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Abstract. MapReduce is a design pattern for processing large datasets distributed on
a cluster. Its performances are linked to the data structure and the runtime environ-
ment. Indeed, data skew can yield an unfair task allocation, but even when the initial
allocation produced by the partition function is well balanced, an unfair allocation can
occur during the reduce phase due to the heterogeneous performance of nodes. For
these reasons, we propose an adaptive multi-agent system. In our approach, the re-
ducer agents interact during the job and the task re-allocation is based on negotiation
in order to decrease the workload of the most loaded reducer and so the runtime. In this
paper, we propose and evaluate two negotiation strategies. Finally, we experiment our
multi-agent system with real-world datasets over heterogeneous runtime environment.
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1. Introduction

Data Science aims at processing large volumes of data to extract knowledge
or insights. The volume and velocity of the available data to analyze requires
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parallelizing the processing as it can be done with the MapReduce design pat-
tern (Dean and Ghemawat, 2008). The latter takes its name from the functions
on which it is based: the map function which filters the data and the reduce
function which aggregates them. The most popular framework for MapReduce
is Hadoop but many other implementations exist, such as the cluster computing
framework Spark (Zaharia et al., 2016), or the distributed NoSQL database Riak
built from Amazon Dynamo (DeCandia et al., 2007).

The developer of a distributed application based on the MapReduce design
pattern must understand the implementation which he uses (e.g. Hadoop), the
data to process and the runtime environment in order to better configure the job
beforehand. The choice of the implementation and its parametrization can be
challenged by a variation in the data or in the runtime environment. In (Kwon
et al., 2012a), the authors identify four common data skew: two in the mapping
phase and two during the reducing phase. The partitioning skew is the one we
want to address. According to this data skew, the workload of the reducers is
unbalanced and so the reducing phase is penalized by the most loaded reducer.
In a similar way, the usage of an heterogeneous cluster environment can lead to
a workload unevenly distributed between the reducers.

We show in this paper that Multi-Agent Systems (MAS) are suitable for
the distributed implementation of the MapReduce design pattern. In particu-
lar, the adaptability of MAS makes it possible to tackle the partitioning data
skew and a runtime environment with heterogeneous performances. Our MAS
includes two kinds of agents : (i) the mapper agents filter the data; (ii) the
reducer agents aggregate the data. In order to balance the workload between
reducers, the tasks are dynamically and continuously re-allocated during the
reducing phase. The task negotiation fills the gap between the most loaded re-
ducer and the least loaded ones. This balancing of the workload allows to speed
up the reducing phase and so the data processing. We prove that the negotiation
process terminates and improves the fairness which measures if the processing is
performed at the expense of the worst-off agent. During the data processing, each
reducer must determine which tasks are locally performed and which ones can be
delegated through negotiation. For this purpose, we propose and evaluate here
two strategies. Finally, we experiment our multi-agent system with real-world
datasets over heterogeneous runtime environment and our observations confirm
the added-value of negotiation.2

This paper is structured as follows. Section 2 introduces the MapReduce
design pattern and the Contract Net Protocol in the background of our work.
Section 3 overviews relevant related works. Section 4 describes the core of our
proposal. Then, we present in Section 5 our empirical results. Finally, Section 6
concludes with some directions for future work.

2 This paper is an extension of (Baert et al., 2016). We provide here a deeper description of the
framework including some illustrative examples. Finally, we present/evaluate some additional
strategies and experiments measuring the speedup of our MAS in a distributed environment.
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Fig. 1. MapReduce dataflow.

2. Background

2.1. MapReduce

The MapReduce programming model aims at processing large data sets (Dean
and Ghemawat, 2008). In this design pattern, while the map function filters data,
the reduce function aggregates them.

The distributed implementation Hadoop allows developpers without any ex-
perience with parallel and distributed systems to easily use the resources of a
large distributed system. MapReduce jobs are divided into a set of map tasks
and reduce tasks that are distributed on a cluster of computers. The MapReduce
programming model is based on two user-provided functions with the following
types:

map: (K1, V 1)→ list[(K2, V 2)]
reduce: (K2, list[V 2])→ list[(K3, V 3)]

Fig. 1 illustrates the MapReduce dataflow:

1. The supervisor splits the input data among mappers.

2. The mappers apply the map function on the input data and create intermediate
key-value pairs (key : K2, value : V 2).

3. A partition function is applied on mappers output in order to split them
into subsets, one subset per reducer such that all couples with the same key
are grouped and sent to the same reducer. The partition function can be
customized in order to specify which keys need to be processed together by
the same reducer.

4. Once a mapper has processed its input, it informs the supervisor.

5. When all the mappers have processed their input, the supervisor informs the
reducers to start the reduce process.
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6. The reducers aggregate the intermediate key-value pairs to build (K2, list[V 2])
pairs.

7. The reducers take the (K2, list[V 2]) pairs and run the reduce function once
per key grouping.

8. The final key-value pairs (K3, V 3) are written into a file in a distributed file
system.

9. Finally, the reducers inform the supervisor of the final result location. When
all the reducers have finished their tasks, the job is terminated.

Whether a default function or a special one is used, the partitioning is a
priori fixed. For example, to determine which reducer will process which key,
the default Hadoop partition performs a modulo of the number of reducers:

key.hashCode() % numberOfReducers.

This function, as any a priori fixed function without previous knowledge
about the data, does not depend on the data, and so the workload is not neces-
sarily uniformly distributed among the reducers.

We have experimented our MapReduce implementation with a weather dataset.
This dataset contains more than 3 millions of records (station id, timestamp,
temperature, rainfall, . . . ) from 62 stations taken during the last 20 years. We
have written a simple job which counts the number of records per half degree of
temperature:

1. the map function reads a record (K1) and returns a couple (K2, V 2)=(Temp,1)
where Temp is the temperature rounded to its nearest half degree for the cor-
responding station and timestamp.

2. the reduce function sums for a given key Temp all the counters (always 1)
provided by map in s to produce (K3, V 3)=(Temp,s).

Fig. 2 shows the outcome of the job on the left and the reducers workload on
the right. The reduce task allocation is the result of the default Hadoop partition
function. This task allocation is not only the result of a meaningful request based
on real-world data but also symptomatic of the use of a predefined partitionning
function. Indeed, the job could have been finished earlier if the task allocation
would have been balanced. Another partition function could lead to a better key
partitionning but, without prior data knowledge, it not possible to anticipate
which partition function is suitable.

Even if the partition function produces a balanced initial task allocation, an
unfair allocation can occur during the reduce phase due to the heterogeneous per-
formance of nodes. It is worth noticing that the computation time is determined
by the most loaded or the slowest process.

Our purpose here is to fix this problem due to data skew or performances
heterogeneity by re-allocating the tasks dynamically between reducers during the
process. This proposal does not depend on the initial partition function, neither
on any data knowledge. Our MapReduce framework is based on a MAS, where
reducers are agents negotiating tasks during the job. The next section presents
the Contract Net Protocol which our proposal is build on.
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Fig. 2. The number of records per half degree of temperature (at left) and the
key partitionning with the default Hadoop partition function (at right).

2.2. Contract-Net Protocol

Introduced by Smith (1980), the Contract Net Protocol (CNP) is the first inter-
action protocol proposed for task allocation. According to this auction protocol,
agents seek to establish some contracts. The CNP is a multiparty protocol where
each agent can play the two following roles: the auctioneer (also called initiator)
proposes to delegate some tasks while the bidders (also called participants) re-
ply to supply these tasks. In this protocol, the initiator starts by submitting a
call for proposal (cfp) to the bidders. Each bidder evaluates this cfp in order to
make a proposal. The initiator gathers all the received proposals and allocates
the tasks to the bidders which made the best proposals. Afterwards, the selected
bidders inform the initiator of the successful processing (or failure) of the tasks.
Our multi-agent negotiation protocol is based on the CNP (cf. Section 4.2).

3. Related works

In this paper, we focus on multi-agent negotiation in order to reduce the compu-
tation time of the reducing phase (i.e. the workload of the most loaded reducer).
Firstly, we review the existing approaches for task partitioning in the reducing
phase. Secondly, we highlight the benefit of adaptive MAS, in particular multi-
agent negotiation.

Table 1 compares some existing works which have studied the reducing phase
optimization.
As stated in Section 2, the key partitioning of Hadoop (Dean and Ghemawat,
2008) is fixed and static. By contrast, Lama and Zhou (2012) and Wolf et al.
(2012) predict the performance with job profiling by collecting data from previ-
ous runs. In our proposal, we do not want to preprocess data, e.g. with a machine
learning phase using a sample dataset. Indeed, we assume no a priori knowledge
of the input data since such a computational overhead can be high, in particular
for large datasets.
SAMR (Slagter et al., 2013) is a scheduling algorithm which uses the history of
the previous runs to identify the slow nodes. In this way, this centralized sched-
uler assigns tasks according to the previous performances of the node. Indeed, we
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Hadoop SAMR SkewTune FP-Hadoop Our contrib.
No a priori knowledge 3 7 3 3 3
Dynamic 7 7 3 3 3
Tackle data skew 7 3 3 3 3
Decentralized 7 7 7 7 3
Weak parameterization 7 3 3 7 3

Table 1. Features of partitioning data skew tackling contributions.

prefer a dynamic approach where adaptive reducers interact during the job. Our
MAS is per se adaptive with respect to the computation since the negotiations
are performed during the data processing.
Kwon et al. (2012b) identify four skews in the MapReduce applications: two of
them during the mapping phase (the expensive record skew and the heteroge-
neous map), and two others during the reducing phase (the partitioning skew
and the expensive key group). Then, the authors study unbalanced situations
between mappers or between reducers. SkewTune (Kwon et al., 2012b) mitigates
the partitioning skew due to an uneven distribution of data. When a node is
free since it has terminated its task, SkewTune identifies the slowest reducer and
reassigns the unprocessed input data. Our approach is similar to SkewTune and
we only address here the partitioning skew. However, the partitioning is in our
approach the outcome of a collective choice of reducers. Moreover, we think that
multi-agent negotiation is suitable to deal with partitioning a set of values asso-
ciated with the same key (i.e. the expensive key group skew). We plan to address
this data skew in future works.
FP-Hadoop (Liroz-Gistau et al., 2016) handles these two data skews with a
centralized task split process. They introduce a new intermediate phase which
parallelizes the reducing phase for one key. This intermediate phase is managed
by the supervisor with a centralized data structure and its parametrization needs
a priori knowledge over the data. Our goal is to propose a fully decentralized
process where all the decisions are local. We believe that such a decentralized
process is more adaptive since it requires less user configuration and handles
heterogeneous environments without human supervision.
The mapping phase optimization as studied in (Wolf et al., 2012) is not within
the scope of this paper since it is complementary to our approach and it could
be implemented by a MAS.
As Table 1 sums up, our contribution is dynamic, decentralized, with neither
prior knowledge over the data nor historical data and it does not require data-
dependent parameters.

In our work, the dynamic allocation of tasks is based on a negotiation be-
tween reducers. Social choice theory provides methods for designing and ana-
lyzing collective decision by combining individual preferences or welfares. Com-
putational social choice is often considered as an optimization problem solved
by a centralized approach (e.g. an auction) where agents report their prefer-
ences to the central and omniscient auctioneer that determines the allocation
consequently (Brandt et al., 2016). Indeed, such an approach makes important
assumptions that correspond to severe drawbacks : (i) it may be too expensive
to gather all information in a single place; (ii) if data evolve during the solv-
ing process, it must restart in order to take the new data into account; (iii) it
assumes that agents are fully connected without restriction and that they can
communicate with all others. We solve here drawbacks (i) and (ii) using multiple
distributed concurrent auctions with adaptive agents which only take decisions
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based on local information. As we consider fully connected agents, drawback (iii)
remains one of our concerns. However, we can easily adapt agents acquaintances
network to build subgroups which negotiate independently one from the other.
Typically in a distributed system, the communication cost depends on the topol-
ogy of the network, i.e. physical constraints. A solution would be to adapt the
subgroups to the physical network and thus provide suitable negotiations.

Generally speaking, we adopt here a behavioural approach for the distributed
problem solving. The approach includes stigmergy (Wagner et al., 1999), dis-
tributed constraint solving problem (Clair et al., 2008) or negotiation (Nongaillard
and Mathieu, 2011). Unlike (Nongaillard and Mathieu, 2011), our resolution is
not about finding a data allocation once for all, but we iterate task negotiations
during the reducing phase using a local estimation of the current workload. Con-
trary to (Clair et al., 2008), the problem which is addressed has no scheduling
constraints and the agents have no limited skills or capacity. As stated by Ri-
hawi et al. (2015), the large scale distribution of situated multi-agent system (e.g.
ant colony, boids, etc.) is a difficult problem. To the best of our knowledge, the
only MAS which implements the MapReduce design pattern is based on mobile
agents to ensure code and data replication in order to guarantee fault tolerance
(Essa et al., 2014). However, this work does not implement self-organization
techniques (Serugendo et al., 2005) to adapt the system to the data or to the
computing environment. For this purpose, we adopt multi-agent negotiation tech-
niques.

4. Proposal

We aim at decreasing the workload of the most loaded reducer in order to ter-
minate the reducing phase earlier. For this purpose, we consider dynamic task
re-allocation with multi-agent negotiations which do not require a centralized
orchestration.

In this section, we present our core proposal. First, we overview the proposal.
Second, we show a negotiation example. Third, we present our reducer agent
architecture. Fourth, we introduce the different interaction protocols in which
reducer agents are involved. Fifth, we detail their behaviours. Finally, we prove
some formal properties of our framework.

4.1. Overview

Our contribution aims at providing a balanced reducing task partitioning. For
this purpose, we propose a task re-allocation based on local decisions where each
reducer is embodied by an agent. Each of them is associated with the bundle
of tasks it must achieve. We assume that each task has a cost, i.e. an intrinsic
characteristic. Therefore, all the agents, having the same capabilities, estimate
their own contributions to the global resolution as the costs of their bundles.

Definition 1 (Allocation/Contribution). Given a set T ofm tasks τ1, . . . , τm
with the associated costs cτ1 , . . . , cτm and a population Ω = {1, . . . , n} of n re-
ducer agents, a task allocation A is represented by an ordered list of pairwise
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disjoint task bundles Ti ⊂ T , such that
⊎
Ti = T , describing the subset of tasks

owned by each agent i:

A = [T1, . . . , Tn] with 1, . . . , n ∈ Ω (1)

The contribution of the agent i at time t within the allocation A is defined such
that:

cAi (t) =
∑
τ∈Ti

cτ + wi(t) (2)

where wi(t) is the estimated cost for the current task performed by the agent i.
Before the reducing phase, wi(0) = 0.

The mapping phase does not differ from the classical MapReduce model. Map-
pers deliver intermediate key-values pairs to the reducers. However for each key-
values, the mappers add information on the cost of a task for these (partial)
values. Since we do not assume any a priori knowledge over the data, the default
partitioning is used by all the mappers to achieve the initial allocation to the
reducers.

Reducers receive their pairs (K2, list[V 2]) and start their reduce work. Si-
multaneously, the negotiation phase begins in order to decrease the contribution
of the most loaded reducer, such that the reducing phase finishes earlier. We
assumes here that agents are fully connected without restriction and that they
can communicate with all others. The reducer agents communicate with each
other to negotiate task delegation. Actually, they request their peers through
cfp (call-for-proposal) in order to alleviate their contributions. A cfp includes
the cost of the submitted task and the auctioneers’s contribution.

A reducer bids to take the responsibility of the task in order to decrease the
worst contribution. A bidder makes a proposal iff, after the task transfer, the
worst resulting contribution is smaller than the worst initial one. Formally, its
decision is based on the following local criteria:

Definition 2 (Acceptability criteria). Let A be an allocation of tasks at
time t between n agents Ω. The bidding agent j will make a proposal for the
transfer of the task τ ∈ Ti suggested by the auctioneer i iff:

cAj (t) + cτ < cAi (t) (3)

In other words, a participant agrees to be involved as bidder in a negotiation
iff, in case of successful negotiation, its resulting contribution would be strictly
smaller than the initial auctioneer contribution. Then, the greatest contribution
after the task transfer is smaller than the greatest one before it. It is possible
that, after the delegation, the contribution of the bidder becomes greater than
the initiator one. This is not an issue since we consider the agents cooperate to
solve the problem. Even if one of them works more, they aim at decreasing the
contribution of the most loaded agent in order to finish the job earlier. As we
will demonstrate latter, the repeated concurrent negotiations lead to decrease
the highest contribution.

Reciprocally, the auctioneer can receive several bids replying to its cfp. A bid
includes the contribution of the potential supplier. The auctioneer selects the
winner with the smallest contribution. Formally,

Definition 3 (Selection criteria). Let A be an allocation of m tasks T be-
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tween n agents in Ω at time t. If the auctioneer i has proposed to delegate the
task τ and it has received some bids from the agents Ω′ ⊂ Ω, it selects:

argmin({cAj (t) | j ∈ Ω′}) (4)

In this way, the task transfer allows to load the least loaded reducer in order to
balance the workload as much as possible. It is worth noticing that evaluating
the decision criteria for the task transfer only requires local information.

The reducers send cfp as long as their previous cfp has not been denied by
all their peers. The protocol ensures that when negotiations stop, there is no
task transfer that could lead to a decrease of the maximum contribution. As we
will see in Section 4.5, a reducer resumes sending cfp when it acquires knowledge
that some of its peers may accept it.

4.2. Example

In order to illustrate the task delegation through negotiation, we consider here
a particular auction within a single MapReduce job.

We suppose that the mapping phase has been performed and the reducing
tasks are initially allocated to a set of four reducers, Ω = {1, 2, 3, 4}. Let us focus
on the task allocation at time t (A = [T1, T2, T3, T4]) such that the individual
contributions are: cA1 (t) = 10, cA2 (t) = 8, cA3 (t) = 3 and cA4 (t) = 5 (cf. Fig. 3(a)).
In order to decrease their contribution, any agent can initiate an auction. In
our example, we focus on the auction initiated by the reducer #1. It sends a
cfp about the task τ ∈ T1 with cτ = 3 (cf. Fig. 3(b)). This cfp includes the
reducer #1 contribution cA1 (t) and the task cost cτ . Since the reducer #1 has
the maximum contribution, this auction may be successful.
In order to reply, the other reducers must decide if they want to take care of the
task τ . Using the acceptability criteria (cf. Def. 2) each of these reducer chooses
to make a proposal for τ or to decline this task delegation. The reducer #2 does
not want to take care of τ , otherwise, its resulting contributions cA2 (t)+cτ would
be higher than cA1 (t). Meanwhile, the reducers #3 and #4 make a proposal for
τ by sending their contributions to reducer #1 (cf. Fig. 3(c)).
The reducer #1 must now select the bidder with the lowest contribution. Using
the selection criteria (cf. Def. 3), the reducer #1 accepts the proposal from the
reducer #3 and rejects the one from the reducer #4 (cf. Fig. 3(d)).

After this negotiation (at time t+ 1), we observe that:

– the task allocation is A′ = [T1 \ {τ}, T2, T3 ∪ {τ}, T4];

– the contributions are cA
′

1 (t + 1) = 7, cA
′

2 (t + 1) = 8, cA
′

3 (t + 1) = 6 and

cA
′

4 (t+ 1) = 5.

Therefore, the reducer #2 has now the maximum contribution. However, we can
observe that the contribution of the most loaded reducer has decreased since we
have cA

′

2 (t+ 1) < cA1 (t). The negotiation leads to a more efficient task allocation
when the workload is fairly allocated (cf. Fig. 3(e)).

4.3. Reducer Agent Architecture

We consider here the asynchronous message-passing model of actor (Clinger,
1981) for concurrent programming. Inspired by Hewitt (1977), we consider that
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(a) Initial task allocation. The reducer #1 is the
most loaded reducer.

(b) The reducer #1 auctions the task τ .

(c) Each bidder applies the acceptability criteria. (d) The reducer #1 applies the selection criteria.

(e) Task allocation after the negotiation.

Fig. 3. Step by step negotiation process: how the reducer #1 delegates the task
τ .

an agent: (i) has a unique address; (ii) is triggered by messages delivered in its
mailbox; and (iii) can create other agents.

In order to decrease the complexity related to the design of the reducer agent,
we adopt here a recursive agent architecture similar to (Morge et al., 2009)). This
modular approach allows: (i) the separation of concerns; (ii) the concurrency of
the negotiation phase and the reducing one; (iii) intelligible behaviours. For this
purpose, the reducer agent creates three sub-agents which run concurrently (cf.
Fig. 4):

1. a worker agent which locally computes several tasks;
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Fig. 4. The reducer agent creates three agents: the manager handling a task
bundle; the broker negotiating tasks; and the worker locally performing tasks.

2. a broker agent which negotiates tasks either as a auctioneer or as a broker;

3. a manager agent which orchestrates the negotiations handled by the broker
with the tasks performed by the worker. The manager is responsible of the
task bundle sorted by the cost of the task. The strategy used to manage the
task bundle will be discussed in Section 4.6.

Contrary to the worker agent, the two other ones can both communicate with
other agents via their reducer. While the manager agent receives the mapper
output, the broker negotiates with other brokers. Actually, the reducer agent
plays the role of proxy to forward messages from/toward other agents.

4.4. Protocols

We present here the protocols which regulate the interaction between the sub-
agents of the same reducer and, as stated in Section 2, we apply the Contract
Net Protocol (Smith, 1980) in order to delegate reducing tasks.

The protocols which regulate the interactions between the sub-agents are
depicted in AUML (Odell et al., 2000) within Fig. 5. Within the same reducer,
the manager interacts with the worker in order to locally perform some tasks
(cf. Fig. 5(a)). The manager assigns a task to the worker through a Perform
message. When the task is performed, the worker replies with WorkerDone and
then the manager can send a new task.
The manager interacts with the broker in different ways depending on the role
of this latter in the negotiation:
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(a) Performing task protocol (b) Querying contribution protocol

(c) Submiting task protocol

Fig. 5. Protocols regulating interactions between the manager, the worker and
the broker of the same reducer agent.

– Either the broker acts as a bidder (cf. Fig. 5(b)), then it needs to know the
local contribution in order to reply to a Cfp. For this purpose, the broker sends
a QueryContribution to the manager which replies with Inform.

– Or the broker can act as an auctioneer if it is not already involved in another
negotiation (cf. Fig. 5(c)). In order to delegate a task, the manager sends a
Submit. If the broker does not find any potential supplier before the timeout,
it replies to the manager with a BrokerDeny. If all the agents decline the task
delegation, the broker replies to the manager with a CFPDeclinedByAll. The
broker replies with a BrokerReady message when it has found a contractor.
Meanwhile the task can have been concurrently performed by the worker. For
this reason the manager can Cancel the task delegation. Otherwise, the man-
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ager sends an Approve and the successful delegation ends with a BrokerFinish
message.

It is worth noticing that these protocols which regulated the interaction between
the sub-agents allows to concurrently realize the task delegation through the
broker and the task performance through the worker. Even if a broker can be
only involved in a single negotiation at a time either as a bidder or as a auctioneer,
several auctions involving distinct reducers can simultaneously occur.

As depicted in Fig. 6, an auction is initiated by a broker with a call-for-
proposal (Cfp) which contains the cost of delegated task and its own contribution.
The initiator contribution is broadcast to all the participants. Each participant
forward the contribution to its manager with a InformContribution message.
Depending on its own acceptability criteria (cf. Definition 2) each of the m
participants can either decline (Decline) or accept the cfp. In the latter case,
if it is not already committed in another cfp, the participant sends a Propose
containing its contribution. Only the proposal with the smallest contribution is
selected as the auction winner (cf. Definition 3). The others are notified by a
Reject while the winner receives an Accept with the delegated task and must
then definitely acknowledge the delegation with a Confirm. It is worth noticing
that, since reducers can be distributed within a cluster of PCs, messages are
delivered at most once. Since a message can be lost, the auction protocol includes
business-level acknowledgements.

4.5. Behaviours

We sketch out the behaviours of the sub-agents which are in conformance with
the previous protocols.

Manager. This agent handles the task bundle and coordinates the activities of
the worker and the broker. The manager provides some tasks to the worker and
bootstraps the broker to initiate auctions. At first, the task bundle is fulfilled by
the mappers and will be eventually completed by the broker winning auctions.
In order to empty the task bundle, the manager gives priority to the worker.
As soon as the worker is free, the manager gives a new task to it. Actually, a
task is delegated only if the worker is busy and the manager ensures that the
broker is involved in at most one auction. The strategy for the the task bundle
management must determine which tasks in the bundle are performed by the
worker and which ones can be negotiated. We will discuss these decisions in
Section 4.6. Additionally, the manager interacts with the supervisor to detect
the termination of the reducing phase. The manager is idle when the worker and
the broker are both free and the task bundle is empty. The manager is reactivated
when it receives a Request from its broker which has won an auction. In this
case, the manager must take care of the task delegated by another reducer.

Worker. This agent, which is initially free, becomes busy as soon as it receives
a Perform. When the task has been performed, the worker informs the manager
and it becomes free. During its performance, a worker can be interrupted in order
inform the manager about the estimated remaining cost of the current task.

Broker. The broker can act as a bidder or as an auctioneer.
Broker as a bidder. When the broker receives a Cfp from another broker (i.e.
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Fig. 6. Negotiation protocol.

another reducer), it queries the local contribution to the manager in order to par-
ticipate in the auction. If the acceptability criteria (cf. Def. 2) is not fullfilled,
then the broker declines the auction. Otherwise, either it does not reply since it
is already involved in another auction, or a proposal is sent. When the bidding
phase is closed: (i) either the bidder wins the auction and it requests the task to
its manager and confirms the task delegation to the auctioneer; (ii) or the bidder
does not win the auction (the deadline is reached or Reject is received) and the
broker informs its manager that it is free.
Broker as an auctioneer. When the manager bootstraps the broker (Submit),
the latter initiates an auction (Cfp). Each reply is recorded, whether it is a
Propose or a Decline. When all of them are received or the deadline is reached,
the best proposal is selected (cf. Def. 3). We remark that the negotiation is
cancelled and the broker sends an alert (CFPDeclinedByAll or a BrokerDeny)
to its manager if no proposal is received. Otherwise, the broker must accept
the winning proposal and reject the other ones. It notifies (Ready) the manager
that is has found a supplier. Then, the manager tells if the task is still available
(Approve) or not (Cancel). If the negotiated task is no more available (the task
has been given to the worker), the winning bid is rejected. Otherwise, the task
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is sent to the winner and a confirmation is expected.

We can note that a reducer can expect to delegate a task only if at least one
reducer has a lower contribution. Otherwise, the bootstrapping of an auction
is useless since the negotiation will failed. We have refined the behaviour of the
manager not to initiate such auctions. When an auctioneer receives only Decline
messages from its peers, the corresponding manager enter in a pause state. In
this state, the broker can be triggered as a bidder but it is no more bootstrapped
by the manager to initiate an auction. The manager can leave this state only if:

– either this reducer takes care of a new task and so its contribution increases;

– or this reducer is informed that another contribution has decreased due to task
delegation or performance.

In other words, the manager leaves the pause state if the acceptability criteria of
its peers may become fulfilled. In order to estimate the acceptability criteria of
the other reducers, the manager stores and updates information on the other con-
tributions communicated within the Cfp messages. We will prove in Section 4.7
that the pause state will be reached simultaneously by all the agents after a
finite number of auctions (cf. Prop. 3) and no task transfer can produce a better
task allocation in such a case (cf. Prop. 4). This behaviour allows to coordinate
the negotiation process and the data processing with local information in order
to avoid useless negotiation, and so decreases the communication overhead. It is
worth noticing that the task allocation is dynamic and adaptive since negotia-
tion are repeated. If the current task is performed slower than expected by the
worker, then an unbalanced allocation will appear, and so the manager may be
reactivated by the decreasing of the other contributions in order to delegate the
tasks which are still in its bundle.

4.6. Task bundle management

The manager is responsible for the task bundle management. Its strategy must
determine which tasks in the bundle are performed by the worker and which
ones can be delegated through negotiation. For this purpose, we introduce here
two heuristics which will be experimentally compared in Sec 5.

The naive strategy. Intuitively, the cheaper is the task to delegate, the more
likely the corresponding auction may be successful. Following this principle, our
first strategy consists of locally performing the expensive tasks as much as pos-
sible. According to this naive strategy, the manager gives the more expensive
tasks to the worker and the cheapest ones to the broker. However, with this ap-
proach, the most expensive task will be the last to be considered for delegation
and doomed to stay in the bundle until they are performed.

The k-eligible strategy. Our second strategy aims at decreasing the commu-
nication overhead. The cheapest task are given to the worker since the cheaper
a task is, the higher the communication overhead is. We remark that, in order
to decrease the maximum contribution of reducers, the tasks to delegate are not
necessarily the cheapest ones. Actually, more expensive tasks can be delegated.
Moreover, the negotiation process is iterative and the contributions are commu-
nicated within the Cfp of the different auctions. In this way, an auctioneer has
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Algorithm 1: Selection by the reducer i of the task to delegate.

Data: The maximum number of required potential suppliers kmax
Input: the task bundle Ti,
the beliefs of the reducer i about the other contributions (cij)j∈Ω\{i}
Output: the task to delegate τ∗

1 k ← kmax;
2 while k > 0 do
3 Tk ← {τ ∈ Ti | τ is k-eligible for the reducer i };
4 if Tk 6= ∅ then
5 foreach τ ∈ Tk do

/* Identify the potential reducers which may fulfill the

acceptability criteria */

6 Ωτ ← {j ∈ Ω \ {i} | cij + cτ < ci};
/* Choose the worst potential reducer, i.e. having the maximum

contribution */

7 ωτ ← argmax
j∈Ωτ

(cij);

/* Take the task which minimizes the maximum contribution in the

worst case */

8 τ∗ ← argmin
ωτ∈Tk

(max(ci − cτ , cωτ + cτ ));

9 return τ∗

10 else
11 k ← k − 1;

some beliefs about the other contributions and it can refine these beliefs during
the negotiation process. A reducer can estimate the tasks which can be accepted
by its peers.

A task τ is k-eligible if the acceptability criteria for τ may be fulfilled by at
least k peers.

Definition 4 (k-eligible task). Let Ω = {1, . . . , n} be a population of n re-
ducers and A be a task allocation at time t. We denote (cAij(t))j∈Ω\{i} the beliefs
of the agent i about the other contributions.
The task τ ∈ Ti is k-eligible (with k < n) for the agent i at time t iff:

∃Ω′ ⊆ Ω \ {i} (card(Ω′) ≥ k ∧ ∀j ∈ Ω′ cAij(t) + cτ < cAi (t)) (5)

The more reducers which may fulfill the acceptability criteria for a task, the
more likely the corresponding auction will be successful.

Additionally, an auctioneer will select the k-eligible task which minimizes the
maximum contribution after the task delegation. In other words, the reducer i
selects the task τ ∈ Ti such that τ is a k-eligible task and this task delegation
to the reducer ωτ minimizes the maximum contribution, even if ωτ is the most
loaded potential supplier. This computation is performed by Algo. 1. For this
purpose, we introduce the parameter kmax which represents the maximum num-
ber of expected potential suppliers amongst Ω\{i} (1 ≤ kmax < n). When k = 1,
all the tasks which may be accepted by at least one agent are (1-)eligible, even if
they are expensive. If k = n−1, the tasks which may be accepted by all the other
reducers are (k-)eligible. The higher kmax is, the cheaper the k-eligible tasks are
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likely to be. kmax avoid to bootstrap auctions about cheap tasks. In this way, we
aim at decreasing the communication overhead due to the delegation of cheap
task. When ωτ is initialized (line 7), we consider the most loaded reducer which
may make a proposal for τ . In this way, we consider the worst case. The task
τ∗ minimizes the maximum contribution if the auction is successful (line 8). We
can remark k = 0 means that no other reducers may make a proposal. In this
case, the reducer i switches in the pause state.

In summary, the k-eligible strategy gives the cheapest task to the worker and
gives to the broker the k-eligible task which minimizes the maximum contribution
if the auction is successful.

4.7. Theoretical results

First of all, we can remark that the negotiation improves the fairness which
measures if the processing is performed at the expense of the worst-off agent.
The tasks are allocated in a more egalitarian way after a negotiation.

Property 1. The variance of the reducers’ contributions strictly decreases after
a successful auction.

Proof 1. Let Ω = {1, . . . , n} be be a population of n reducers. We consider
here a successful auction initiated by the reducer 1. For the sake of simplicity,
we denote:

–(ci)i∈Ω, the contributions of the agents before the auction;

–(c′i)i∈Ω, the contributions of the agents after the auction;

–c̄ = 1
nΣni=1ci = 1

nΣni=1c
′
i the mean contribution10;

–V ar = Σni=1(ci − c̄)2 the variance of the contributions after the auction;

–V ar′ = Σni=1(c′i − c̄)2 the variance of the contributions before the auction.

Let c > 0 be the cost of the negotiated task and k the reducer which has won
the auction. By definition of the negotiation :

1. c′1 = c1 − c
2. c′k = ck + c

Due to the acceptability criteria of the reducer k (cf. Def. 2), ck + c < c1, and
so ck + c− c1 < 0.

V ar′ = Σni=2,i6=k(c′i − c̄)2 + ((c1 − c)− c̄)2 + ((ck + c)− c̄)2

Then,

V ar′ − V ar = ((c1 − c)− c̄)2 + ((ck + c)− c̄)2 − [(c1 − c̄)2 + (ck − c̄)2]

= ((c1 − c̄)− c)2 + ((ck − c̄) + c)2 − [(c1 − c̄)2 + (ck − c̄)2]

= −2× (c1 − c̄)× c+ 2× (ck − c̄)× c+ 2× c2

= 2× c× (ck + c− c1)

Then, V ar′ − V ar < 0.

10 It is worth noticing that the task delegation is conservative.
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It is worth noticing that the whole negotiation process also improves the
fairness.

Property 2. The variance of the contributions strictly decreases due to suc-
cessful iterated and concurrent auctions.

Proof 2. The behaviour of the manager ensures that a reducer cannot be si-
multaneously involved in several auctions (cf. Section 4.5). Actually, the role of
bidder and auctioneer are mutually exclusive. When a broker plays the role of
an auctioneer, it does reply to the other auctions as a bidder. Reciprocally, a
broker cannot be bootstrapped as an auctioneer when it is involved as a bidder
in another auction. The concurrent auctions involve disjoint groups of reduc-
ers. It results that each auction is independent. In other words, the outcomes
of auctions do not impact one another. According to Prop. 1, each successful
auction strictly decreases the variance of contributions. Therefore, the iterated
and concurrent execution of such auctions also strictly decreases the variance of
contributions.

The whole negotiation process terminates.

Property 3. The iteration of successful negotiations terminates.

Proof 3. Acccording to Prop. 2, the variance is positive and it strictly decreases
during the whole negotiation process. Moreover, the number of tasks is finite.
Therefore, after a finite number of auctions, the variance of contributions stops
to decrease when no more successful auction is possible.

The negotiation process is sound. When it halts, no other task tranfer can
alleviate the most loaded reducer.

Property 4. When the whole negotiation process terminates, there exists no
task transfer which can decrease the contribution of the most loaded agent.

Proof 4. Let Ω = {1, . . . , n} be a population of n reducers and A be a task
allocation at time t. Let j be the most loaded reducer and τ be the cheapest
task in Tj . We assume that there exists a reducer i which can alleviate j, i.e.
ci + cτ < cj . In this case, the acceptability criteria for the reducer i is fulfilled.
The corresponding auction would be successful which is a contradiction.

This properties will be experimentally validated in the next section.

5. Experimentations

Our experiments aim at: (i) comparing our two strategies for the task bundle
management; (ii) evaluating our proposal with respect to the classical distributed
MapReduce programming model.

Our prototype implements the classic and the adaptive distribution of the
MapReduce programming model (Dean and Ghemawat, 2008). It is developed
with the programming language Scala12 and the Akka toolkit13. The latter, based
on the actor model (Hewitt, 1977), helps to fill the gap between the specification
of the agent behaviours (cf. Section 4.5) and their implementations and to deploy

12 http://www.scala-lang.org/
13 http://akka.io
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Fig. 7. The contributions of reducers for the classic MapReduce (at left) and for
our multi-agent system (at right) with the job RecByTemp.

them on a cluster of PCs. In particular, the three sub-agents of a reducer always
run on the same node and so message passing between these sub-agents is as fast
as method invocation.

5.1. Task bundle management

We make the assumption that the k-eligible strategy decreases the communica-
tion overhead with respect to the naive strategy (cf. Section 4.6). In order to
empirically validate this hypothesis, we measure the number of auctions which
induce a communication cost. Obviously, we expect that the final task allocation
reached by the k-eligible strategy is as good as that reached by the naive strategy.
For this purpose, we consider the fairness, i.e. the ratio between the running time
of the first reducer to end its work and the running time of the last reducer to
end its work. This metric indicates if the processing is performed at the expense
of the worst-off reducer. If the measure is closed to 1, the allocation is fair. For
each set of parameters, we perform 5 runs. Since the standard deviation due to
the non-determinism of the scheduler is low, we only exhibit the means of the
measured metrics over the different runs.

We analyze here a real-world dataset which contains more than 3 million
weather records (station id, timestamp, temperature, rainfall, . . . ) from 62 sta-
tions taken during the last 20 years. We consider here two different meaningful
jobs:

1. the first one RecByTemp (which stands for records by temperature) counts the
number of records per half degree of temperature. This job is performed by
10 mappers and 20 reducers.. Some reducing tasks are small, others are large.
The task allocation performed by the default Hadoop partitioning is unfair
(cf. Fig. 7).

2. the second one RainByStat (which stands for rainfall by station) counts the
accumulated rainfall per station. This job is performed by 10 mappers and 10
reducers. The size of the reducing tasks are homogeneous and the default task
partition is almost fair (cf. Fig. 8).

Since they are running on a single multi-core dedicated computer, we can assume
that the performances of our reducers are homogeneous in time.

Table 2 presents the empirical results for the job RecByTemp. In order to have
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Fig. 8. The contributions of reducers for the classic MapReduce (at left) and for
our multi-agent system (at right) with the job RainByStat.

The naive strategy The k-eligible strategy
Total number of auctions 1383 265
Percentage of successful auctions 24 % 22 %
Fairness 0.8 0.85

Table 2. Comparison of the naive strategy and the k-eligible strategy with the
job RecByTemp.

enough successful auctions, we fix the maximum number of required potential
suppliers, i.e. kmax = 4. In other words, a task is negotiated if at least 20 %
of the reducers make a proposal for it. We observe that the k-eligible strategy
leads to one fifth of the auctions of the naive strategy and that task allocation
is slightly fairer.

Table 3 shows the empirical results for the job RainByStat. We fix kmax = 2
for similar reasons as previously. Since the initial task allocation performed by
the default Hadoop partition is almost fair, we observe that much fewer auctions
are required than with the job RecByTemp. However, the k-eligible strategy still
significantly decreases the number of auctions.

In both cases, the percentage of successful auctions is low whatever the strat-
egy is. Indeed, few reducers having a small contribution can act as bidders in
the different auctions. Unfortunately, they cannot be involved simultaneously in
several auctions. This is why the number of unsuccessful auctions remains high.
Nevertheless, we observe that the k-eligible strategy requires significantly fewer
auctions to balance the workload. We have empirically validated our hypothesis.
Moreover, the adoption of the k-eligible strategy does not penalize the fairness
of the task allocation. Small deviations can be explained by the shape of the
dataset. That are the reasons why we select the k-eligible strategy in order to
compare our adaptive multi-agent system with the classical distribution of the
MapReduce programming model.

The naive strategy The k-eligible strategy
Total number of auctions 87 48
Percentage of successful auctions 16 % 16 %
Fairness 0.89 0.91

Table 3. Comparison of the naive strategy and the k-eligible strategy with the
job RainByStat.



Fair Multi-Agent Task Allocation for Large Data Sets Analysis16 21

5.2. Task re-allocation

Our experiments aim at evaluating our proposal with respect to the classical
distributed MapReduce programming model. Let us remember that the initial
task allocation for our MAS corresponds to the default Hadoop partition.

Yahoo! operates an auction-based platform for selling advertising space next
to Yahoo! Search results. Advertisers bid for the right to appear alongside the
results of particular search queries. For example, a travel vendor might bid for
the right to appear alongside the results of the search query “Las Vegas travel”.
An advertiser’s bid is the price the advertiser is willing to pay whenever a user
actually clicks on their ads. We analyze the dataset corresponding to the period
from the 15th June, 2002 to the 14th June, 2003, which contains 77 106 bids
(day, advertiser ID, list of keywords, etc.), i.e. 8 Go15. Since a bid is related to
a list of keywords, we consider the job yahooCountByKeyword which counts the
number of bids for each keyword.

We make the assumption that balancing the workload between reducers de-
creases the running time of the reducing phase. For this purpose, we compare
the running time of the reducing phase in the classical distributed MapReduce
programming model with our MAS. We run the job yahooCountByKeyword with
10 mappers and 10 reducers (kmax = 2). We present the running times accord-
ing to the number of PCs used, i.e. Intel (R) Core (TM) i5 3.30GHz PCs with
4 cores and 8GB of RAM. For each set of parameters, we perform 3 runs. Since
the standard deviation due to the non-determinism of the scheduler is low, we
only show the averages on these runs.

Figure 9 shows the running times of the different phases. Figure 10 highlights
the corresponding fairness. We observe that the running time of the mapping
phase decreases with the number of PCs since it benefits from the parallelism.
Whatever the approach is, the running time of the reducing phase globally de-
creases. This decline is not perfectly proportional to the number of machines
since the reducing phase is penalized by the non-locality of the data: a reducer
can process data from a mapper which is on another PC. Moreover, the classic
approach is penalized by the data skew. Since it does not adapt itself to the
unbalanced partitioning, this approach does not fill the gap between the effort
made by the most loaded reducer and those which are less. In the classic ap-
proach, fairness remains low as shown in Figure 10: the least loaded reducer
works around 50% less than the most loaded one. Conversely, the adaptive ap-
proach finish earlier. This time saving is explained by a better exploitation of
the available resources, i.e. a fairness closed to 1 which means that the job is
evenly distributed between all the reducers. Indeed, the negotiation allows us to
dynamically and continuously distribute the tasks to the least loaded reducers.

Additionally, we have adopted the two approaches to perform the job
yahooCountByKeyword on 2 heterogeneous computers, i.e. an Intel (R) Core
(TM) i5 3.3GHz PC with 4 cores and 8GB of RAM and an Intel (R) Core (TM)
i7 2.8GHz MacBook Pro with 8 cores and 16GB of RAM. 5 reducers run on each
of these computers. The adaptive approach speeds up the the running time of
the reducing phase with respect to the classic approach. Left of figure 11 shows
the initial task allocation performed by the classic approach. In our approach,
this initial allocation is adapted to the heterogeneous performance of nodes (cf

15 http://webscope.sandbox.yahoo.com/

http://webscope.sandbox.yahoo.com/
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Fig. 9. Running time of the different phases for the job yahooCountByKeyword

Fig. 10. Fairness between reducers for the job yahooCountByKeyword

right of figure 11). The dynamic and continuous task reallocation loads more the
first 5 reducers which run on the faster computer.

These experiments show that our MAS benefits from the parallelism better
than the classical approach. Due to the partitioning skew or the heterogeneity
of the cluster, the negotiation of the workload between reducers decreases the
running time of the reducing phase.

6. Discussion

MapReduce applications are complex to optimize because they are based on
user-defined operations and the programmer need to understand the implemen-
tation of the framework (for instance, Hadoop). In particular, data skew can lead
to an uneven workload balancing since the key partitioning is statically fixed.
Unbalancing can also occur during the job processing because of the node’s per-
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Fig. 11. The contributions of reducers for the classic MapReduce (at left) and
for our multi-agent system (at right) with the job yahooCountByKeyword. Nodes
are heterogeneous: 5 left reducers run faster than 5 right reducers.

formances. Our MAS consists of a distributed model of computation which is
inherently adaptive. In this paper, we have defined a distribution of the MapRe-
duce program model where the task allocation is the outcome of multi-agent
negotiations during the reducing phase. This dynamic task re-allocation is based
on local decisions of reducers embodied by agents, with neither global orches-
tration, nor data preprocessing, nor data-dependent parameters. More precisely,
each reducer is composed of three sub-agents which run concurrently: a worker
which locally performs tasks; a broker which negotiates them; and a manager
which coordinates the negotiation and the local data processing. In order to
balance the workload, these agents negotiate tasks based on their individual
contributions in order to decrease the contribution of the worst-off reducers, i.e.
the one which delays the reducing phase. We have proved that the negotiation
process improves the fairness of the task allocation. Our experiments has con-
firmed that our proposal decreases the running time of the reducing phase. The
workload is dynamically and continuously adapted to be more fairly distributed
among reducers, and so decreases the impact due to the partitioning skew or
the nodes’ heterogeneity. Additionally, we have studied two strategies for the
task bundle management. We have selected the k-eligible strategy since our ex-
periments have shown that this strategy requires significantly fewer auctions to
balance the workload without significantly penalizing the fairness of the task
allocation.

We consider several perspectives for this work.
In the short term, we plan to improve our framework. First, we want to allow
a reducer to be a bidder in several concurrent auctions. This extension must
preserve the soundness and the termination of the negotiation process but it
should also increase the rate of successful auctions. Therefore, the communication
overhead will decrease. Second, we want to address the problem of expensive key
group. Fig. 12 illustrates that the negotiation process stops when the tasks are
too large to be delegated. For this purpose, we aim at considering divisible tasks.
If a large task is split in smaller subtasks, the negotiation of these latter will allow
us to reach a fairer task allocation.
In the long term, we plan to take into account not only the number of operations
to perform but also the data locality in the task cost. In this perspective, the
task cost will depend on the reducer which evaluates it.
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Fig. 12. The reducer # 1 cannot delegate the task τ if this latter is indivisible.
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