, . . . , ck+b−M )) (5)
Actually, the fact that the keystream symbol can be
written in the general form involving a function fθ

zk+b = fθ(ck−`, . . . , ck−`′) (6)
is a common feature of all the SSSC. The quantities `
and `′ are integers in Z. Equation (6) is called canonical
equation.

Remark 1. The outcome of implementing the recursive
form (3) instead of directly implementing the canonical
form (6) is that we can obtain complex nonlinear functions
fθ by implementing simpler nonlinear functions gθ. The
complexity results from the successive iterations which act
as composition operations.

At the deciphering side, the automaton takes the form:{
q̂k+1 = gθ(q̂k, ck+b)
ẑk+b = hθ(q̂k) (7)

where q̂k is the internal state. Following the same reason-
ing, since gθ corresponds to the state transition function
of an automatom with finite input memory, it is clear that
after a transient time of maximal lenghth equal to M , it
holds that, for k ≥M ,

q̂k = qk and ẑk+b = zk+b (8)



Hence, since the generators synchronize automatically
after at most M iterations, the decryption is automatically
and properly achieved after at most M iterations too. No
specific synchronizing protocol between the cipher and
decipher is needed. This explains the terminology Self-
Synchronizing Stream Ciphers. The quantity M is called
the synchronization delay.
To obtain a finite input memory feature, the solutions
proposed in the open literature (see Daemen (1995) for ex-
ample), call for state transition functions gθ in the form of
shifts or T–functions (T for Triangle), which are functions
that propagate dependencies in one direction only. The
aim of the paper is twofold: showing that it is possible to
construct automata with finite input memory with more
general state transition functions than T–functions and
giving a systematic methodology of construction. The con-
struction is based on the property of flatness, a structural
property borrowed from control theory. This property
is considered for the class of Linear Parameter-Varying
(LPV) systems as motivated in next section.

3. LPV SYSTEMS AND FLATNESS

The aim of this section is to illustrate the potential interest
of LPV flat dynamical systems for cryptographic issues.

3.1 Definition of difference flatness for LPV systems

A Single Input Single Output (SISO) Linear Parameter-
Varying (LPV) system denoted by Σρ, defined over a field
F, is described by the following state space representation:

Σρ :
{
xk+1 = Aρ(k)xk +Bρ(k)uk
yk = Cρ(k)xk +Dρ(k)uk

(9)

where k ∈ N stands for the discrete time, xk ∈ Fn is
the state vector, uk ∈ F is the input, yk ∈ F is the
output. The matrices A ∈ Fn×n, B ∈ Fn×1, C ∈ F1×n

and D ∈ F1×1 are respectively the dynamical matrix, the
input matrix, the output matrix and the direct transfer
matrix. Such a system is called Linear Parameter-Varying
because it is written with a linear dependency with respect
to the state vector. The set of all the varying parameters
of A, B, C and D are collected on a vector denoted
by ρ(k) =

[
ρ1(k), ρ2(k), ..., ρLρ(k)

]
∈ FLρ where Lρ is

the total number of non zero (possibly varying) entries.
The matrices A, B, C and D do not necessarily depend
on all the parameters ρi(k). Such systems can exhibit
nonlinear dynamics. Indeed, the nonlinearity is obtained
by defining the varying parameters ρi(k) as nonlinear
functions ϕi of the output yk (or a finite number of shifts)
ρi(k) = ϕi(yk, yk−1, · · · ). Let us notice that the notation
ρi(k) (usual in the literature for LPV systems) is somehow
abusive because it does not reflect an explicit dependency
with respect to the time k but on quantities indexed
with k.

Now, let us focus on the property of flatness. For a non
negative integer k0, a sequence {ρ(k0), ρ(k0 + 1), . . .} will
be called a realization and denoted with ρ. The definition
of a flat LPV system is given below in a generic sense, that
is for almost every realization ρ.
Definition 1. The system (9) is said to be generically flat
if, for almost every realization ρ, there exists a variable

yk, called a flat output, such that all system variables can
be expressed as a function of the flat outputs and a finite
number of its backward and forward shifts. In other words,
there exist two functions Fρ and Gρ parametrized by ρ such
that {

xk = Fρ
(
yk+kF , . . . , yk+k′F

)
uk = Gρ

(
yk+kG , . . . , yk+k′G

) (10)

where kF , k′F , kG and k′G are Z-valued integers.
Remark 2. Let us consider the input uk as the plaintext
and the output yk as the ciphertext. The first equality in
(10) shows that if the output yk of (9) is flat, an interesting
correspondence with (4) can be made. Indeed, xk can be
used as a quantity from which, through a filtering function,
the keystream symbol zk of an SSSC can be derived. The
second equation shows that it is possible to recover the
input uk from a finite number of shifted outputs yk. This
is typically the central notion behind the decryption part
of an SSSC.

The next subsection is devoted to the conditions which
must be fulfilled by (9) to guarantee its flatness property.
Then, it will be shown that from flat LPV systems, au-
tomata with finite input memory like (3), and thus, having
the self synchronizing property, can be naturally derived,
taking into account Remark 2. Furthermore, it will be
showhn that more general architectures of SSSC can be
obtained. By more general, it is understood involving state
transitions functions not restricted to T–functions.

3.2 Conditions for flat outputs

First, it must be pointed out that for a given dynamics
(first equation of (9)), yk is not necessarily a flat output.
It depends on the matrices C and D. Besides, for some
specific matrices A and B, it may happen that none of the
matrices C and D yield to a flat output. As a result, the
conditions which guarantee that an output of (9) is flat
must be expressed in terms of properties verified by the
4-uple of state matrices A,B,C and D. Before proceeding
further, it is necessary to deal with the relative degree
of (9). We recall below a usual general definition.
Definition 2. The relative degree of a discrete-time dy-
namical system is the minimal number r of iterations such
that its output yk+r at time k + r is sensitive to its input
uk.

Now, let us particularize this general definition to the
system defined by equation (9). To this end, let us denote,
for k2 ≥ k1, by

∏k1
l=k2

Aρ(l) the product of the matrices
Aρ(i), from k2 down to k1, and

∏k1
l=k2

Aρ(l) = 1n if k2 < k1,
and introduce the quantity T i,jρ(k) defined for j ≤ i as

T i,jρ(k) = Cρ(k+i)
∏k+j+1
l=k+i−1 Aρ(l)Bρ(k+j) if j ≤ i− 1 and

T i,iρ(k) = Dρ(k+i)
(11)

From (9), it holds that yk+1 = Cρ(k+1)Aρ(k)xk +T 1,0
ρ(k)uk +

T 0,0
ρ(k+1)uk+1. Then, by iterating the output yk for i ≥ 1

and noticing that T i,jρ(k+1) = T i+1,j+1
ρ(k) , it follows that

yk+i = Cρ(k+i)

k∏
l=k+i−1

Aρ(l)xk +
i∑

j=0
T i,jρ(k)uk+j (12)



Hence, if (9) admits a finite relative degree r, it follows
from Definition 2 that:
(1) r = 0 if T 0,0

ρ(k) 6= 0 for all k
(2) r <∞ is the least integer s such that for all k

T i,jρ(k) = 0 for i = 0, . . . , s− 1 and j = 0, . . . , i,
T s,0ρ(k) 6= 0

(13)
Hence, it holds that

yk+r = Cρ(k+r)

k∏
l=k+r−1

Aρ(l)xk + T r,0ρ(k)uk (14)

Proposition 1. If the LPV system (9) has a finite relative
degree r, the following condition that must hold for a
positive integer K
Pρ(k+K−1:k+K−1+r)Pρ(k+K−2:k+K−2+r) · · ·Pρ(k:k+r) = 0

(15)
with

Pρ(k:k+r) = Aρ(k) −Bρ(k)(T r,0ρ(k))
−1Cρ(k+r)

k∏
l=k+r−1

Aρ(l)

(16)
is equivalent to that yk is a flat output.

Proof. If the LPV system (9) has a finite relative degree
r, the following dynamical system can always be defined
since T r,0ρ(k) is invertible.{

x̂k+1 = Pρ(k:k+r)x̂k +Bρ(k)(T r,0ρ(k))
−1yk+r

ûk+r = (T r,0ρ(k))
−1(Cρ(k+r)

∏k
l=k+r−1 Aρ(l)x̂k − yk+r)

(17)
Iterating K − 1 times the first equation of (17) yields
xk = Pρ(k−1:k−1+r) · · ·Pρ(k−K:k−K+r)xk−K+∑K−1

i=1

[∏i−1
j=0

Pρ(k−j−1:k+r−j−1)

]
(T r,0
ρ(k−1−i))−1Bρ(k−i−1)yk−i−1+r

(18)

Let us define εk = xk − x̂k. By simple manipulations, it
can be shown that εk verifies εk+1 = Pρ(k:k+r)εk. Hence,
after a finite transient time equal to K, since (15) holds,
one has x̂k = xk. Hence, the state vector xk exclusively
depends on shifted outputs if and only if (15) holds and
xk reads

xk =

K−1∑
i=0

[ i−1∏
j=0

Pρ(k−j−1:k+r−j−1)

]
(T r,0
ρ(k−1−i))−1

Bρ(k−i−1)yk−i−1+r

(19)

which gives the explicit function Fρ involved in (10).
Letting ωk = uk − ûk+r and following the same reasoning,
it is shown that uk exclusively depends on shifted outputs.
The explicit form of Gρ involved in (10) is obtained by
substituting (19) into the second equation of (17). It shows
that (9) is flat with yk as flat output.

3.3 Connection between flatness and SSSC

In this subsection, the connection between flat LPV sys-
tems and SSSC is established.
Proposition 2. If the LPV system (9) has relative degree
r and is flat, then the finite state automata given by

{
qk+1 = Pρ(k:k+r)qk +Bρ(k)(T r,0ρ(k))

−1yk+r

zk+r = Cρ(k+r)
∏k
l=k+r−1 Aρ(l)qk

(20)

along with
yk+r = zk+r + T r,0ρ(k)uk (21)

and {
q̂k+1 = Pρ(k:k+r)q̂k +Bρ(k)(T r,0ρ(k))

−1yk+r

ẑk+r = Cρ(k+r)
∏k
l=k+r−1 Aρ(l)q̂k

(22)

along with
ûk+r = (T r,0ρ(k))

−1(yk+r − ẑk+r) (23)
define an SSSC.

Proof. If (9) has relative degree r and is flat, (15) holds
and thus, (20) is well defined and can be identified with
(3) while (22) is also well defined and can be identified
with (7). The property (15), that is flatness, ensures that
(20) and (22) are automata with finite input memory. The
identification of (21) with (1) and the identification of (23)
with (2) gives respectively the encryption and decryption
functions.

The following correspondences hold:
• uk plays the role of mk (plaintext symbol)
• yk plays the role of ck (ciphertext symbol)
• zk+r = Cρ(k+r)

∏k
l=k+r−1 Aρ(l)qk is the keystream

symbol of the cipher
• ẑk+r = Cρ(k+r)

∏k
l=k+r−1 Aρ(l)q̂k is the keystream

symbol of the decipher
• r plays the role of b (delay)
• the function (zk+r, uk) 7→ zk+r + T r,0ρ(k)uk plays the

role of e (encryption function)
• the function (ẑk+r, yk+r) 7→ (T r,0ρ(k))

−1(yk+r − ẑk+r)
plays the role of d (decryption function)

• K plays the role of M (synchronization delay)
The nonlinearity is obtained by defining the values of the
varying parameters ρi(k) as nonlinear functions of the
output yk (or a finite number of shifts), implemented in
the form of so-called S-boxes ϕi: ρi(k) = ϕi(yk, yk−1, · · · )
Remark 3. The encryption and decryption functions e and
d are quite simple. This is a common feature for SSSC.
For example in the Boolean case, those functions are
often nothing but the exclusive or. Actually, the security
is essentially based on the properties of the keystream
sequences.

Let us comment on the state transitions matrices Pρ(k:k+r).
It is worth pointing out that Pρ(k:k+r) is not imposed to be
triangular, that is may represent a larger class than strict
T–functions. However, choosing non triangular matrices
fulfilling (20) is an intricate problem. Indeed, it is closely
related to the notion of mortality. It is said that a set
of matrices is mortal if the zero matrix can be expressed
as product of finite length of matrices. And yet, from
the papers Paterson (1970); Blondel and Tsitsiklis (1997);
Bournez and Branicky (2002), except from some very
special cases, the problem of checking mortality of a set
of matrices is unsolvable. Furthermore, the problem under
consideration here is more intricate since the matrices
Pρ(k:k+r) are not given but should be chosen. In other



words, we are not concerned with analysis but with syn-
thesis. The method proposed here, that is the design a flat
LPV system (9) followed by deriving the automaton (20)
(which will be, because of its flatness property, with finite
input memory and so self-synchronizing) constitutes an
efficient alternative to a very challenging direct design of
the automaton (20). This approach is new in cryptography
and provides a general framework. However, from a control
theory point of view, the issue of designing a flat LPV
system is a new paradigm. Indeed, in automatic control, we
are usually given a system and we have to check whether a
system is flat or not and to check for the flat outputs. The
aim of the next section is to show that a graph-oriented
approach can be a solution to that issue.

4. CONSTRUCTION OF SSSC: STRUCTURAL
CONSIDERATIONS

4.1 Structured systems and digraphs

The core idea is that the LPV system (9) can be considered
as an admissible realization of a corresponding structured
linear system. A structured linear system is a system
only defined by the sparsity pattern of the state space
realization matrices. In other word, in a structured linear
system, we distinguish between the entries that are fixed
and known to be zero and the other ones that can take
any value in F, including the ones which are varying. As a
simple example, let us consider the setting

Aρ(k) =
(
a 0
1 ρ1(k)

)
and Bρ(k) =

(
ρ2(k)

0

)
where a is a constant element in F, ρ1(k) and ρ2(k) are
varying parameters in F. The dynamical matrix and the
input matrix, denoted respectively by IA and IB , of the
corresponding structured linear system read:

IA =
(

1 0
1 1

)
, IB =

(
1
0

)
As a consequence, if the structural linear system corre-
sponding to (9) is flat, the flatness will hold for any real-
ization ρ. Hence, the challenge is to define a methodology
to construct flat linear structural systems. A graph-based
approach is suggested below to that purpose. Let us recall
some basic on graphs. A digraph G(Σρ) describing the
structured linear system associated to the state equations
(9), is the combination of a vertex set V and an edge set E .
The vertices represent the state and the input components
of Σρ while the edges model the dynamic relations between
these variables. One has V = X ∪ {u} where X is the
set of state vertices defined as X =

{
x1, . . . , xn} and u

is the input vertex. The edge set is E = EA ∪ EB , with
EA =

{
(xj,xi) |A(i, j) 6= 0

}
and EB =

{
(u,xi) |B(i) 6= 0

}
where A(i, j) and B(i) denote the (i, j)th element and the
ith element of the matrix A and B respectively.
• A directed path P is a sequence of successive edges

directed in the same direction which connect a se-
quence of vertices. It is said that the path P covers a
vertex if this vertex is the begin or the end vertex of
one of the edges of P ;
• In a directed path from a vertex vi to a vertex vj, it

is said that vj is a successor of vi and conversely, vi

is a predecessor of vj;

v0 v1 v2

Fig. 1. Digraph obtained for n = 2, r = 2, na = nM = 5.
The flat output is yF = x2 and corresponds to the
vertex v2

• A directed path is simple when every vertex occurs
only once in this path;

• The length of a directed path P is equal to the number
of the edges involved in P . We denote by `(vi,vj) the
minimal length of a path linking vi to vj;

• Vess(vi,vj) is the set of vertices, called essential
vertices from vi to vj, which are common to all the
paths linking vi to vj whenever at least one path
exists.

We recall from Millérioux and Boukhobza (2015) the
necessary and sufficient conditions which must be satisfied
by a vertex vi (i ∈ {1, . . . , n}) of the digraph G(Σρ) to be
associated to a flat output yF = xi (i ∈ {1, . . . , n}) of (9).
In such a case, the output state space matrix Cρ(k) = C
is constant and has zero entries except the entry located
at the column number i which is equal to one. The direct
transfer matrix Dρ(k) = D is the zero matrix.
Theorem 3. The output yF of a structured linear system
associated to the vertex vF ∈ X is generically a flat output
iff, in the associated digraph G(Σρ), all the three following
conditions hold:
C0. vF is a successor of u;
C1. All the simple paths from u to vF have the same
length equal to `(u,vF);
C2. All the cycles cover at least an element of Vess(u,vF).

4.2 Construction of SSSC based on the digraph

Conditions C0-C2 are instrumental for our purpose. In-
deed, systematic constructions of digraphs fulfilling C0-
C2 can be easily proposed. An example of construc-
tion is given in an external document 1 . The digraph is
parametrized by the triplet (n, r, na). The dimension n of
the system (9) corresponds to the number of vertices of
the graph minus one (the vertex assigned to the input).
The relative degree r fulfilling (13) gives the number of
edges in the main direct path. The integer na defines the
number of edges in the digraph G(Σρ) and can be chosen
freely chosen provided it is less than the maximal number
nM of edges (see the external document).
Let us consider the graph depicted in Figure 1 which
results from the construction (see the external document)
for n = 2 and na = nM = 5 (maximal number of edges)
and r = 2. The relative degree r being equal to 2, it
means that the component x2 of the state vector of the
corresponding LPV system (9) will be the flat output yk,
that is the ciphertext. Hence, Cρ(k) = C = [0 1] and
Dρ(k) = 0. Then, given a digraph G(Σρ), characterized by
the triplet (n, r, na), we can derive the matrices IA and IB
of the structured linear system from the adjacency matrix.
The adjacency matrix, denoted with I, of the digraph
G(Σρ), is the (n + 1) × (n + 1) matrix whose each entry
(a)ij is defined as follows for 1 ≤ i, j ≤ n
1 see the website https://sites.google.com/site/autocrypt/



(a)ij =
{

1 if there exists an edge from vj to vi

0 otherwise (24)

Hence, the adjacency matrix associated to G(Σρ) is given
by:

I =


0 ItB
0

ItA...
0

 (25)

where ItA and ItB stand respectively for the transpose of
IA and IB . For our example, the adjacency matrix I and
the structured matrices IA and IB as defined by (25) are

I =
( 0 1 0

0 1 1
0 1 1

)
, IA =

(
1 1
1 1

)
, IB =

(
1
0

)
(26)

Finally, each of the non zero entries of IA and IB can
be potentially replaced by a nonlinear function ρi(k) to
construct the matrices Aρ(k) and Bρ(k) of (9). Let us
choose, for example, the varying parameters ρi(k) for
i = 1, 2, 3 of the first three entries of A as constant and
equal to 1. This finally leads to the following matrices Aρ(k)
and Bρ(k):

Aρ(k) =
(

1 1
1 ρ4(k)

)
and Bρ(k) = B =

(
1
0

)
The varying parameter ρ4(k) is in practice implemented
in the form of a so-called S-box of which entry is the
flat output yk and possibly a finite number of backwards
iterates. By construction, any nonlinearity would lead to
a flat LPV system and so to an SSSC. The approach
proposed here gives thereby a family of SSSC. The design
of a specific SSSC is completed by deriving the equations of
Proposition 2. Actually, it can be shown that even for this
simple example, the state transition matrix Pρ(k:k+2) is
non triangular, which corroborates that this method allows
to provide a novel class of SSSC.

5. CONCLUSION

A systematic and general construction of Self Synchro-
nizing Stream Ciphers based on flat Linear Parameter
Varying (LPV) dynamical systems has been proposed. It
is based on algebraic conditions guaranteeing flatness of
the LPV system and so the self-synchronizing property,
those conditions being interpreted in terms of the structure
of the graph associated to the LPV dynamical system. It
has been shown that such an approach allows to enlarge
the existing classes of SSSC, more precisely, to obtain non
triangular SSSC. Two control-theoretical issues have been
treated to this end: as a new paradigm, the construction of
flat dynamimal systems and the notion of mortality, which
is in general not decidable.
From a practical point of view, a large dimension must
be chosen to allow a sufficiently complex architecture for
the sake of security. The proposed graph-based approach
is well suited to deal with high dimensions. The dimension
n = 40, which is compatible with security issues (not
treated in this paper because out of the scope), has been
tested with success on a real-world equipement (see the
website https://sites.google.com/site/autocrypt/ for
technical aspects).
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