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Abstract

Implication bases in n-lattices are not formally defined. We clarify the dif-
ferent types of implications we need to reconstruct a concept n-lattice and show
they can be derived from the same set of implications. We use this to iden-
tify a particular type of implication base in n-contexts. Finally, we provide an
algorithm for computing implicational closures with n-dimensional bases.

Keywords:
Implications, n-dimensional lattices

1. Introduction

Implications are important in fields that deal with lattices directly such as
(obviously) lattice theory, formal concept analysis and boolean function theory
or indirectly through an interest for data like relational databases theory, arti-
ficial intelligence and data mining. They are most often understood as rules of
the form A→ B that sum up the structure of the lattice and the regularities in
the data. Their variant related to lattices and bi-dimensional, object-attribute,
data has been extensively studied and, while some questions remain open, most
of the algorithmic tools one would need are available. Notably, the literature
is rich with implication bases - subsets of implications that sum up the rest -
having different properties.

Much less is known about implications related to the multidimensional gen-
eralisations of lattices and object-attribute data: n-lattices and n-contexts. In
this multidimensional case, no implication base has been defined yet. To the
best of our knowledge, only one work has addressed the matter in 3-contexts by
highlighting the various possible forms of implications and their semantic [3].
However, whether these implications allow for the reconstruction of the subja-
cent 3-lattice has yet to be shown. In order to remedy this lack of knowledge
and kickstart a more widespread use of n-contexts and n-lattices, we propose
here different implication bases for the n-dimensional case.

The remainder of this work is structured as follows: Section 2 presents
the relevant definitions and properties concerning the 2-dimensional and n-
dimensional cases, Section 3 makes explicit the implications one needs to be
able to construct the elements of an n-lattice, Section 4 shows how to obtain
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them, Section 5 highlights a type of implication base and Section 6 contains
an algorithm for computing implicational closures with those bases. Finally,
Section 7 discusses the questions that are left unanswered.

2. Preliminary Definitions and Results

2.1. Lattices
A lattice L is a structure that is defined differently depending on the domain.

In order theory, L is a partially ordered set (E,≤) in which every pair of elements
e1, e2 ∈ E has both a least upper bound and a greatest lower bound. In algebra,
L = (E,∧,∨) with ∧ and ∨ being binary operations respecting the commutative,
associative and absorption laws. In this work, we will prefer the order theoretic
approach and consider our lattices to be complete - i.e. having a finite set of
elements including a greatest and a least.

Definition 1. A formal context is a triple (S1, S2, R) in which S1 and S2 are
sets and R ⊆ S1 × S2 is a binary relation between S1 and S2.

A formal context can be represented by a crosstable. Hence, when C =
(S1, S2, R), the elements of S1 will be called the rows and those of S2 the
columns of C.

a b c d e
1 × ×
2 × × ×
3 × × ×
4 × ×
5 × ×

Figure 1: A formal context C = (S1, S2, R) with S1 = {1, 2, 3, 4, 5} and S2 = {a, b, c, d, e}

For X ⊆ S1 and Y ⊆ S2, two derivation operators are defined:

X 7→ X ′ : {a ∈ S2 | ∀x ∈ X, (x, a) ∈ R}

Y 7→ Y ′ : {o ∈ S1 | ∀y ∈ Y, (o, y) ∈ R}

The composition of these two operators forms a Galois connection or, in
other words, a closure operator.

Definition 2. A formal concept of (S1, S2, R) is a pair (X1, X2) ∈ 2S1 × 2S2

such that X1×X2 ⊆ R and there are no k1 ∈ S1 \X1 or k2 ∈ S2 \X2 such that
(X1 ∪ {k1}, X2) or (X1, X2 ∪ {k2}) respects this property.
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In other words, in the formal context, a formal concept is a maximal rectangle
full of crosses (up to permutation of the rows and columns). The set of formal
concepts existing in a formal context can be ordered by the inclusion relation on
one of their components. The resulting partially ordered set forms a structure
known as a concept lattice. It has been shown [4] that any complete lattice is
isomorphic to the concept lattice of a formal context. Multiple formal contexts
can correspond to the same lattice but the minimal one, called the reduced
context, is such that no row (resp. column) is the intersection of other rows
(resp. columns). In this reduced context, the rows and columns represent the
∨- and ∧-irreducibles of the lattice with a cross meaning that the two elements
are comparable.

Definition 3. In a formal context, an implication is a rule A→ B in which A
and B are sets of columns.

An implication A → B is said to hold in a context if every row that has
crosses on the columns in A also has crosses on the columns in B. In the
context presented in Figure 1, the implications {a} → {ab} and {bc} → {bcd}
hold while {be} → {abe} does not. We will use IC to denote the set of all
implications that hold in a context C.

Definition 4. Let I be a set of implications and S a set of columns of C. The
implicational closure of S0, noted I(S), is the smallest set T such that S ⊆ T
and (A→ B ∈ I and A ⊆ T ) implies B ⊆ T .

We have the property that IC(S) = S′′. As such, the closure system induced
by IC(·) is the same as the one induced by ·′′ and is isomorphic to the set of
concepts. Thus, just as the context, the implications can be used to construct
a structure that is isomorphic to the concept lattice.

Multiple implication sets can correspond to the same context/lattice. For
example, if {a} → {ab} holds, then {ac} → {abc} obviously holds too and is re-
dundant. An implication set that allows for the derivation of all the implications
that hold in a context - and only them - through the application of Armstrong’s
axioms is called a base. Different such bases, with their own properties, have
been studied, of which two are of particular interest: the Duquenne-Guigues [6]
and the canonical direct [2] bases.

2.2. n-Lattices
The structures called n-lattices are multidimensional generalisations of lat-

tices. An n-lattice L is, first of all, an n-ordered set (E,.1, ... .n) in which
the .i are quasi-orders on E such that ∩j 6=i .j⊆&i. Additionally, it requires
the existence of so-called (jn−1, ..., j1)-joins, generalisations of the least upper
bound and greatest lower bound taking into consideration n − 1 quasi-orders
[12].
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Definition 5. An n-context is an (n+1)-tuple C = (S1, ..., Sn, R) in which the
Si are sets and R ⊆

∏
k∈{1,...,n} Sk is an n-ary relation between them.

An n-context can be seen as an n-dimensional crosstable. The 3-context C
shown in Figure 2 will be used throughout this work as a running example.

1 2 3 1 2 3 1 2 3
a × × × ×
b × ×
c × × × × ×

α β γ

Figure 2: An example of a 3-context with Sgreek = {α, β, γ}, Slatin = {a, b, c} and Snumber =
{1, 2, 3}.

It can be useful to view the n-context as a building in which one of the
dimensions, d, serves as the front so that each element of Sd is a floor number.
Each floor sd ∈ Sd is then an (n − 1)-dimensional space that contains rooms
corresponding to the coordinates (s1, ..., sd, ..., sn), si ∈ Si, ∀i ∈ {1, . . . , n}\{d}.

Many k-contexts (2 ≤ k ≤ n) can be constructed from the n-context. Bor-
rowing the notations from [12], let π = (π1, ..., πk) be a partition of {1, ..., n} into
k sets. The k-context corresponding to π is Cπ = (

∏
i∈π1

Si, ...,
∏
i∈πk Si, R

π)
with (s1, ..., sk) ∈ Rπ if and only if (s1, ..., sn) ∈ R with si ∈ sj ⇔ i ∈ πj .

Figure 3 shows the 2-context C(latin,{number,greek}) resulting from the binary
partition of our Figure 2 example.

(1,α) (1,β) (1,γ) (2,α) (2,β) (2,γ) (3,α) (3,β) (3,γ)
a × × × ×
b × ×
c × × × × ×

Figure 3: The 2-context C(latin,{number,greek}).

Let D ⊆ {1, ..., n} be a set of dimensions and D = {1, ..., n} \ D be its
complement. When D is a singleton, we will write d instead of {d}. Let SD
denote the collection 〈Sd | d ∈ D〉. Let Xd ⊆ Sd be a set of elements in
the dimension d, XD = 〈Xd | d ∈ D〉 and xD ∈

∏
d∈D Sd. The |D|-context

associated to XD is CXD = (SD, RXD ) such that, ∀xD ∈
∏
d∈D Sd, xD ∈ RXD

if and only if xD∪D ∈ R.

Figure 4 shows two 2-contexts derived from our Figure 2 example by fixing
subsets of the greek dimension.
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1 2 3
a ×
b ×
c × ×

1 2 3
a ×
b
c ×

Figure 4: The 2-contexts C〈{α}〉 and C〈{β,γ}〉.

Less formally, the contexts C(π) are obtained from C by merging dimen-
sions using Cartesian products while the contexts CXD are obtained by choosing
subsets of some dimensions D and keeping only what they have in common.
For example, let us go back to our building analogy. Let d be the “front” di-
mension. The floors use the other dimensions or, in other words, d. Let us
arbitrarily fix Xd = {1}. Thus, the context C〈{1}〉 is the first floor. If we now
choose Xd = {1, 2}, C〈{1,2}〉 is the context resulting from the intersection of the
first and second floors. That is, this context has a cross in a room iff both the
first and second floors have one. If we want D = {d1, d2} to have more than one
dimension, we can start by considering only one, obtaining CXd1

. Viewing this
intersection of floors as a new (n−1)-context/building, we can then fix the other
dimension by considering it as the new “front”, obtaining (CXd1

)Xd2
= CXD .

We will use CπXD as a shortcut to denote the context (CXD )π.

Binary partitions π = (π1, π2) give rise to the derivation operators A 7→ Aπ

based on the derivation operators defined on the 2-contexts Cπ. Similarly, 2-
elements sets D = {d1, d2} and sets Xd ⊆ Sd, d ∈ D give rise to the derivation
operators A 7→ A(d1,d2,XD) based on the derivation operators defined on the
2-contexts C(d1,d2)

XD
.

Definition 6. An n-concept of (S1, ..., Sn, R) is an n-tuple (X1, ..., Xn) ∈∏
i∈{1,...,n} 2Si such that

∏
i∈{1,...,n}Xi ⊆ R and there are no d ∈ {1, ..., n}

and k ∈ Sd \Xd such that (X1, ..., Xd ∪ {k}, ..., Xn) respects this property.

In other words, an n-concept is a maximal n-dimensional box full of crosses
in (S1, ..., Sn, R) (up to permutations inside dimensions).

Our Figure 2 example contains the following 3-concepts (brackets are left
out for the sake of legibility): (abc,1,α), (c,12,α), (ab,1,αβ), (a,13,β), (c,2,αβγ),
(a,3,βγ), (c,23,γ), (ac,3,γ), (∅,123,αβγ), (abc,∅,αβγ) and (abc,123,∅).

Proposition 1. (From [12]) Let {j1, ..., jn} = {1, ..., n} and Xi ⊆ Si, i 6= jn.
Define

Ajn = X
(jn,jn−1,X{jn,jn−1}

)
jn−1

(1)

Ajn−1 = A
(jn,jn−1,X{jn,jn−1}

)
jn

(2)
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Ajn−2 = A
({jn,jn−1},jn−2,X{jn,jn−1,jn−2}

)

{jn,jn−1} (3)

...

Ajk = A
({jn,jn−1,...,jk+1},jk,X{j1,...,jk−1})
{jn,jn−1,...,jk+1} (4)

...

Aj1 = A
({jn,...,j2},j2)
{jn,...,j2} (5)

Then (A1, ..., An) is the n-concept bjn−1,...,j1(Xjn
) with the property that it

has the largest j2-component among all n-concepts (B1, ..., Bn) with the largest
j3-component among those with the largest j4-component, ..., among all those
with the largest jn-component, satisfying Xi ⊆ Bi, i 6= jn. Thus, if (C1, ..., Cn)
is an n-concept, then bjn−1,...,j1(Cjn) = (C1, ..., Cn).

Implication bases in the n-dimensional case have yet to be formally defined,
which is the motivation behind this work. Ganter and Obiedkov brought up the
topic in the 3-dimensional case [3] and defined different forms of implications
that correspond to IC(d1,d3)

Xd2

, IC(d1,d2)
Xd3

and IC(d1,{d2,d3}) . However, to the best of

our knowledge, it has yet to be proven that they form a base that allows for the
construction of the elements of the 3-lattice. Despite this, the topic is growing
in popularity [7, 5, 9] and we believe that it calls for more stable foundations.

ContextLattice

Implications

n-Contextn-Lattice

?

3. Computing n-Concepts with Implications

An implication base of an n-context C must be a set of rules of the form
A→ B that provides enough information for the construction of a set of objects
isomorphic to the set of n-concepts of C. From Proposition 1, we know that
computing the n-concepts can be done with the knowledge of the derivation
operators induced by the various 2-contexts that can be constructed from C.
In the 2-dimensional case, the composition of the derivation operators and the
implicational closure form the same closure operator. However, in Proposition
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1, the computation of n-concepts is done using single derivation operators and
not their composition. Hence, we have to reformulate this proposition.

Proposition 2. Let C = (S1, ..., Sn, R), {j1, ..., jn} = {1, ..., n} and Xi ⊆ Si,
i 6= jn. Define

Ajn = X
(jn,jn−1,X{jn,jn−1}

)
jn−1

(6)

Ajn−1 = I
C

(jn,jn−1)
X{j1,...,jn−2}

(Xjn−1) (7)

Ajn−2 = I
C

(jn,jn−2)
Ajn−1∪X{j1,...,jn−3}

(Xjn−2) (8)

...

Ajk = IC(jn,jk)
A{jk+1,...,jn−1}

∪X{j1,...,jk−1}

(Xjk) (9)

...

Aj1 = IC(jn,j1)
A{j2,...,jn−1}

(Xj1) (10)

Then (A1, ..., An) is the n-concept bjn−1,...,j1(Xjn
) with the property that it

has the largest j2-component among all n-concepts (B1, ..., Bn) with the largest
j3-component among those with the largest j4-component, ..., among all those
with the largest jn-component, satisfying Xi ⊆ Bi, i 6= jn. Thus, if (C1, ..., Cn)
is an n-concept, then bjn−1,...,j1(Cjn) = (C1, ..., Cn).

Proof We know that (sjn , xjk) ∈ R(jn,jk)
A{jk+1,...,jn−1}∪X{j1,...,jk−1}

if and only if

∀(ajk+1 , ..., ajn−1) ∈
∏

i∈{k+1,...,n−1}

Aji ,

(xjk , ajk+1 , ..., ajn−1 , sjn) ∈ RX{j1,...,jk−1}
.

According to Proposition 1, (Ajk+1 , ..., Ajn) is an (n− k)-concept of CX{j1,...,jk}
.

This means that
∏
i∈{k+1,...,n}Aji ⊆ RX{j1,...,jk−1,jk}

. From this, we deduce that
Xjk×

∏
i∈{k+1,...,n}Aji ⊆ RX{j1,...,jk−1}

. Consequently, ∀(ajn , xjk) ∈ Ajn×Xjk ,
we have that

∀(ajk+1 , ..., ajn−1) ∈
∏

i∈{k+1,...,n−1}

Aji ,

(xjk , ajk+1 , ..., ajn−1 , ajn) ∈ RX{j1,...,jk−1}
.
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This tells us that Ajn ×Xjk ⊆ R
(jn,jk)
A{jk+1,...,jn−1}∪X{j1,...,jk−1}

.
If Xjk → {x} ∈ IC(jn,jk)

A{jk+1,...,jn−1}
∪X{j1,...,jk−1}

, then, by definition,

∀sjn ∈ Sjn , (∀xjk ∈ Xjk , (sjn , xjk) ∈ R(jn,jk)
A{jk+1,...,jn−1}∪X{j1,...,jk−1}

)

⇓

(sjn , x) ∈ R(jn,jk)
A{jk+1,...,jn−1}∪X{j1,...,jk−1}

.

Hence, from the previous paragraph, we deduce that the fact that

Xjk → {x} ∈ IC(jn,jk)
A{jk+1,...,jn−1}

∪X{j1,...,jk−1}

implies that ∀ajn ∈ Ajn , (ajn , x) ∈ R(jn,jk)
A{jk+1,...,jn−1}∪X{j1,...,jk−1}

and, thus, that

∀(ajk+1 , ..., ajn−1 , ajn) ∈
∏

i∈{k+1,...,n}

Aji ,

(x, ajk+1 , ..., ajn−1 , ajn) ∈ RX{j1,...,jk−1}
.

Consequently, (Xjk∪{x})×
∏
i∈{k+1,...,n}Aji ⊆ RX{j1,...,jk−1}

. The tuple (Xjk∪
{x}, Ajk+1 , . . . , Ajn) is thus an (n − k + 1)-dimensional box full of crosses in
CX{j1,...,jk−1}

. Additionally, the fact that (Ajk+1 , ..., Ajn) is an (n − k)-concept
of CX{j1,...,jk}

ensures that (Xjk ∪ {x}, Ajk+1 , . . . , Ajn) cannot be extended on
dimensions k + 1, . . . , n.

From all of this, we can see that

(IC(jn,jk)
A{jk+1,...,jn−1}

∪X{j1,...,jk−1}

(Xjk), Ajk+1 , . . . , Ajn)

is the (n−k+1)-concept of CX{j1,...,jk−1}
with the property that it has the largest

jk+1-component among all (n − k + 1)-concepts (Bjk , ..., Bn) with the largest
jk+2-component among those with the largest jk+3-component, ..., among all
those with the largest jn-component, satisfying Xi ⊆ Bi, i ∈ {k, ..., n− 1}. �

As n-concepts are totally defined by n − 1 of their components, the set of
(n−1)-tuples of the form (Ajn−1 , ..., Aj1) is isomorphic to the set of n-concepts.
Since this set can be constructed using the implications bases of the different
C(jn,jk)
A{jk+1,...,jn−1}∪X{j1,...,jk−1}

, an implication base of C must, at least, allow for
the computation of the implication bases of all such 2-contexts.

4. Deriving the Implications of Derived Contexts

As we have seen, only two operations are needed to derive subcontexts from
C:

8



• partitioning the dimensions (Cπ)

• “fixing” a subset Xd of a dimension d (CXd).

Every 2-context K(π1,π2) used in Proposition 2 is the binary partition of an n-
context K = CXπ1∪π2

. We will start by showing how to compute the implication

base of C(k,D\{k})
XD

from the one of C(k,(D∪{d})\{k})
XD\{d}

.

Let {j1, ..., jk} ⊂ {1, ..., n}, A = {a1, ..., am} with al = (al,j1 , ..., al,jk) ∈∏
i∈{1,...,k} Sji be a set of k-tuples and x ∈ Sp with p ∈ {1, ..., n} \ {j1, ..., jk}.

Let us define the notation

A ∗ {x} = {(al,j1 , ..., x, ..., al,jk) | (al,j1 , ..., al,jk) ∈ A}

which simply means adding to every k-tuple in A the element x at the right
position.

Proposition 3. I
C(k,D\{k})
XD

= {A→ B | ∃d ∈ D such that
⋃
xd∈Xd A ∗ {xd} →⋃

xd∈Xd B ∗ {xd} ∈ IC(k,(D∪{d})\{k})
XD\{d}

}

Proof ⇐. Let us suppose that⋃
xd∈Xd

A ∗ {xd} →
⋃

xd∈Xd

B ∗ {xd} ∈ IC(k,(D∪{d})\{k})
XD\{d}

for some d ∈ D. This means that

∀xk ∈ Sk, (
⋃

xd∈Xd

A ∗ {xd} ⊆ RXD\{d}∪{xk})⇒ (
⋃

xd∈Xd

B ∗ {xd} ⊆ RXD\{d}∪{xk})

Consequently,

∀xk ∈ Sk, xd ∈ Xd, (A ⊆ RXD\{d}∪{xk}∪{xd})⇒ (B ⊆ RXD\{d}∪{xk}∪{xd})

So,

∀xk ∈ Sk, (A ⊆ RXD∪{xk})⇒ (B ⊆ RXD∪{xk})

Which finally means that

A→ B ∈ I
C(k,D\{k})
XD

⇒. Let us now suppose that A→ B ∈ I
C(k,D\{k})
XD

. This means that

∀xk ∈ Sk, (A ⊆ RXD∪{xk})⇒ (B ⊆ RXD∪{xk})

9



However,

a ∈ RXD∪{xk} ⇔ {a} ∗ {xd} ∈ RXD\{d}∪{xk},∀xd ∈ Xd

Consequently,⋃
xd∈Xd

A ∗ {xd} →
⋃

xd∈Xd

B ∗ {xd} ∈ IC(k,(D∪{d})\{k})
XD\{d}

�

This proposition concerns only binary partitions (π1, π2) in which π1 is a
singleton. These are the only ones used in Proposition 2, and thus the only
ones which implication bases are necessary for computing n-concepts. However,
completely understanding the n-context and the various subcontexts that can
be derived from it requires knowing the derivation operators of other binary
partitions. For this reason, we would like to make sure that we can also derive
the implication bases of every binary partition.

Proposition 4. ∀d ∈ π1, IC(π1,π2) =
⋂
sd∈Sd IC(π1\{d},π2)

{{sd}}

Proof By looking at Figure 4, it is easy to see that an implication has to hold
in every C(π1\{d},π2)

{{sd}} to hold in C(π1,π2). �

5. A Type of Implication Base

Now that we know how to derive the implication bases of all the possible
binary partitions of subcontexts of C, we can identify implication bases for C.

Theorem 1. Let C = (S1, ..., Sn, R) be an n-context and k ∈ {1, ..., n} be a
dimension. An implication base of C(k,k) is an implication base of C.
Proof From Proposition 2, we know that a set of (n − 1)-tuples that is iso-
morphic to the set of n-concepts of C can be computed from the implications
in binary contexts of the form C(k,d)

X{k,d}
where d ∈ {1, ..., n} \ {k}. From Propo-

sition 3, we know that I
C(k,D\{k})
XD

can be derived from I
C(k,(D∪{d})\{k})
XD\{d}

. Hence,

∀d ∈ {1, ..., n} \ {k}, IC(k,d)
X
{k,d}

can be derived from IC(k,k) . Since an implication

base of C(k,k), by definition, allows for the derivation of IC(k,k) , it also allows
for the derivation of IC(k,d)

X
{k,d}

, ∀d ∈ {1, ..., n} \ {k}. Thus an implication base of

C(k,k) contains enough information for the computation of a set of (n−1)-tuples
that is isomorphic to the set of n-concepts of C. �

C(k,k) being a simple 2-context, results on the implication bases of 2-contexts
apply to those of n-contexts. Most importantly, implication bases of C(k,k) can
be computed using known algorithms [11, 1].
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π2

(. . . , 1, . . . )
...

(. . . , 1, . . . )

(. . . , 2, . . . )
...

(. . . , 2, . . . )

...

(. . . , |Sd|, . . . )
...

(. . . , |Sd|, . . . )

(
C(π1∪π2)\{d}
{{1}}

)(π1\{d},π2)

(
C(π1∪π2)\{d}
{{2}}

)(π1\{d},π2)

(
C(π1∪π2)\{d}
{{|Sd|}}

)(π1\{d},π2)

Figure 5: Illustration of the proof for Proposition 4

6. Computing Implicational Closures

Now, let us suppose that we have Xjn
and want to compute the n-concept

bjn−1,...,j1(Xjn
) as in Proposition 2. Explicitly computing the implication bases

of the 2-contexts of the form C(jn,jd)
X{jd,jn}

would be inefficient as many implications
can be irrelevant and/or found in multiple contexts. In this section, we pro-
pose an algorithm for computing the implicational closure IC(k,j)

X
{k,j}

(X) from an

implication base of C.

From Proposition 3, we know that, for some d ∈ D,

I
C(k,D\{k})
XD

= {A→ B |
⋃

xd∈Xd

A ∗ {xd} →
⋃

xd∈Xd

B ∗ {xd} ∈ IC(k,(D∪{d})\{k})
XD\{d}

}

This gives us that, for a set A ⊆ Sj and a dimension d ∈ {k, j},

b ∈ IC(k,j)
X
{k,j}

(A)⇔ P ⊆ IC(k,{j,d})
X
{k,j,d}

(Q)

with P =
⋃
xd∈Xd(b)∗{xd} and Q =

⋃
a∈A

⋃
xd∈Xd(a)∗{xd}. This naturally

means that
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b ∈ IC(k,j)
X
{k,j}

(A)⇔ L ⊆ IC(k,k)(M)

with L = {(x1, ..., xk−1, xk+1, ..., xj−1, b, xj+1, ..., xn) | xi ∈ Xi, i ∈ {k, j}}
andM =

⋃
a∈A{(x1, ..., xk−1, xk+1, ..., xj−1, a, xj+1, ..., xn) | xi ∈ Xi, i ∈ {k, j}}.

Or, in other words,

M → L ∈ IC(k,k)

A naive algorithm would be, given a basis B ⊆ IC(k,k) , to compute B(M)
and check whether L is in it. However, B(M) can contain many unnecessary
elements.

Let B be an implication base of C(k,k), C(k,j)
X{k,j}

be the 2-context in which we
want to compute the implicational closure and A ⊆ Sj be a set of columns of
C(k,j)
X{k,j}

. We propose the following algorithm to compute IC(k,j)
X
{k,j}

(A) from B,

X{k,j} and A. Let us start by creating a list associating, to each element x ∈∏
d∈kXd, the set of premises of implications in B that have x in their conclusions.

We then want to check whether there is an implication which premise contains A
in the list corresponding to each of the n-tuples

∏
d∈k,j Xd ∗{b} with b ∈ Sj \A.

If this is the case, b is added to the output.

Algorithm 1 MDLClosure(B,X{k,j},A)
R← A
Create the lists of implications for each column of C(k,k)

for each b ∈ Sj \A do
Add← true
for each B ∈

∏
d∈{k,j}Xd do

if there is no implication containing A×
∏
d∈{k,j}Xd in its premise and

B ∗ {b} in its conclusion then
Add← false

end if
end for
if Add then
R← R ∪ {b}

end if
end for
return R

The algorithm runs in O(|
∏
d∈{k,j}Xd| × |Sj | × |B| × K) where K is the

complexity of checking whether A×
∏
d∈{k,j}Xd is in a premise.
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7. Discussion

While the proposed implication base of an n-context is apparently a simple
implication base of a 2-context, the higher dimensionality opens new questions
and challenges some previous results. First of all, it is not certain that the
properties of the bases still hold. The Duquenne-Guigues base of C(k,k) is the
smallest base of this context but not necessarily the smallest of C as other bases
could also be considered - including the union of the bases of the various 2-
contexts used in Proposition 2. Such results should be carefully reexamined.

The problem of actually computing the n-lattice - whole, partially, with or
without the quasi-orders - from implication bases should also be the subject
of in-depth studies. This should include improving the algorithm proposed in
Section 6 and comparing its runtime against the previously mentioned naive
approach in various scenarios.

Finally, Proposition 4 should be elaborated upon in the context of data
mining and partial implications. Indeed, while contexts of the form C(π1,π2) with
|π1| > 1 are not needed in this work, they are important for computing frequent
n-dimensional association rules [10, 9]. As was the case for the Luxenburger [8]
base in the 2-dimensional case, bases for partial implications should be defined
for n-lattices.
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