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The method of alternating projections is an efficient solution to a wide range of optimisation problems. Some important results on its local convergence motivate its usage in a number of applications. We propose an algorithm, combining deflation and alternating projections, to compute the column-wise orthogonal CP decomposition for threeway tensors. We present convergence results based on transversality and non-tangential concepts. To assess its performance, we draw numerical experiments for real and complex scenarios.

Introduction

The method of alternating projections consists of projecting iteratively a point onto manifolds, one after the other, in order to find a point in their intersection. To describe the method, let M 1 , M 2 , . . . , M n be n manifolds in some space E. The alternating projection principle is given as follows (k) ), ∀k = 0, 1, . . .

x (k+1) = π M n • • • π M 2 π M 1 (x
where π M i , 1 ≤ i ≤ n is the orthogonal projection operator onto M i , and k is the iteration index. This method was originally proposed by von Neumann in 1930's for two manifolds, and he also proved that the sequence of alternating projections onto two linear manifolds converges to a point in their intersection [START_REF] De Almeida | Functional operators: The geometry of orthogonal spaces[END_REF].

Method [START_REF] De Almeida | Functional operators: The geometry of orthogonal spaces[END_REF] has also been much emphasized in the literature when the problem has two convex manifolds. We highlight, for instance, the articles [START_REF] Combettes | Method of successive projections for finding a common point of sets in metric spaces[END_REF][START_REF] Higham | Computing the nearest correlation matrix -a problem from finance[END_REF][START_REF] Gubin | The method of projections for finding the common point of convex sets[END_REF][START_REF] Breg | Finding the common point of convex sets by the method of sucessive projections[END_REF] for some discussions and application of the alternating convex projection method.

The extension of alternating projections to nonconvex manifolds plays an important role in several applications. We cite, for instance, those in control design [START_REF] Grigoriadis | Alternating projection algorithms for linear matrix inequalities problems with rank constraints[END_REF] and in image processing [START_REF] Bauschke | Phase retrieval, error reduction algorithm, and fienup variants: a view from convex optimization[END_REF].

For n = 2, some important theoretical results on the convergence of the alternating nonconvex projection method are highlighted in the following. In [START_REF] Zangwill | Non-linear programming via penalty functions[END_REF], it is shown that if the sequence {x (k) } ∞ k=0 is bounded and the distance to M 1 ∩M 2 is strictly decreasing, then there exists a convergent subsequence to a point in M 1 ∩ M 2 . This result is known as the Zangwill's global convergence theorem. However, it is a weak result since it does not provide any information about the convergence of the complete sequence.

The authors in [START_REF] Lewis | Alternating projections on manifolds[END_REF] introduce the concept of transversal manifolds and show that a linear convergence of the alternating projection method can be ensured if the manifolds are transversal at some point in M 1 ∩ M 2 and the starting point x (0) is close enough to M 1 ∩ M 2 . However, this approach presents a restriction on the dimensions of the associated manifolds. In order to drop the limitation of the transversal concept, the authors in [START_REF] Andersson | Alternating projections on nontangential manifolds[END_REF] proposed a new concept called non-tangential intersection point, which generalizes that of transversality.

In this paper, both the transversality and non-tangential concepts will be studied in the context of column-wise orthogonal tensor decomposition. Since the convergence of tensor algorithms is a topic of interest in tensor research, we reformulate this decomposition in order to tackle it by alternating projections and, thus, make use of the strong results associated with both concepts.

This paper is organised as follows. In Section 2, we describe the column-wise orthogonal tensor descomposition. Section 3 presents the proposed algorithm that combines alternating projection and deflation to decompose a columnwise orthogonal tensor. In Section 4, we study the convergence of our algorithm under some conditions, including the transversality and the non-tangential concepts for points at the intersection of manifolds. Section 5, reports a set of results supporting the advantages of our algorithm. Finally, Section 6 draws some conclusions.

Notation: Scalar numbers, vectors, matrices and tensors are denoted by lowercase, boldface lowercase, boldface capital and calligraphic letters, respectively. Plain capitals are used to denote array dimensions. Greek letters also denote scalars. The symbols ⊙, ⊠ and ⊗ denote the Khatri-Rao, Kronecker and tensorial products, respectively, and + , * , H and T denote matrix pseudo-inversion, conjugate, conjugate transpose and transpose. The Euclidean scalar product between tensors is denoted by

T , U = i 1 •••i N T i 1 •••i N U * i 1 •••i N ,
and • then denotes the Frobenius norm induced by the previous scalar product. We shall also use the ker and range operators, which correspond to the null and the range space of a matrix. The operator vec is the vectorization operator that stacks the columns of a matrix into a long column vector, and Unvec is its reverse operator. Finally, K is either the real or the complex field.

Column-wise orthogonal tensor decomposition

A rank-R tensor can be written as T

= X 1 + X 2 + • • • + X R ,
where X i are rank-1 (i.e. decomposable) tensors. A tensor is orthogonal if its rank-1 components are orthogonal to one another, i.e., if X i , X j = 0, ∀i j. The notion of orthogonality between a pair of decomposable tensors depends on the level of coupling between their factors. To be more precise, consider two three-way decomposable tensors

X 1 = a 1 ⊗ b 1 ⊗ c 1 and X 2 = a 2 ⊗ b 2 ⊗ c 2 . The tensors X 1 and X 2 are completely orthogonal if a 1 ⊥ a 2 , b 1 ⊥ b 2 and c 1 ⊥ c 2 .
Actually, all factors do not need to be orthogonal to one another to ensure the orthogonality of the tensor. For instance, if only

a 1 ⊥ a 2 , then X 1 , X 2 = 0. Indeed, X 1 , X 2 = a 1 , a 2 b 1 , b 2 c 1 , c 2 .
Herein, for a rank-R tensor, we assume that the factor matrix A of a tensor T is semi-unitary1 , which implies that a i , a j = δ(ij), ensuring the orthogonality of T . We call column-wise orthogonal tensor decomposition the decomposition of a tensor whose at least one of the factors matrices is semi-unitary. Notice that if all factor matrices are semi-unitary then the tensor is of unit norm and completely orthogonal. For other notions of orthogonality, see [START_REF] Kolda | Orthogonal tensor decompositions[END_REF].

The column-wise orthogonal tensor decomposition plays an important role in several applications, such as blind source separation [START_REF] Lathauwer | Fourth-order cumulant-based blind identification of underdetermined mixtures, Signal Processing[END_REF], array processing [START_REF] Miron | Doa estimation for polarized sources on a vector-sensor array by parafac decomposition of the fourth-order covariance tensor[END_REF], and wireless communication systems [START_REF] Sørensen | Parafac with orthogonality in one mode and applications in ds-cdma systems[END_REF]. Let?s point out some related results available in the literature. In [START_REF] Wang | Orthogonal low rank tensor approximation: Alternating least squares method and its global convergence[END_REF], the authors show that the best orthogonal low rank approximation of a tensor, with one semi-unitary factor matrix, always exists. Additionally, for almost all tensors, they also show that the ALS algorithm converges globally. In [START_REF] Sørensen | Canonical polyadic decomposition with a columnwise orthonormal factor matrix[END_REF], the authors discuss the uniqueness and low-rank approximation properties of a CP decomposition with a semi-unitary matrix factor. In the following, we apply the results of alternating projection methods to solve this kind of decomposition.

Combined deflation and alternating projections algorithm

Let A ∈ K I×R , B ∈ K J×R and C ∈ K K×R be the factor matrices forming the CP decomposition of a tensor T with entries in some field K: in other words, if a r (resp. b r and c r ) denote the columns of A (resp. B and C), 1 ≤ r ≤ R, tensor T can be decomposed as T = R r=1 X r , with X r = a r ⊗ b r ⊗ c r . We assume that rank{T } = R is known, and that one of the factor matrices is column-wise orthogonal, say A. This implies R ≤ I. Actually, without loss of generality, A can be viewed as a semi-unitary matrix due to scalar elementary indeterminacies (unitary if R = I).

Let T = A (C ⊙ B) T be the mode-1 unfolding of tensor T , as defined for instance in [START_REF] Kolda | Tensor decompositions and applications[END_REF]. Since A is semi-unitary, A H A = I. Therefore, after elementary operations

T H A = C * ⊙ B * (2) 
For a specific column of A, namely a r , we derive from equation (2) that

T H a r = c * r ⊠ b * r , (3) 
where b r and c r are the r-th column of matrices B and C, respectively.

We propose an algorithm called CAPD, which stands for Combined Alternating Projections and Deflation. CAPD recovers all factor matrices of a given orthogonal tensor T having one semi-unitary factor. The idea is to solve first the equation ( 3) with an alternating projection algorithm in order to estimate the factors a r , b r and c r , and to perform the deflation of the rank-1 component a r ⊗ b r ⊗ c r from T , obtaining thus a rank-(R -1) tensor Ta r ⊗ b r ⊗ c r . The process is repeated2 R -2 times until all rank-1 components are estimated. It is important to remind that the deflation procedure does not generally work for non-orthogonal tensors [START_REF] Comon | Tensors: a brief introduction[END_REF].

Let T [r] be the mode-1 unfolding of a rank-(Rr + 1) tensor in K I×J×K obtained by deflation, 1 ≤ r ≤ R; we have in particular T [START_REF] De Almeida | Functional operators: The geometry of orthogonal spaces[END_REF] = T. We define the following linear subspace

M r = {x ∈ K JK : T H [r] T H+ [r] -I x = 0}, (4) 
and the manifold

N = {x ∈ K JK : x = c ⊠ b, x = 1, ∀b ∈ K J \ {0} and ∀c ∈ K K \ {0} }. ( 5 
)
The former is the column space of T H

[r] T H+ [r]
, that is, the space spanned by rows of T [r] , and the latter is the subset of unit Kronecker vectors in K JK , respectively. By applying the Unvec operator on x, N can be actually viewed as the set of J × K unit-norm rank-1 matrices. In the proposed CAPD algorithm, the factors a r , b r and c r are computed by using the alternating projection onto these two manifolds. We set initially T [1] = T. CAPD is described in Algorithm 1. Upper indices (k) denote the k-th iteration of the algorithm, and π M r and π N are the projection operators onto M r and N, respectively. Notice that π

M r = T H [r] T H+ [r]
. The algorithm works as follows. For every r ∈ {1, 2, . . . , R -1}, the vectors b (0) r and c (0) r are randomly initialized so that c (0) r ⊠ b (0) r ker(T [r] ), otherwise x (0) r = 0 and the algorithm would not extract the r-th rank-1 component. The vector x (0) r is introduced into a repeat loop that consists of the alternating projections phase. If x (k) r converges to a point in M r ∩ N , then the estimated factor a r is computed by solving in the least square sense equation (3) for a given

x (k) r = c (k) r ⊠ b (k) r .
Clearly, the factors b r and c r are directly obtained from the singular vectors of Unvec(x (k) r ) as shown in Algorithm 1.

After the estimation of a r , b r , and c r , we deflate the original tensor by the rank-1 component a r ( c r ⊠ b r ) T , and perform again R -2 times the alternating projection procedure in order to find the other components of the factor matrices A, B and C. Remark 1. Neither the convergence of the CAPD algorithm to a point x ∞ r ∈ M r ∩ N nor the estimation of the right factors a r , b r and c r can be ensured. However, theoretical results in the next section guarantee local convergence and the extraction of the suitable factors. [START_REF] Combettes | Method of successive projections for finding a common point of sets in metric spaces[END_REF]. However, the orthogonality of the estimated factor A would not be ensured anymore unless a constraint is imposed. Actually, all columns of the matrix factors could be collinear, as we will show later in Section 5. Moreover, the estimation of all factors all-at-once requires more computations.

Remark 2. Instead of estimating one-by-one the rank-1 components, we could try to estimate all components all-atonce from equation

Convergence study

This section reports new results on the convergence of CAPD algorithm. We start with the proof of some essential lemmas, which will be important to demonstrate that the extraction of one rank-1 component of the tensor is ensured if the CAPD method converges to some point in M r ∩ N for every r ∈ {1, 2, . . . , R -1}. Finally, based on the ideas within [START_REF] Lewis | Alternating projections on manifolds[END_REF], we show that CAPD algorithm has locally linear convergence properties. input : T ∈ K I×J×K : input data output: A, B and C: factor matrices T ← mode-1 unfolding of T ;

T [1] ← T; Define N; for r = 1 to R -1 do Define the linear subspace M r from T [r] ; Initialize b (0) r and c (0) r ; x (0) r ← π M r (c (0) r ⊠ b (0) r ); k ← 0; repeat k ← k + 1; x (k) r ← π M r π N (x (k-1)

r

); until some stopping criteria are satisfied;

a r ← T H+ [r] x (k) r ; b r ← conjugate of the left singular vector of Unvec(x (k) r ); c r ← right singular vector of Unvec(x (k) r ); A(:, r) ← a r ; B(:, r) ← b r ; C(:, r) ← c r ; T [r+1] ← T [r] -a r ( c r ⊠ b r ) T ; end T [R] is the mode-1 unfolding of the last rank-1 component of T . Algorithm 1: CAPD algorithm Lemma 4.1. Let c (k) r ⊠ b (k) r = π N (x (k-1)

r

) be the best approximation of vector x (k-1)

r in N at k-th iteration of CAPD algorithm. If c (0) r ⊠ b (0) r ker(T [r] ) then for every k ≥ 1, c (k) r ⊠ b (k) r ker(T [r] ) either. Proof. c (0) r ⊠ b (0) r ker(T [r] ) = ker(T H+ [r] ) =⇒ x (0) r ∈ range(T H [r] )\{0}. Since c (1) r ⊠ b (1) r ⊥ x (0)
r , it follows that c (1) r ⊠ b (1) r ker(T [r] ). The same reasoning can be applied to the next iterations, and the proof is complete.

Lemma 4.2. Let a (k) r = T H+ [r] (c (k) r ⊠ b (k)
r ) be the minimal norm solution at k-th iteration in CAPD algorithm. Then for all k ≥ 0, a (k) r is a linear combination of the columns of A.

Proof. It follows directly from the mode-1 unfolding T = A(C ⊙ B) T that the columns of A span range(T). Yet,

a (k) r ∈ range(T H+ [r] ) = range(T [r] ) ⊆ range(T).
Theorem 4.3. Let T be a tensor whose factor A is a column-wise orthogonal matrix. Assume that T has an essentially unique CP decomposition, and

c (0) r ⊠ b (0) r ker(T [r] ), 1 ≤ r ≤ R -1. If x (k) r , k ≥ 0, converges to a point x ∞ r ∈ M r ∩ N in CAPD algorithm, then a r ⊗ b r ⊗ c r is one of the rank-1 components of T in its CP decomposition. Proof. From Lemma 4.1 x ∞ r 0 because c (0) r ⊠ b (0) r ker(T [r]
), which implies that a r 0, b r 0, and c r 0. From Lemma 4.2, a r can be written as a linear combination of the columns of factor

A. That is, a r = R i=1 α i a i . Since x (k) r → x ∞ r ∈ M r ∩ N, it follows that a r , b r and c r satisfy equation (3), so that x ∞ r = c * r ⊠ b * r .
Using twice (3), first for substituting a r , and then a i , we get:

T H a r = c * r ⊠ b * r =⇒ R i=1 α i T H a i = c * r ⊠ b * r =⇒ c r ⊠ b r = R i=1 α * i (c i ⊠ b i ).
Now, let α j 0 for some j ∈ {1, 2, . . . , R}, and write

c j ⊠ b j = 1 α * j              c r ⊠ b r - R i=1 i j α * i (c i ⊠ b i )              .
Yet, a decomposition of T along the mode-1 is given by

T = a 1 (c 1 ⊠ b 1 ) T + • • • + a R (c R ⊠ b R ) T .
Thus, plugging the expression of c j ⊠ b j into that of T and reorganizing the factors we obtain

T = 1 α * j a j ( c r ⊠ b r ) T + i j        a i - α * i α * j a j        (c i ⊠ b i ) T .
It is important to mention that c r ⊠ b r is not in the column space of the vectors

{c 1 ⊠ b 1 , . . . , c j-1 ⊠ b j-1 , c j+1 ⊠ b j+1 , . . . , c R ⊠ b R }, otherwise rank{T } < R.
Since the first factor matrix is column-wise orthogonal and the decomposition is essentially unique, the vectors

       a 1 - α * 1 α * j a j , . . . , a j-1 - α * j-1 α * j a j , 1 α * j a j , a j+1 - α * j+1 α * j a j , . . . , a R - α * R α * j a j       
are orthogonal to one another. In particular, for i ∈ {1, 2, . . . ,

R} -{ j}        a i - α * i α * j a j        H        1 α * j a j        = 0 =⇒ α i = 0,
which implies that a r = α j a j and c r ⊠ b r = α * j (c j ⊠ b j ). As c r ⊠ b r is a unit vector, it follows that |α j | = 1/ c j ⊠ b j . To eliminate scalar indeterminacies, assume c j ⊠ b j = 1, which leads to |α j | = 1. Thus,

a r ⊗ b r ⊗ c r = |α j |a j ⊗ b j ⊗ c j = a j ⊗ b j ⊗ c j ,
and the proof is complete.

Corollary 4.4. x ∞ r ∈ M r ∩ N =⇒ x ∞ r is a column of the Khatri-Rao product C * ⊙ B * .
Proof. Up to scalar elementary indeterminances, it follows from Theorem 4.3 that

x ∞ r = c * r ⊠ b * r = α j (c * j ⊠ b * j )
, for some j ∈ {1, 2, . . . , R}.

Theorem 4.3 ensures that one rank-1 component of tensor T can be extracted if CAPD converges to a limit point

x ∞ r ∈ M r ∩ N.
Actually, the convergence is not globally ensured since N is a non-convex manifold, which means that CAPD can get stuck if the starting point is badly chosen. Therefore, we focus the convergence study of the CAPD algorithm on starting points close to M r ∩ N, in which case we can draw some important results in the real field. Before, we introduce two basic definitions on manifolds. 

. Convergence under transversality condition

According to [START_REF] Lewis | Alternating projections on manifolds[END_REF], if two smooth manifolds are transverse, and the initialization is close enough to their intersection, then the alternating projections method converges linearly to a point at the intersection of the manifolds. This is stated in the following theorem. Theorem 4.7. [START_REF] Lewis | Alternating projections on manifolds[END_REF] Let A and B be two transverse manifolds around a point x ∈ A ∩ B in some space E. If the initial point x 0 ∈ E is close to x, then the method of alternating projections

x (k+1) = π A π B (x (k) ), (k = 0, 1, 2, . . .)
is well-defined, and the distance d A∩B (x k ) from the iterate x k to the intersection A ∩ B decreases Q-linearly 3 to zero.

In our case, M r are linear subspaces and N is locally smooth in the Euclidean space (see Example 2 in [START_REF] Lewis | Alternating projections on manifolds[END_REF]). Thus, under particular conditions stated below, the manifolds M r and N are transverse for every r ∈ {1, 2, . . . , R -1}.

Lemma 4.8. Let R = {x ∈ R JK : x = c ⊠ b, ∀b ∈ R J \ {0} and ∀c ∈ R K \ {0} }. Then ∀x ∈ R it follows that T R (x) = T N (x/ x ).
Proof. Note that R can be viewed as the set of J × K rank-1 matrices. According to [START_REF] Lewis | Alternating projections on manifolds[END_REF], the tangent space of R is given by

T R (x) = {y ∈ R JK : u T i Unvec(y)v j = 0, ∀(i, j), 1 < i ≤ J, 1 < j ≤ K}
where {u 1 , u 2 , . . . , u J } and {v 1 , v 2 , . . . , v K } are the sets of left and right singular vectors of the matrix Unvec(

x) = σ 1 u 1 v T 1 , σ 1 > 0. Define U = {x ∈ R JK : x = 1}.
Since the tangent space does not depend on the singular value σ 1 , and

R∩U = N, it follows that T R (x) = T R (x/ x ) = T N (x/ x ).
Proposition 4.9. Let T ∈ R I×J×K be a rank-R tensor with factor A column-wise orthogonal. Assume neither C nor B have collinear columns. In the CAPD algorithm, M r and N are transverse manifolds at any point x ∈ M r ∩ N if r ≤ R -(J -1)(K -1), for r ∈ {1, 2, . . . , R -1} .

Proof. Let x ∈ M r ∩ N, for some r ∈ {1, 2, . . . , R -1}. According to Lemma 4.8, the tangent space of N at x is given by

T N (x) = {y ∈ R JK : u T i Unvec(y)v j = 0, ∀(i, j), 1 < i ≤ J, 1 < j ≤ K},
for left and right singular vectors {u 1 , u 2 , . . . , u J } and {v 1 , v 2 , . . . , v K } of the matrix Unvec(

x) = u 1 v T 1 of dimension J × K. Let K(x) = {vec(u 1 v T 1 ), vec(u 1 v T 2 ), . . . , vec(u 1 v T K ), vec(u 2 v T 1 ), . . . , vec(u J v T 1 )}.
Note that all vectors in K(x) are orthogonal to one another so that they span a

J + K -1 subspace in R JK . Let also D(x) = {z ∈ R JK : z = vec(u i v T j ), ∀1 < i ≤ J, 1 < j ≤ K}. Clearly, D(x) ∩ T N (x) = ∅. Actually, D(x) is a set of orthogonal vectors that is the complement of T N (x). Indeed, D(x) + K(x) = R JK =⇒ D(x) + T N (x) = R JK because K(x) ⊆ T N (x). Thus, we can conclude that J + K -1 is the dimension of T N (x) = Span{K(x)}.
Now, define H the set composed of the possible columns of C ⊙ B. Since neither C nor B have collinear columns,

K(x) -{vec(u 1 v T 1 )} ∩ H = ∅,
and thereby K(x) -{vec(u 1 v T 1 )} M r = T M r (x).
Note that vec(u 1 v T 1 ) is the only vector of K(x) in T M r (x) such that any linear combination of at least two vectors in K(x) does not lie in T M r (x). In other words, Span{K(

x)} ∩ T M r (x) = T N (x) ∩ T M r (x) = {βvec(u 1 v T 1 )} for β ∈ R. Yet, the dimension of T M r (x) is equal to R -r + 1 since rank{T T [r] T T+ [r] } = R -r + 1. Hence, dim{T N (x) + T M r (x)} = dim{T N (x)} + dim{T M r (x)} -dim{T N (x) ∩ T M r (x)} = J + K + R -1 -r.
Thus, in order to ensure transversality between the manifolds, we should have

J + K + R -1 -r ≥ JK ⇐⇒ r ≤ R -(J -1)(K -1).
Although Proposition 4.9 ensures the transversality between the manifolds M r and N and, thus, the linear convergence of our algorithm, the condition r ≤ R -(J -1)(K -1) is very restrictive. Indeed, to ensure the convergence of the CAPD algorithm when r = R -1, we must have R -

1 ≤ R -(J -1)(K -1) =⇒ (J -1)(K -1) ≤ 1, which is true only when J ≤ 2, K ≤ 2.
In other cases, Proposition 4.9 can only ensure, at best, the convergence for a few values of r. For some scenarios, Table 1 shows how many rank-1 components can be ensured by CAPD using the transversality concept. Notice that both the dimension I (omitted in the table) and the rank R must be much larger than J and K in general, in order to estimate some rank-1 components with convergence guarantees. Even for rank-100 tensors with dimensions I × 20 × 20, with I ≥ 100 for ensuring the column-wise orthogonality of factor A, the convergence to any component cannot be ensured by our algorithm. Thus, the table evinces the limitation of Proposition 4.9.

(J, K) R # of rank-1 components (2, 2) 2 2 (3, 3) 2 0 (3, 3) 3 0 (5,

Convergence under non-tangentiality condition

Instead of considering transversality between manifolds, we can evaluate the convergence of CAPD under the non-tangential concept presented in Definition 4.6. According to [START_REF] Andersson | Alternating projections on nontangential manifolds[END_REF], non-tangential points at the intersection of two manifolds is less restrictive than the transversality concept. Actually, the latter requires that the individual tangent spaces of the manifolds in a space must generate the whole space, which is not necessary for non-tangential points. The authors show that the convergence to a point at the intersection of two smooth manifolds can be ensured if the initialization of the alternating projection algorithm is close to a non-tangential point in the intersection. This result is stated in the theorem below. Theorem 4.10. [START_REF] Andersson | Alternating projections on nontangential manifolds[END_REF] Let A, B and A ∩ B be C 2 -manifolds, and let x ∈ A ∩ B be a non tangential intersection point of A and B. Given ε > 0 and cos(α(x)) < c < 1, where α(x) is the minimal angle between A and B at x, there exists a ρ > 0 such that for any x (0) ∈ B ρ (x), where B ρ (x) is the open ball of radius ρ around x, the sequence of alternating projections

x (k+1) = π A π B (x (k) ), (k = 0, 1, 2, . . .) (i) converges to a point x ∞ ∈ A ∩ B, (ii) x ∞ -π A∩B (x (0) ) ≤ ε x (0) -π A∩B (x (0) ) , (iii) x ∞ -x (k) ≤ cte •c k x (0) -π A∩B (x (0) ) .
We are mainly interested in the result (iii). Indeed, x (k) → x ∞ as k → ∞. In order to apply the result of [START_REF] Andersson | Alternating projections on nontangential manifolds[END_REF] to our context, we must first prove under some conditions that there exists at least a non-tangential point x r ∈ M r ∩ N, for every r ∈ {1, 2, . . . , R -1}. This is ensured thanks to the following proposition. Proposition 4.11. Let T ∈ R I×J×K be a rank-R tensor with factor A column-wise orthogonal. If T has an essentially unique decomposition then any point x r ∈ M r ∩ N, r ∈ {1, 2, . . . , R -1}, is non-tangential.

Proof. Since the decomposition is essentially unique, the matrix C ⊙ B is full column rank, which implies that the set M r ∩ N is composed of Rr + 1 straight lines passing through the origin (See Collorary 4.4).

Thus, it turns out that ∃ρ > 0 :

B ρ (x r ) ∩ M r ∩ N = {βx r }, ∀β ∈ R such that |β| < ρ. Therefore, we can conclude that T M r ∩N (x r ) = {γx r }, ∀γ ∈ R. Yet, since T M r (x r ) = M r , the uniqueness of x r ∈ M r ∩ N within B ρ (x r ) also ensures that T N (x r ) ∩ T M r (x r ) = {γx r }, ∀γ ∈ R. Hence, T M r (x r ) ∩ T N (x r ) = T M r ∩N (x r ), at any point x r ∈ M r ∩ N, for every r ∈ {1, 2, . . . , R -1}.
Proposition 4.11 brings up a strong result that ensures the convergence of CAPD algorithm. The only imposed constraint is the uniqueness of the decomposition, which is desired in practical applications.

Numerical Results

In this section, we evaluate the performance of the CAPD algorithm by numerical experiments. First, we show how the distance between the iterates x (k) r and x (k+1) r of the alternating projection part of our algorithm decreases as the number of iterations increases. Second, we will see that the convergence of a random tensor with a column-wise orthogonal factor matrix is log-linear. Finally, we corroborate the advantage of CAPD with respect to the alternating projections method that computes the factor matrices all-at-once.

Performances for real tensors

We consider a sample of 1000 real tensors with factor matrices generated as follows

• The entries of B and C are distributed according to a uniform measure in [-1, 1];

• For A, we first generate a random matrix with uniformly distributed entries in [-1, 1], and then set A as the left singular matrix of that random matrix, ensuring the orthogonality of one factor.

Let

∆ k = x (k+1) r -x (k)
r be the norm of the difference between two successive iterates in the CAPD algorithm for some 1 ≤ r ≤ R -1 at iteration k ≥ 0 . Since we have 1000 tensors, we replace E{∆ k } by the average value at iteration k. We assume the tensors have rank 4, so that we evaluate the algorithm by estimating 3 rank-1 components (the last component is obtained directly by means of deflation, as shown in Algorithm 1) for four scenarios.

According to Figure 1, in scenarios with K=3 the average distance between iterates decreases as the rank of the tensor is reduced by deflation. For the 20 × 20 × 20 scenario, the same phenomenon is noted for 10 -2 < E{∆ k } < 10 -6 , which covers most of the range of the other scenarios. We also note from the last scenario that for tensors with all dimensions much larger than the rank, the CAPD algorithm converges in a few iterations. Indeed, the iterates converge to zero4 in 60, 55, and 40 iterations approximately, for r equal to 1, 2 and 3, respectively. Now, we draw randomly one tensor to show how the iterative procedure converges as k increases. We choose the 5 × 4 × 3 scenario. In Figure 2, we see that the distance between iterates of the CPAD algorithm converges log-linearly to zero. Although we do not show other examples here, this behaviour can be noted for most of the tensors of our sample. Moreover, the log-linear convergence also depends on the starting point x (0) r . Contrary to the averaged result, we note that x (k+1) r -x (k) r , for some values of k, does not decrease when the rank decreases. Indeed, the convergence is slower when the rank of the tensor is only 2 (r = 3). 

Performance for complex tensors

Herein, we evaluate the performance of CAPD in terms of the computational time and the percentage of successful decompositions denoted by %p. We assume that CAPD delivers a correct decomposition for a tensor T if T -T ≤ 10 -6 , where T is the estimated tensor. We generate a sample of 500 complex tensors. The real and imaginary parts are uniformly distributed in [-1, 1], and the column-wise factor A is the left singular matrix of a random complex matrix with uniform entries generated as before. We simulate the same four scenarios as in the previous subsection. Notice that the average time of simulations for 20×20×20 tensors corroborates with the convergence performance depicted in Figure 1, where we have shown that CAPD algorithm converges very fast when the dimensions are much larger than the rank. Here, it results in a small computational time compared to the other scenarios.

Simultaneous estimation of factors

As mentioned in Remark 2, the all-at-once estimation of the factor matrices might be performed via an alternating projection algorithm based on equation [START_REF] Combettes | Method of successive projections for finding a common point of sets in metric spaces[END_REF]. Instead of initializing the vector c (0) r ⊠ b (0) r , we could initialize directly a Khatri-Rao matrix C (0) ⊙ B (0) , and thus we would have the following alternating projection problem

X (k+1) = π M π N R (X (k) ), (k = 0, 1, 2, . . .), where M = X ∈ K JK×R : T H T H+ -I X = 0 , and 
N R = {X ∈ K JK×R : X = C ⊙ B, X = 1, ∀B ∈ K J×R \ {0} and ∀C ∈ K K×R \ {0} }.
If the algorithm converged to a point in M ∩ N R so that the right factors B and C could be properly estimated, then the factor A would be estimated by solving the matrix linear equation (2), whose the least square solution is A = T H+ (C ⊙ B).

This approach presents two crucial drawbacks:

• The complexity of this all-at-once alternating projections algorithm is larger than that of the CAPD algorithm. Indeed, the employment of that method to solve equation ( 2) is equivalent to employ it to solve R equations (3) simultaneously. Notice, however, that CAPD solves only R -1 times the equation (3) .

• There is no guarantee that the estimated columns of the factors A, B, and C be the same of A, B and C. As the initialization C (0) ⊙ B (0) is actually R rank-1 initializations c (0) r ⊠ b (0) r (of R parallel problems), some of those initializations can converge to the same point, which means that the estimated matrices might have collinear columns. Indeed, this happens more often that one can imagine.

In order to show the limitation of computing the factors all-at-once using the alternating projection method, we count how many column factors are properly estimated for the matrices A, B and C. We evaluate the following real and complex scenarios for a sample of 100 tensors: 15 × 10 × 5, 20 × 10 × 5, 20 × 20 × 5 and 20 × 20 × 20 tensors. For each tensor, we perform a random initialization.

Figure 3 shows that the all-at-once estimation of all factors using the alternating projection method happens in a very few cases. In fact, the best scenario is the one with 20 × 20 × 5 real tensors, in which only for 7 tensors were sufficient to extract completely the factor matrices. In all scenarios, the algorithm recovers 3 or 4 column factors of A, B and C in general. To increase the chances of estimating the right columns, we could test more initializations. However we would run again the algorithm, increasing though the number of operations to be computed. Therefore, CAPD is more efficient than the all-at-once alternating projection computation. 

Conclusion

Herein, we have introduced a new algorithm, called CAPD, to compute the exact column-wise orthogonal CP decomposition. We showed that our algorithm extracts the exact components of the factor matrices when the iterates converge to a point at the intersection of two manifolds. We also applied the transversality and the non-tangential concepts to the column-wise orthogonal tensor context to prove local convergence. Finally, by means of numerical experiments, we showed the performance of CAPD in terms of convergence rate, and the advantage regarding the all-at-once estimation of factor matrices with alternating projections.

Definition 4 . 5 .

 45 [START_REF] Lewis | Alternating projections on manifolds[END_REF] Let A and B be two C k -manifolds around a point x ∈ A ∩ B in some space E. The manifolds A and B are transverse atx if T A (x) + T B (x) = E,where T A (x) and T B (x) are the tangent spaces to A and B at x, respectively. Definition 4.6. [10] Let A and B be two C k -manifolds around a point x ∈ A∩B in some space E. x is a non-tangential point if and only if T A (x) ∩ T B (x) = T A∩B (x), where T A (x), T B (x) and T A∩B (x) are the tangent spaces to A, B and A ∩ B at x, respectively 4.1

Figure 1 :

 1 Figure 1: Convergence of the iterates of CAPD algorithm for rank-4 tensors.

Figure 2 :

 2 Figure 2: Convergence of the iterates in CAPD algorithm for a single rank-4 tensor.

Figure 3 :

 3 Figure 3: Tensors for which n column factors are correctly extracted with the all-at-once algorithm.

Table 1 :

 1 Number of estimated components ensured by CAPD under the transversality concept.

	5)	3	0
	(5, 5)	20	4
	(6, 8)	20	0
	(6, 8)	40	5
	(10, 15) 100	0
	(20, 20) 100	0

Table 2 :

 2 Table below summarizes the results. Time and percentage of correct CAPDs for rank-4 tensors.

	Scenario	Average time (seconds) %p
	5 × 4 × 3	0.7231	99.6
	20 × 4 × 3	0.7131	99
	20 × 20 × 3	0.7942	100
	20 × 20 × 20	0.2723	100

The upcoming reasoning is identical if B or C were semi-unitary.

After the last deflation, the algorithm yields a rank-1 tensor, whose factors are easily obtained by computing an economic SVD.

The distance decreases Q-linearly to zero if lim k→∞ x k -x / x k+1 -x = 0, for some x ∈ A ∩ B.

It is the virtual zero or the floating-point relative accuracy of Matlab, whose value is 2 -52 .
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