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Implication bases in n-lattices are not formally defined. We clarify the different types of implications we need to reconstruct a concept n-lattice and show they can be derived from the same set of implications. We use this to identify a particular type of implication base in n-contexts. Finally, we provide an algorithm for computing implicational closures with n-dimensional bases.

Introduction

Implications are important in fields that deal with lattices directly such as (obviously) lattice theory, formal concept analysis and boolean function theory or indirectly through an interest for data like relational databases theory, artificial intelligence and data mining. They are most often understood as rules of the form A → B that sum up the structure of the lattice and the regularities in the data. Their variant related to lattices and bi-dimensional, object-attribute, data has been extensively studied and, while some questions remain open, most of the algorithmic tools one would need are available. Notably, the literature is rich with implication bases -subsets of implications that sum up the resthaving different properties.

Much less is known about implications related to the multidimensional generalisations of lattices and object-attribute data: n-lattices and n-contexts. In this multidimensional case, no implication base has been defined yet. To the best of our knowledge, only one work has addressed the matter in 3-contexts by highlighting the various possible forms of implications and their semantic [START_REF] Ganter | Implications in Triadic Formal Contexts[END_REF]. However, whether these implications allow for the reconstruction of the subjacent 3-lattice has yet to be shown. In order to remedy this lack of knowledge and kickstart a more widespread use of n-contexts and n-lattices, we propose here different implication bases for the n-dimensional case.

The remainder of this work is structured as follows: Section 2 presents the relevant definitions and properties concerning the 2-dimensional and ndimensional cases, Section 3 makes explicit the implications one needs to be able to construct the elements of an n-lattice, Section 4 shows how to obtain them, Section 5 highlights a type of implication base and Section 6 contains an algorithm for computing implicational closures with those bases. Finally, Section 7 discusses the questions that are left unanswered.

Preliminary Definitions and Results

Lattices

A lattice L is a structure that is defined differently depending on the domain. In order theory, L is a partially ordered set (E, ≤) in which every pair of elements e 1 , e 2 ∈ E has both a least upper bound and a greatest lower bound. In algebra, L = (E, ∧, ∨) with ∧ and ∨ being binary operations respecting the commutative, associative and absorption laws. In this work, we will prefer the order theoretic approach and consider our lattices to be complete -i.e. having a finite set of elements including a greatest and a least.

Definition 1.

A formal context is a triple (S 1 , S 2 , R) in which S 1 and S 2 are sets and R ⊆ S 1 × S 2 is a binary relation between S 1 and S 2 .

A formal context can be represented by a crosstable. Hence, when C = (S 1 , S 2 , R), the elements of S 1 will be called the rows and those of S 2 the columns of C.

a b c d e 1 × × 2 × × × 3 × × × 4 × × 5 × × Figure 1: A formal context C = (S 1 , S 2 , R) with S 1 = {1, 2, 3, 4, 5} and S 2 = {a, b, c, d, e}
For X ⊆ S 1 and Y ⊆ S 2 , two derivation operators are defined:

X → X : {a ∈ S 2 | ∀x ∈ X, (x, a) ∈ R} Y → Y : {o ∈ S 1 | ∀y ∈ Y, (o, y) ∈ R}
The composition of these two operators forms a Galois connection or, in other words, a closure operator.

Definition 2. A formal concept of (S 1 , S 2 , R) is a pair (X 1 , X 2 ) ∈ 2 S1 × 2 S2 such that X 1 × X 2 ⊆ R and there are no k 1 ∈ S 1 \ X 1 or k 2 ∈ S 2 \ X 2 such that (X 1 ∪ {k 1 }, X 2 ) or (X 1 , X 2 ∪ {k 2 }) respects this property.
In other words, in the formal context, a formal concept is a maximal rectangle full of crosses (up to permutation of the rows and columns). The set of formal concepts existing in a formal context can be ordered by the inclusion relation on one of their components. The resulting partially ordered set forms a structure known as a concept lattice. It has been shown [START_REF] Ganter | Formal Concept Analysis -Mathematical Foundations[END_REF] that any complete lattice is isomorphic to the concept lattice of a formal context. Multiple formal contexts can correspond to the same lattice but the minimal one, called the reduced context, is such that no row (resp. column) is the intersection of other rows (resp. columns). In this reduced context, the rows and columns represent the ∨-and ∧-irreducibles of the lattice with a cross meaning that the two elements are comparable. Definition 3. In a formal context, an implication is a rule A → B in which A and B are sets of columns.

An implication A → B is said to hold in a context if every row that has crosses on the columns in A also has crosses on the columns in B. In the context presented in Figure 1, the implications {a} → {ab} and {bc} → {bcd} hold while {be} → {abe} does not. We will use I C to denote the set of all implications that hold in a context C. We have the property that I C (S) = S . As such, the closure system induced by I C (•) is the same as the one induced by • and is isomorphic to the set of concepts. Thus, just as the context, the implications can be used to construct a structure that is isomorphic to the concept lattice.

Multiple implication sets can correspond to the same context/lattice. For example, if {a} → {ab} holds, then {ac} → {abc} obviously holds too and is redundant. An implication set that allows for the derivation of all the implications that hold in a context -and only them -through the application of Armstrong's axioms is called a base. Different such bases, with their own properties, have been studied, of which two are of particular interest: the Duquenne-Guigues [START_REF] Guigues | Familles minimales d'implications informatives résultant d'un tableau de données binaires[END_REF] and the canonical direct [START_REF] Bertet | The Multiple Facets of the Canonical Direct Unit Implicational Basis[END_REF] bases.

n-Lattices

The structures called n-lattices are multidimensional generalisations of lattices. An n-lattice L is, first of all, an n-ordered set (E, 1 , ... n ) in which the i are quasi-orders on E such that ∩ j =i j ⊆ i . Additionally, it requires the existence of so-called (j n-1 , ..., j 1 )-joins, generalisations of the least upper bound and greatest lower bound taking into consideration n -1 quasi-orders [START_REF] Voutsadakis | Polyadic Concept Analysis[END_REF]. Definition 5. An n-context is an (n+1)-tuple C = (S 1 , ..., S n , R) in which the S i are sets and R ⊆ k∈{1,...,n} S k is an n-ary relation between them.

An n-context can be seen as an n-dimensional crosstable. The 3-context C shown in Figure 2 will be used throughout this work as a running example. It can be useful to view the n-context as a building in which one of the dimensions, d, serves as the front so that each element of S d is a floor number. Each floor s d ∈ S d is then an (n -1)-dimensional space that contains rooms corresponding to the coordinates (s

1 2 3 1 2 3 1 2 3 a × × × × b × × c × × × × × α β γ
1 , ..., s d , ..., s n ), s i ∈ S i , ∀i ∈ {1, . . . , n}\{d}. Many k-contexts (2 ≤ k ≤ n) can be constructed from the n-context. Bor- rowing the notations from [12], let π = (π 1 , ..., π k ) be a partition of {1, ..., n} into k sets. The k-context corresponding to π is C π = ( i∈π1 S i , ..., i∈π k S i , R π ) with (s 1 , ..., s k ) ∈ R π if and only if (s 1 , ..., s n ) ∈ R with s i ∈ s j ⇔ i ∈ π j .
Figure 3 shows the 2-context C (latin,{number,greek}) resulting from the binary partition of our Figure 2 example. Let D ⊆ {1, ..., n} be a set of dimensions and D = {1, ..., n} \ D be its complement. When D is a singleton, we will write d instead of {d}. Let S D denote the collection An n-concept of (S 1 , ..., S n , R) is an n-tuple (X 1 , ..., X n ) ∈ i∈{1,...,n} 2 Si such that i∈{1,...,n} X i ⊆ R and there are no d ∈ {1, ..., n} and k ∈ S d \ X d such that (X 1 , ..., X d ∪ {k}, ..., X n ) respects this property.

(1,α) (1,β) (1,γ) (2,α) (2,β) (2,γ) (3,α) (3,β) (3,γ) a × × × × b × × c × × × × ×
S d | d ∈ D . Let X d ⊆ S d be a set of elements in the dimension d, X D = X d | d ∈ D and x D ∈ d∈D S d . The |D|-context associated to X D is C X D = (S D , R X D ) such that, ∀x D ∈ d∈D S d , x D ∈ R X D if and only if x D∪D ∈ R.
In other words, an n-concept is a maximal n-dimensional box full of crosses in (S 1 , ..., S n , R) (up to permutations inside dimensions).

Our Figure 2 example contains the following 3-concepts (brackets are left out for the sake of legibility): (abc,1,α), (c,12,α), (ab,1,αβ), (a,13,β), (c,2,αβγ), (a,3,βγ), (c,23,γ), (ac,3,γ), (∅,123,αβγ), (abc,∅,αβγ) and (abc,123,∅). [START_REF] Voutsadakis | Polyadic Concept Analysis[END_REF]) Let {j 1 , ..., j n } = {1, ..., n} and X i ⊆ S i , i = j n . Define

Proposition 1. (From

A jn = X (jn,jn-1,X {jn,j n-1 } ) jn-1
(1)

A jn-1 = A (jn,jn-1,X {jn ,j n-1 } ) jn (2) A jn-2 = A ({jn,jn-1},jn-2,X {jn ,j n-1 ,j n-2 } ) {jn,jn-1} (3) 
. . .

A j k = A ({jn,jn-1,...,j k+1 },j k ,X {j 1 ,...,j k-1 } )
{jn,jn-1,...,j k+1 } (4) . . . 

A j1 = A ({jn,...,j2},j2) {jn,...,j2} (5) 
Then (A 1 , ..., A n ) is the n-concept b jn-1,...,
n -component, satisfying X i ⊆ B i , i = j n . Thus, if (C 1 , ..., C n ) is an n-concept, then b jn-1,...,j1 (C jn ) = (C 1 , ..., C n ).
Implication bases in the n-dimensional case have yet to be formally defined, which the motivation behind this work. Ganter and Obiedkov brought up the topic in the 3-dimensional case [START_REF] Ganter | Implications in Triadic Formal Contexts[END_REF] and defined different forms of implications that correspond to

I C (d 1 ,d 3 ) X d 2 , I C (d 1 ,d 2 ) X d 3
and I C (d 1 ,{d 2 ,d 3 }) . However, to the best of our knowledge, it has yet to be proven that they form a base that allows for the construction of the elements of the 3-lattice. Despite this, the topic is growing in popularity [START_REF] Rodríguez | An Axiomatic System for Conditional Attribute Implications in Concept Analysis[END_REF][START_REF] Vera | Fuzzy-Valued Triadic Implications[END_REF][START_REF] Missaoui | Mining Triadic Association Rules from Ternary Relations[END_REF] and we believe that it calls for more stable foundations.

Context Lattice

Implications n-Context n-Lattice ?

Computing n-Concepts with Implications

An implication base of an n-context C must be a set of rules of the form A → B that provides enough information for the construction of a set of objects isomorphic to the set of n-concepts of C. From Proposition 1, we know that computing the n-concepts can be done with the knowledge of the derivation operators induced by the various 2-contexts that can be constructed from C. In the 2-dimensional case, the composition of the derivation operators and the implicational closure form the same closure operator. However, in Proposition 1, the computation of n-concepts is done using single derivation operators and not their composition. Hence, we have to reformulate this proposition. Proposition 2. Let C = (S 1 , ..., S n , R), {j 1 , ..., j n } = {1, ..., n} and X i ⊆ S i , i = j n . Define

A jn = X (jn,jn-1,X {jn,j n-1 } ) jn-1 (6) A jn-1 = I C (jn,j n-1 ) X {j 1 ,...,j n-2 } (X jn-1 ) (7) 
A jn-2 = I C (jn ,j n-2 ) A j n-1 ∪X {j 1 ,...,j n-3 } (X jn-2 ) (8) 
. . .

A j k = I C (jn ,j k ) A {j k+1 ,...,j n-1 } ∪X {j 1 ,...,j k-1 } (X j k (9)
. . .

A j1 = I C (jn,j 1 ) A {j 2 ,...,j n-1 } (X j1 ) (10) 
Then (A 1 , ..., A n ) is the n-concept b jn-1,...,j1 (X jn ) with the property that it has the largest j 2 -component among all n-concepts (B 1 , ..., B n ) with the largest j 3 -component among those with the largest j 4 -component, ..., among all those with the largest j n -component, satisfying

X i ⊆ B i , i = j n . Thus, if (C 1 , ..., C n ) is an n-concept, then b jn-1,...,j1 (C jn ) = (C 1 , ..., C n ). Proof We know that (s jn , x j k ) ∈ R (jn,j k ) A {j k+1 ,...,j n-1 } ∪X {j 1 ,...,j k-1 } if and only if ∀(a j k+1 , ..., a jn-1 ) ∈ i∈{k+1,...,n-1} A ji , (x j k , a j k+1 , ..., a jn-1 , s jn ) ∈ R X {j 1 ,...,j k-1 } . According to Proposition 1, (A j k+1 , ..., A jn ) is an (n -k)-concept of C X {j 1 ,...,j k } . This means that i∈{k+1,...,n} A ji ⊆ R X {j 1 ,...,j k-1 ,j k } . From this, we deduce that X j k × i∈{k+1,...,n} A ji ⊆ R X {j 1 ,...,j k-1 } . Consequently, ∀(a jn , x j k ) ∈ A jn × X j k , we have that ∀(a j k+1 , ..., a jn-1 ) ∈ i∈{k+1,...,n-1} A ji , (x j k , a j k+1 , ..., a jn-1 , a jn ) ∈ R X {j 1 ,...,j k-1 } .

This tells us that

A jn × X j k ⊆ R (jn,j k ) A {j k+1 ,...,j n-1 } ∪X {j 1 ,...,j k-1 } . If X j k → {x} ∈ I C (jn ,j k ) A {j k+1 ,...,j n-1 } ∪X {j 1 ,...,j k-1 }
, then, by definition,

∀s jn ∈ S jn , (∀x j k ∈ X j k , (s jn , x j k ) ∈ R (jn,j k ) A {j k+1 ,...,j n-1 } ∪X {j 1 ,...,j k-1 } ) ⇓ (s jn , x) ∈ R (jn,j k ) A {j k+1 ,...,j n-1 } ∪X {j 1 ,...,j k-1 } .
Hence, from the previous paragraph, we deduce that the fact that

X j k → {x} ∈ I C (jn,j k ) A {j k+1 ,...,j n-1 } ∪X {j 1 ,...,j k-1 } implies that ∀a jn ∈ A jn , (a jn , x) ∈ R (jn,j k ) A {j k+1 ,...,j n-1 } ∪X {j 1 ,...,j k-1 } and, thus, that ∀(a j k+1 , ..., a jn-1 , a jn ) ∈ i∈{k+1,...,n} A ji , (x, a j k+1 , ..., a jn-1 , a jn ) ∈ R X {j 1 ,...,j k-1 } . Consequently, (X j k ∪{x})× i∈{k+1,...,n} A ji ⊆ R X {j 1 ,...,j k-1 } . The tuple (X j k ∪ {x}, A j k+1 , . . . , A jn ) is thus an (n -k + 1)-dimensional box full of crosses in C X {j 1 ,...,j k-1 } .
Additionally, the fact that (A j k+1 , ..., A jn ) is an (n -k)-concept of C X {j 1 ,...,j k } ensures that (X j k ∪ {x}, A j k+1 , . . . , A jn ) cannot be extended on dimensions k + 1, . . . , n.

From all of this, we can see that

(I C (jn ,j k ) A {j k+1 ,...,j n-1 } ∪X {j 1 ,...,j k-1 } (X j k ), A j k+1 , . . . , A jn )
is the (n-k+1)-concept of C X {j 1 ,...,j k-1 } with the property that it has the largest j k+1 -component among all (n -k + 1)-concepts (B j k , ..., B n ) with the largest j k+2 -component among those with the largest j k+3 -component, ..., among all those with the largest j n -component, satisfying

X i ⊆ B i , i ∈ {k, ..., n -1}.
As n-concepts are totally defined by n -1 of their components, the set of (n -1)-tuples of the form (A jn-1 , ..., A j1 ) is isomorphic to the set of n-concepts. Since this set can be constructed using the implications bases of the different C (jn,j k ) A {j k+1 ,...,j n-1 } ∪X {j 1 ,...,j k-1 } , an implication base of C must, at least, allow for the computation of the implication bases of all such 2-contexts.

Deriving the Implications of Derived Contexts

As we have seen, only two operations are needed to derive subcontexts from C:

• partitioning the dimensions (C π )

• "fixing" a subset X d of a dimension d (C X d ). Every 2-context K (π1,π2) used in Proposition 2 is the binary partition of an n- context K = C X π 1 ∪π 2
. We will start by showing how to compute the implication base of

C (k,D\{k}) X D from the one of C (k,(D∪{d})\{k}) X D\{d} .
Let {j 1 , ..., j k } ⊂ {1, ..., n}, A = {a 1 , ..., a m } with a l = (a l,j1 , ..., a l,j k ) ∈ i∈{1,...,k} S ji be a set of k-tuples and x ∈ S p with p ∈ {1, ..., n} \ {j 1 , ..., j k }.

Let us define the notation

A * {x} = {(a l,j1 , ..., x, ..., a l,j k ) | (a l,j1 , ..., a l,j k ) ∈ A} which simply means adding to every k-tuple in A the element x at the right position.

Proposition 3. I C (k,D\{k}) X D = {A → B | ∃d ∈ D such that x d ∈X d A * {x d } → x d ∈X d B * {x d } ∈ I C (k,(D∪{d})\{k}) X D\{d} } Proof ⇐. Let us suppose that x d ∈X d A * {x d } → x d ∈X d B * {x d } ∈ I C (k,(D∪{d})\{k}) X D\{d}
for some d ∈ D. This means that ∀x k ∈ S k , (

x d ∈X d A * {x d } ⊆ R X D\{d} ∪{x k } ) ⇒ ( x d ∈X d B * {x d } ⊆ R X D\{d} ∪{x k } ) Consequently, ∀x k ∈ S k , x d ∈ X d , (A ⊆ R X D\{d} ∪{x k }∪{x d } ) ⇒ (B ⊆ R X D\{d} ∪{x k }∪{x d } ) So, ∀x k ∈ S k , (A ⊆ R X D ∪{x k } ) ⇒ (B ⊆ R X D ∪{x k } ) Which finally means that A → B ∈ I C (k,D\{k}) X D ⇒. Let us now suppose that A → B ∈ I C (k,D\{k}) X D
. This means that

∀x k ∈ S k , (A ⊆ R X D ∪{x k } ) ⇒ (B ⊆ R X D ∪{x k } ) However, a ∈ R X D ∪{x k } ⇔ {a} * {x d } ∈ R X D\{d} ∪{x k } , ∀x d ∈ X d Consequently, x d ∈X d A * {x d } → x d ∈X d B * {x d } ∈ I C (k,(D∪{d})\{k}) X D\{d}
This proposition concerns only binary partitions (π 1 , π 2 ) in which π 1 is a singleton. These are the only ones used in Proposition 2, and thus the only ones which implication bases are necessary for computing n-concepts. However, completely understanding the n-context and the various subcontexts that can be derived from it requires knowing the derivation operators of other binary partitions. For this reason, we would like to make sure that we can also derive the implication bases of every binary partition.

Proposition 4. ∀d ∈ π 1 , I C (π 1 ,π 2 ) = s d ∈S d I C (π 1 \{d},π 2 ) {{s d }}
Proof By looking at Figure 4, it is easy to see that an implication has to hold in every C (π1\{d},π2) {{s d }} to hold in C (π1,π2) .

A Type of Implication Base

Now that we know how to derive the implication bases of all the possible binary partitions of subcontexts of C, we can identify implication bases for C. Theorem 1. Let C = (S 1 , ..., S n , R) be an n-context and k ∈ {1, ..., n} be a dimension. An implication base of C (k,k) is an implication base of C.

Proof From Proposition 2, we know that a set of (n -1)-tuples that is isomorphic to the set of n-concepts of C can be computed from the implications in binary contexts of the form C , ∀d ∈ {1, ..., n} \ {k}. Thus an implication base of C (k,k) contains enough information for the computation of a set of (n -1)-tuples that is isomorphic to the set of n-concepts of C.

C (k,k) being a simple 2-context, results on the implication bases of 2-contexts apply to those of n-contexts. Most importantly, implication bases of C (k,k) can be computed using known algorithms [START_REF] Ryssel | Fast Algorithms for Implication Bases and Attribute Exploration Using Proper Premises[END_REF][START_REF] Bazhanov | Comparing Performance of Algorithms for Generating the Duquenne-Guigues Basis[END_REF]. 

Discussion

While the proposed implication base of an n-context is apparently a simple implication base of a 2-context, the higher dimensionality opens new questions and challenges some previous results. First of all, it is not certain that the properties of the bases still hold. The Duquenne-Guigues base of C (k,k) is the smallest base of this context but not necessarily the smallest of C as other bases could also be considered -including the union of the bases of the various 2contexts used in Proposition 2. Such results should be carefully reexamined.

The problem of actually computing the n-lattice -whole, partially, with or without the quasi-orders -from implication bases should also be the subject of in-depth studies. This should include improving the algorithm proposed in Section 6 and comparing its runtime against the previously mentioned naive approach in various scenarios.

Finally, Proposition 4 should be elaborated upon in the context of data mining and partial implications. Indeed, while contexts of the form C (π1,π2) with |π 1 | > 1 are not needed in this work, they are important for computing frequent n-dimensional association rules [START_REF] Nguyen | Multidimensional Association Rules in Boolean Tensors[END_REF][START_REF] Missaoui | Mining Triadic Association Rules from Ternary Relations[END_REF]. As was the case for the Luxenburger [START_REF] Luxenburger | Implications partielles dans un contexte[END_REF] base in the 2-dimensional case, bases for partial implications should be defined for n-lattices.

Definition 4 .

 4 Let I be a set of implications and S a set of columns of C. The implicational closure of S0, noted I(S), is the smallest set T such that S ⊆ T and (A → B ∈ I and A ⊆ T ) implies B ⊆ T .

Figure 2 :

 2 Figure 2: An example of a 3-context with S greek = {α, β, γ}, S latin = {a, b, c} and S number = {1, 2, 3}.
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 3 Figure 3: The 2-context C (latin,{number,greek}) .

Figure 4

 4 Figure4shows two 2-contexts derived from our Figure2example by fixing subsets of the greek dimension.
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 4 Figure 4: The 2-contexts C {α} and C {β,γ} .

  (k,d) X {k,d} where d ∈ {1, ..., n} \ {k}. From Proposition 3, we know that I C , ..., n} \ {k}, I C (k,d) X {k,d} can be derived from I C (k,k) . Since an implication base of C (k,k) , by definition, allows for the derivation of I C (k,k) , it also allows for the derivation of I C (k,d) X {k,d}
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 56 Figure 5: Illustration of the proof for Proposition 4
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with L = {(x 1 , ..., x k-1 , x k+1 , ..., x j-1 , b, x j+1 , ...,

Or, in other words,

A naive algorithm would be, given a basis B ⊆ I C (k,k) , to compute B(M ) and check whether L is in it. However, B(M ) can contain many unnecessary elements.

Let B be an implication base of

be the 2-context in which we want to compute the implicational closure and A ⊆ S j be a set of columns of

. We propose the following algorithm to compute

X {k,j} and A. Let us start by creating a list associating, to each element x ∈ d∈k X d , the set of premises of implications in B that have x in their conclusions. We then want to check whether there is an implication which premise contains A in the list corresponding to each of the n-tuples d∈k,j X d * {b} with b ∈ S j \ A. If this is the case, b is added to the output.