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On the reduction of multivariate quadratic systems to best rank-1 approximation
of three-way tensors

Alex P. da Silva1, Pierre Comon1, André L. F. de Almeida2

Abstract

In this paper, we show that a general quadratic multivariate system in the real field can be reduced to a best
rank-1 three-way tensor approximation problem. This fact provides a new approach to tackle a system of quadratic
polynomials equations. Some experiments using the standard alternating least squares (ALS) algorithm are drawn to
evince the usefulness of rank-1 tensor approximation methods.
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1. Introduction

Let P1 be the general system of quadratic polynomial equations given by

P1:


xT A1x + bT

1 x + c1 = 0
...

xT Amx + bT
mx + cm = 0,

where x ∈ Rn, A j ∈ Rn×n are symmetric matrices, b j ∈ Rn and c j ∈ R, 1 ≤ j ≤ m.
To tackle this problem, some mathematical techniques can be applied, such as Newton and tensor-based algorithms

[1, 2], Gröbner bases, resultants and eigenvalues/eigenvectors of companion matrices [3], semidefinite relaxations
[4, 5, 6], numerical homotopy [7, 8], low-rank matrix recovery [9], and symbolic computation [10]. The complexity
class of System (P1) is NP-hard.

This problem is of great interest in various applications. For instance, in game theory, the Nash equilibria of a non-
cooperative game between two players can be found by solving a multivariate quadratic system [11]. In cryptography,
the security of systems depends on the difficulty to solve large quadratic systems in finite fields [12, 13]. In [14] the
authors present the design of multivariate filter banks modeled by quadratic polynomial systems. A last example of
application lies in multilinear algebra [15], where the authors propose an efficient algorithm to decompose a symmetric
tensor and show the equivalence between an existence condition of the decomposition and the solution of a system of
quadratic equations.

Let T ∈ Rn1×n2×n3 be a three-way tensor with entries in the real field. The best rank-1 approximation of T can be
obtained by solving the following optimization problem

p? = min
ai,1≤i≤N

‖T − a1 ⊗ a2 ⊗ a3‖ , (1)

where a1⊗ a2⊗ a3 is a rank-1 tensor with approximating factors ai ∈ Rni , 1 ≤ i ≤ 3, ⊗ is the tensor product, and ‖ · ‖ is
the Frobenius norm. The solution of Problem (1) always exists in R, since the set of rank-1 tensors is closed [16]. It is
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known that standard tensor approximation algorithms, such as alternating least squares (ALS) [17] generally deliver
satisfactory solutions in practice in reasonable time for the best rank-1 approximation problem. Other methods to
solve this problem can be found in [6, 18].

The goal of this paper is to show that multivariate quadratic systems can be reduced to best rank-1 three-way tensor
approximation problems, which provides a new approach with a large amount of tensor tools to deal with System (P1).

2. From Quadratic Systems To Best Rank-1 Approximations

Let I be the ideal in R[x] generated by the set of polynomials of (P1), that is, I = 〈h1(x), h2(x), . . . , hm(x)〉,
where h j(x) = xT A jx + bT

j x + c j, 1 ≤ j ≤ m. Thus, the set of solutions of (P1) is defined by the affine variety
V(I) := {x ∈ Rn

| f (x) = 0, ∀ f ∈ I}. Also define the optimization problem (P2) as follows

P2: p?2 = min
‖y‖=1

p(y)

where p(y) =
m∑

j=1
(yTQ jy)2, for y ∈ Rn+1 and

Q j =


A j b j/2

bT
j /2 c j

 ∈ Rn+1×n+1.

Define the set of global minimizers of (P2) as SP2 = {y ∈ Rn+1
| p(y) = p?2 , ‖y‖ = 1}, and the subset S̄P2 ⊆ SP2

given by S̄P2 = SP2 ∩ (Rn
×R\{0}). In other words, S̄P2 is the set of solutions of Problem (P2) such that yn+1 , 0. Let

also N = {z ∈ Rn+1
| z = y/yn+1, ∀y ∈ S̄P2}. Proposition below connects Problems (P1) and (P2).

Proposition 1. If V(I) , ∅ then V(I) × {1} = N.

Proof. By setting y = [x 1]T, it turns out that

xT A jx + bT
j x + c j = yTQ jy,

∀ j ∈ {1, 2, . . . ,m}. This shows that the set of solutions of the following system, equivalent to (P1),yTQ jy = 0, for 1 ≤ j ≤ m
yn+1 = 1

(2)

is V(I) × {1}. Now, consider the optimization problem (P2). Since p(y) is by construction the sum of squares of the
quadratic polynomials yTQ jy, 1 ≤ j ≤ m, and V(I) , ∅, it follows that p?2 = 0. Thus, ∀ȳ ∈ V(I) × {1}, p(ȳ/‖ȳ‖) = 0,
which implies that ȳ/‖ȳ‖ ∈ S̄P2 and ȳ ∈ N. This proves that V(I) × {1} ⊆ N.

On the other hand, ∀y ∈ S̄P2, p(y/yn+1) = 0, which implies that (y/yn+1)TQ j(y/yn+1) = 0, 1 ≤ j ≤ m. Thus, y/yn+1
is solution of (2), which leads to N ⊆ V(I) × {1}, and the proof is complete.

Proposition 1 says that all solutions of System (P1) can be recovered from Problem (P2) by taking the n first
elements of y/yn+1, ∀y ∈ S̄P2.

Remark 1. When b j = 0, c j = 0, ∀ j ∈ {1, 2, . . . ,m}, V(I) − {0} can be viewed as a projective variety, since x ∈
V(I) =⇒ αx ∈ V(I) ∀α ∈ R. Therefore, it is enough to solve the system for ‖x‖ = 1. By setting y = x, and
Q j = A j, 1 ≤ j ≤ m, all nontrivial solutions of (P1) can be recovered by solving (P2).

Now, consider the following optimization problem

P3: p?3 = max
‖y‖=1

(y � y)T M(y � y)

where M ∈ R(n+1)2×(n+1)2
is a positive semidefinite matrix given by M = λmaxI − MQ, where MQ =

∑m
j=1 Q j � Q j, I

is the identity matrix, λmax is the largest eigenvalue of MQ, and � denotes the Kronecker product.
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Proposition 2. (P2) ⇐⇒ (P3).

Proof. Since

p(y) =

m∑
j=1

(yTQ jy)2 =

m∑
j=1

(y � y)T(Q j � Q j)(y � y) = (y � y)T MQ(y � y),

it follows that

min
‖y‖=1

(y � y)T MQ(y � y) = max
‖y‖=1
−(y � y)T MQ(y � y) ⇐⇒ max

‖y‖=1
λmax − (y � y)T MQ(y � y)

= max
‖y‖=1

(y � y)T(λmaxI − MQ)(y � y) = max
‖y‖=1

(y � y)T M(y � y).

Remark 2. Problem (P3) can be viewed as a symmetric best rank-1 approximation of a fourth order tensor. Indeed,
it can be written as min

‖y‖=1
‖M − y ⊗ y ⊗ y ⊗ y‖2, whereM ∈ Rn+1×n+1×n+1×n+1 is a symmetric tensor constructed from

M. This problem is difficult to solve and some standard algorithms, such as ALS, could be adapted to deal with it.
However, ignoring the symmetry generally leads to faster convergence. For this reason, reducing the system to a
standard three-way rank-1 approximation problem is attractive under the algorithmic point of view.

In the following, we establish a link between (P3) and a rank-1 three-way tensor approximation problem. Let
(λk, vk), 1 ≤ k ≤ K, K = rank{M}, be the k-th eigenpair of M. Due to the semi-definiteness of M, we can define real
vectors tk =

√
λkvk ∈ R(n+1)2

. Let Unvec be the operator that unstacks n + 1 by n + 1 the elements of an (n + 1)2 vector,
and reshapes them as columns of an n + 1 × n + 1 matrix.

Thus, we set Tk = Unvec(tk), 1 ≤ k ≤ rank{M}. The matrices Tk can be viewed as frontal slices of a three-way
tensor T ∈ Rn+1×n+1×K [19], as illustrated in the figure below.

T =

T1
T2

TK

Figure 1: Frontal slices of a three-way tensor T ∈ Rn+1×n+1×K .

Define the following rank-1 tensor approximation problem with two identical factors.

P4: p?4 = min
‖y‖=1,w

‖T − y ⊗ y ⊗ w‖.

The following proposition holds.

Proposition 3. (P3) ⇐⇒ (P4).

Proof. Expand matrix M into its eigencomponents as: M =
∑K

k=1 λkvkvT
k =
∑K

k=1 tk tT
k , and write the objective function

of (P3) as (y � y)T M(y � y) =
∑K

k=1(y � y)T tk tT
k (y � y). Set wk = (y � y)T tk. Problem (P3) can be rewritten as

max
(y,w)∈C

∑K
k=1 wk tT

k (y � y) (3)

where C = {(y,w) ∈ Rn
× RK , : ‖y‖ = 1, w = [w1 w2 . . . wK]T, wk = (y � y)T tk, 1 ≤ k ≤ K}. Next, we have the

equivalence

max
(y,w)∈C

K∑
k=1

wk tT
k (y � y) ⇐⇒ min

(y,w)∈C

K∑
k=1

tT
k tk − wk tT

k (y � y).
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Yet, since (y,w) ∈ C, it turns out that tT
k tk − wk tT

k (y � y) = ‖tk − wk(y � y)‖2, 1 ≤ k ≤ K. Therefore, Problem (P3) is
equivalent to

min
(y,w)∈C

K∑
k=1

‖tk − wk(y � y)‖2 (4)

or, to minimize the Lagrangian:

Υ(y,w) =

K∑
k=1

‖tk − wk(y � y)‖2 + η(‖y‖ − 1) +

K∑
k=1

γk(wk − (y � y)T tk),

where γk, 1 ≤ k ≤ K, and η are Lagrangian multipliers.
We now need to relax the constraint on wk. Stationary points w.r.t. wk yield

∂Υ(y,w)
∂wk

= −2(tk − wk(y � y))T(y � y) + γk = 0 =⇒ (−tk + wk(y � y))T(y � y) + γk/2 = 0.

Now using all the constraints defined in C (i.e. stationary equations w.r.t. γk and η), the latter equation leads to
γk = 0, ∀k, which means that the constraints on wk do not need to be imposed. Hence we end up with the simplified
Lagrangian:

Υ(y,w) =

K∑
k=1

‖tk − wk(y � y)‖2 + η(‖y‖ − 1). (5)

To complete the proof, note that by reshaping the entries of the vectors tk using the Unvec operator, (5) can still
be written with the help of matrix slices:

min
‖y‖=1,w

∑K
k=1 ‖Tk − wk yyT‖2 (6)

or in its tensor representation
min
‖y‖=1,w

‖T − y ⊗ y ⊗ w‖2.

Problem (P4) is a best partially symmetric rank-1 approximation, which cannot be directly tackled by standard
tensor approximation algorithms. However, this problem can still be changed in order to drop the constraint of
identical factors.

According to [20], the best rank-1 approximation of a real symmetric tensor with respect to a subset of indices
(modes) can be chosen symmetric with respect to this subset (see Theorem 1 therein). Thus, if tensor T in Problem
(P4) were symmetric with respect to the first two modes, we would not need to impose any constraint on the factors,
so that the best rank-1 approximation could be chosen partially symmetric.

In general, T is not symmetric with respect to the first two modes. However, the linear transformation T′k =

(Tk + TT
k )/2 on each k-th slice Tk of T , ensures that any best partially symmetric rank-1 approximation of T is

actually a best rank-1 approximation of a tensor T ′ with slices T′k (which is therefore symmetric with respect to the
first two modes). In other words, Problem (P4) can be reduced to the problem

P5: p?5 = min
‖y‖=1,x,w

‖T
′
− x ⊗ y ⊗ w‖.

Before proving this, we need the following lemma.

Lemma 4. Let f (X,α) =
∑K

k=1 ‖Ak −αk X‖2 and g(X,α) =
∑K

k=1 ‖(Ak + AT
k )/2−αk X‖2 with X, Ak ∈ Rn×n, 1 ≤ k ≤ K,

α = [α1 α2 . . . αK]T. If X is symmetric, then

arg min
X,α

f (X,α) = arg min
X,α

g(X,α).
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Proof. Let h(X,α) =
∑K

k=1 ‖A
T
k − αk X‖2. Since X is symmetric, it follows that

arg min
X,α

f (X,α) = arg min
X,α

h(X,α) = arg min
X,α

f (X,α) + h(X,α).

By expanding the functions,

f (X,α) + h(X,α) = 2‖X‖2
K∑

k=1

α2
k − 2

K∑
k=1

αktr{(Ak + AT
k )X} + 2

K∑
k

‖Ak‖
2, and

g(X,α) = ‖X‖2
K∑

k=1

α2
k −

K∑
k=1

αktr{(Ak + AT
k )X} +

1
4

K∑
k=1

‖Ak + AT
k ‖

2,

where tr is the trace operator. Thus, f (X,α) + h(X,α) = 2g(X,α) + c, for some constant c, and the proof is complete.

Proposition 5. Let SP4 and SP5 be the sets of rank-1 tensors that minimize Problems (P4) and (P5), respectively. Then
SP4 ⊆ SP5.

Proof. Since yyT is symmetric, we can apply Lemma 4 to the cost function of the slice form of Problem (P4) to show
that

arg min
y,w

K∑
k=1

‖Tk − wk yyT‖2 = arg min
y,w

K∑
k=1

‖T′k − wk yyT‖2.

That means that any rank-1 tensor X = y ⊗ y ⊗ w ∈ SP4 is a partially symmetric rank-1 tensor that minimizes (P5),
which is in turn a best rank-1 approximation because of Theorem 1 in [20].

3. Discussion

In this section, we present some numerical experiments at which a solution of generic quadratic systems are
computed by using the standard ALS algorithm for rank-1 tensor approximations. A total of 500 systems for each
scenario (n,m) was generated with the entries of A j, b j, c j, 1 ≤ j ≤ m, distributed according to a uniform measure
in [−1, 1]. To initialize ALS algorithm, we have employed a partially symmetric random initialization, which con-
sists of the minimizer of the approximation error ‖T ′ − X‖ among a sample of 10000 partially symmetric tensors
X = y ⊗ y ⊗ w, with the entries of vectors y and w also uniformly distributed in [−1, 1]. Table 1 summarizes the
percentage p of systems in which a solution was successfully obtained, and the average computational time for ini-
tialization, construction of T ′, and the rank-1 approximation itself. We assume that a solution satisfies a system if
max(|yTQ1y|, (|yTQ2y|, . . . , (|yTQmy|) ≤ 0.001. All time measurements are displayed in seconds. The experiments
were performed with the software Matlab c© in a MAC OSX 10.8.5 with processor 3.2 GHz Intel core i5, and memory
8G 1600MHz DDR3.

Table 1: Performance of the tensor approximation ALS algorithm to extract one solution of generic quadratic systems.

Scenario (n,m) Initialization Time Time for constructing T ′ Time ALS Total Time p (%)
(2, 3) 1.2707 8.5767e-04 0.0852 1.3567 100
(4, 4) 1.5190 0.0014 2.0137 3.5340 100
(5, 4) 1.5288 0.0024 0.4613 1.9925 100
(6, 6) 1.5800 0.0035 3.5453 5.1288 100
(7, 9) 1.6444 0.0051 0.9939 2.6433 98.6

(10, 8) 2.7514 0.0133 2.0391 4.8037 100
(10, 10) 2.7705 0.0133 8.8520 11.6358 100
(20, 20) 11.8718 0.1993 51.4871 63.5582 100

Some conclusions and remarks about the rank-1 approximation approach:

5



• Although a solution of (P5) is not necessarily a solution of (P1), the experiments showed that ALS algorithm
delivers a solution of (P1) in general. Indeed, only in the over-determined scenario (7, 9) a solution was not
found for a few systems, but the reason was that ALS did not converge to a best rank-1 approximation;

• Routine simulations have shown that ALS delivers partially symmetric rank-1 approximations for partially
symmetric tensors;

• The ALS algorithm is easy to implement and converges fast for generic tensors approximations. Additionally,
ALS has also local linear convergence properties. If the starting point is in the neighborhood of a global solution
of (P5) then the iterates of ALS converge linearly to this solution [21];

• The results also confirmed that a solution of a quadratic polynomial system can be extracted in a few seconds
with the rank-1 tensor approach. However, the computational time becomes large for scenarios (n,m) ≥ (10, 10).
For instance, when n = 10, the tensor T ′ can have dimensions up to 11 × 11 × 121.

• From Table 1, the computational time of the ALS algorithm is larger for systems having as many variables as
equations. For instance, compare scenarios (4, 4) and (6, 6) with scenarios (5, 4) and (7, 9), respectively;

• Despite the fact that the construction of T ′ depends on the number of equations m, Problem (P5) itself does
not. This is an advantage compared to other methods that take into account the number of equations.
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