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In this paper, we show that a general quadratic multivariate system in the real field can be reduced to a best rank-1 three-way tensor approximation problem. This fact provides a new approach to tackle a system of quadratic polynomials equations. Some experiments using the standard alternating least squares (ALS) algorithm are drawn to evince the usefulness of rank-1 tensor approximation methods.

Introduction

Let P1 be the general system of quadratic polynomial equations given by P1:

               x T A 1 x + b T 1 x + c 1 = 0 . . . x T A m x + b T m x + c m = 0,
where x ∈ R n , A j ∈ R n×n are symmetric matrices, b j ∈ R n and c j ∈ R, 1 ≤ j ≤ m.

To tackle this problem, some mathematical techniques can be applied, such as Newton and tensor-based algorithms [START_REF] Dennis | Numerical methods for unconstrained optimization and nonlinear equations[END_REF][START_REF] Schnabel | Tensor methods for nonlinear equations[END_REF], Gröbner bases, resultants and eigenvalues/eigenvectors of companion matrices [START_REF] Cox | Using algebraic geometry[END_REF], semidefinite relaxations [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF][START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Bucero | Border basis relaxation for polynomial optimization[END_REF], numerical homotopy [START_REF] Li | Numerical solution of multivariate polynomial systems by homotopy continuation methods[END_REF][START_REF] Verschelde | Polynomial homotopies for dense, sparse and determinantal systems[END_REF], low-rank matrix recovery [START_REF] Davenport | An overview of low-rank matrix recovery from incomplete observations[END_REF], and symbolic computation [START_REF] Grigoriev | Polynomial-time computing over quadratic maps i: sampling in real algebraic sets[END_REF]. The complexity class of System (P1) is NP-hard.

This problem is of great interest in various applications. For instance, in game theory, the Nash equilibria of a noncooperative game between two players can be found by solving a multivariate quadratic system [START_REF] Lipton | Nash equilibria via polynomial equations[END_REF]. In cryptography, the security of systems depends on the difficulty to solve large quadratic systems in finite fields [START_REF] Courtois | Efficient algorithms for solving overdefined systems of multivariate polynomial equations[END_REF][START_REF] Thomae | Solving underdetermined systems of multivariate quadratic equations revisited[END_REF]. In [START_REF] Lin | Applications of gröbner bases to signal and image processing: A survey[END_REF] the authors present the design of multivariate filter banks modeled by quadratic polynomial systems. A last example of application lies in multilinear algebra [START_REF] Brachat | Symmetric tensor decomposition[END_REF], where the authors propose an efficient algorithm to decompose a symmetric tensor and show the equivalence between an existence condition of the decomposition and the solution of a system of quadratic equations.

Let T ∈ R n1 ×n2 ×n 3 be a three-way tensor with entries in the real field. The best rank-1 approximation of T can be obtained by solving the following optimization problem

p = min a i ,1≤i≤N T -a 1 ⊗ a 2 ⊗ a 3 , (1) 
where a 1 ⊗ a 2 ⊗ a 3 is a rank-1 tensor with approximating factors a i ∈ R n i , 1 ≤ i ≤ 3, ⊗ is the tensor product, and • is the Frobenius norm. The solution of Problem (1) always exists in R, since the set of rank-1 tensors is closed [START_REF] Silva | Tensor rank and the ill-posedness of the best low-rank approximation problem[END_REF]. It is known that standard tensor approximation algorithms, such as alternating least squares (ALS) [START_REF] Li | Some convergence results on the regularized alternating least-squares method for tensor decomposition[END_REF] generally deliver satisfactory solutions in practice in reasonable time for the best rank-1 approximation problem. Other methods to solve this problem can be found in [START_REF] Bucero | Border basis relaxation for polynomial optimization[END_REF][START_REF] Nie | Semidefinite relaxations for best rank-1 tensor approximations[END_REF]. The goal of this paper is to show that multivariate quadratic systems can be reduced to best rank-1 three-way tensor approximation problems, which provides a new approach with a large amount of tensor tools to deal with System (P1).

From Quadratic Systems To Best Rank-1 Approximations

Let I be the ideal in R[x] generated by the set of polynomials of (P1), that is, I = h 1 (x), h 2 (x), . . . , h m (x) , where h j (x) = x T A j x + b T j x + c j , 1 ≤ j ≤ m. Thus, the set of solutions of (P1) is defined by the affine variety

V(I) := {x ∈ R n | f (x) = 0, ∀ f ∈ I}.
Also define the optimization problem (P2) as follows

P2: p 2 = min y =1 p(y)
where p(y) = m j=1 (y T Q j y) 2 , for y ∈ R n+1 and

Q j =           A j b j /2 b T j /2 c j           ∈ R n+1×n+1 .
Define the set of global minimizers of (P2) as S P2 = {y ∈ R n+1 | p(y) = p 2 , y = 1}, and the subset SP2 ⊆ S P2 given by SP2 = S P2 ∩ (R n × R\{0}). In other words, SP2 is the set of solutions of Problem (P2) such that y n+1 0. Let also N = {z ∈ R n+1 | z = y/y n+1 , ∀y ∈ SP2 }. Proposition below connects Problems (P1) and (P2).

Proposition 1. If V(I) ∅ then V(I) × {1} = N.
Proof. By setting y = [x 1] T , it turns out that

x T A j x + b T j x + c j = y T Q j y,
∀ j ∈ {1, 2, . . . , m}. This shows that the set of solutions of the following system, equivalent to (P1),

       y T Q j y = 0, for 1 ≤ j ≤ m y n+1 = 1 (2) 
is V(I) × {1}. Now, consider the optimization problem (P2). Since p(y) is by construction the sum of squares of the quadratic polynomials y T Q j y, 1 ≤ j ≤ m, and V(I) ∅, it follows that p 2 = 0. Thus, ∀ȳ ∈ V(I) × {1}, p(ȳ/ ȳ ) = 0, which implies that ȳ/ ȳ ∈ SP2 and ȳ ∈ N. This proves that V(I) × {1} ⊆ N.

On the other hand, ∀y ∈ SP2 , p(y/y n+1 ) = 0, which implies that (y/y n+1 ) T Q j (y/y n+1 ) = 0, 1 ≤ j ≤ m. Thus, y/y n+1 is solution of (2), which leads to N ⊆ V(I) × {1}, and the proof is complete.

Proposition 1 says that all solutions of System (P1) can be recovered from Problem (P2) by taking the n first elements of y/y n+1 , ∀y ∈ SP2 .

Remark 1. When b j = 0, c j = 0, ∀ j ∈ {1, 2, . . . , m}, V(I) -{0} can be viewed as a projective variety, since x ∈ V(I) =⇒ αx ∈ V(I) ∀α ∈ R. Therefore, it is enough to solve the system for x = 1. By setting y = x, and Q j = A j , 1 ≤ j ≤ m, all nontrivial solutions of (P1) can be recovered by solving (P2).

Now, consider the following optimization problem

P3: p 3 = max y =1 (y y) T M(y y)
where M ∈ R (n+1) 2 ×(n+1) 2 is a positive semidefinite matrix given by M = λ max I -M Q , where M Q = m j=1 Q j Q j , I is the identity matrix, λ max is the largest eigenvalue of M Q , and denotes the Kronecker product.

Proposition 2. (P2) ⇐⇒ (P3). Proof. Since p(y) = m j=1 (y T Q j y) 2 = m j=1 (y y) T (Q j Q j )(y y) = (y y) T M Q (y y), it follows that min y =1 (y y) T M Q (y y) = max y =1 -(y y) T M Q (y y) ⇐⇒ max y =1 λ max -(y y) T M Q (y y) = max y =1 (y y) T (λ max I -M Q )(y y) = max y =1 (y y) T M(y y).
Remark 2. Problem (P3) can be viewed as a symmetric best rank-1 approximation of a fourth order tensor. Indeed, it can be written as min

y =1 M -y ⊗ y ⊗ y ⊗ y 2 , where M ∈ R n+1×n+1×n+1×n+1 is a symmetric tensor constructed from
M. This problem is difficult to solve and some standard algorithms, such as ALS, could be adapted to deal with it. However, ignoring the symmetry generally leads to faster convergence. For this reason, reducing the system to a standard three-way rank-1 approximation problem is attractive under the algorithmic point of view.

In the following, we establish a link between (P3) and a rank-1 three-way tensor approximation problem. Let (λ k , v k ), 1 ≤ k ≤ K, K = rank{M}, be the k-th eigenpair of M. Due to the semi-definiteness of M, we can define real vectors

t k = √ λ k v k ∈ R (n+1) 2 .
Let Unvec be the operator that unstacks n + 1 by n + 1 the elements of an (n + 1) 2 vector, and reshapes them as columns of an n + 1 × n + 1 matrix.

Thus, we set T k = Unvec(t k ), 1 ≤ k ≤ rank{M}. The matrices T k can be viewed as frontal slices of a three-way tensor T ∈ R n+1×n+1×K [START_REF] Kolda | Tensor decompositions and applications[END_REF], as illustrated in the figure below.

T = T 1 T 2 T K Figure 1:
Frontal slices of a three-way tensor T ∈ R n+1×n+1×K .

Define the following rank-1 tensor approximation problem with two identical factors.

P4: p 4 = min y =1,w T -y ⊗ y ⊗ w .
The following proposition holds.

Proposition 3. (P3) ⇐⇒ (P4).

Proof. Expand matrix M into its eigencomponents as: 

M = K k=1 λ k v k v T k = K k=1 t k t T k ,
where

C = {(y, w) ∈ R n × R K , : y = 1, w = [w 1 w 2 . . . w K ] T , w k = (y y) T t k , 1 ≤ k ≤ K}. Next, we have the equivalence max (y,w)∈C K k=1 w k t T k (y y) ⇐⇒ min (y,w)∈C K k=1 t T k t k -w k t T k (y y). Yet, since (y, w) ∈ C, it turns out that t T k t k -w k t T k (y y) = t k -w k (y y) 2 , 1 ≤ k ≤ K. Therefore, Problem (P3) is equivalent to min (y,w)∈C K k=1 t k -w k (y y) 2 (4) 
or, to minimize the Lagrangian:

Υ(y, w) = K k=1 t k -w k (y y) 2 + η( y -1) + K k=1 γ k (w k -(y y) T t k ),
where γ k , 1 ≤ k ≤ K, and η are Lagrangian multipliers.

We now need to relax the constraint on w k . Stationary points w.r.t. w k yield ∂Υ(y, w)

∂w k = -2(t k -w k (y y)) T (y y) + γ k = 0 =⇒ (-t k + w k (y y)) T (y y) + γ k /2 = 0.
Now using all the constraints defined in C (i.e. stationary equations w.r.t. γ k and η), the latter equation leads to γ k = 0, ∀k, which means that the constraints on w k do not need to be imposed. Hence we end up with the simplified Lagrangian:

Υ(y, w) = K k=1 t k -w k (y y) 2 + η( y -1). ( 5 
)
To complete the proof, note that by reshaping the entries of the vectors t k using the Unvec operator, (5) can still be written with the help of matrix slices:

min y =1,w K k=1 T k -w k yy T 2 (6)
or in its tensor representation min

y =1,w T -y ⊗ y ⊗ w 2 .
Problem (P4) is a best partially symmetric rank-1 approximation, which cannot be directly tackled by standard tensor approximation algorithms. However, this problem can still be changed in order to drop the constraint of identical factors.

According to [START_REF] Friedland | Best rank one approximation of real symmetric tensors can be chosen symmetric[END_REF], the best rank-1 approximation of a real symmetric tensor with respect to a subset of indices (modes) can be chosen symmetric with respect to this subset (see Theorem 1 therein). Thus, if tensor T in Problem (P4) were symmetric with respect to the first two modes, we would not need to impose any constraint on the factors, so that the best rank-1 approximation could be chosen partially symmetric.

In general, T is not symmetric with respect to the first two modes. However, the linear transformation T k = (T k + T T k )/2 on each k-th slice T k of T , ensures that any best partially symmetric rank-1 approximation of T is actually a best rank-1 approximation of a tensor T with slices T k (which is therefore symmetric with respect to the first two modes). In other words, Problem (P4) can be reduced to the problem

P5: p 5 = min y =1,x,w T -x ⊗ y ⊗ w .
Before proving this, we need the following lemma.

Lemma 4. Let f (X, α) = K k=1 A k -α k X 2 and g(X, α) = K k=1 ( A k + A T k )/2 -α k X 2 with X, A k ∈ R n×n , 1 ≤ k ≤ K, α = [α 1 α 2 . . . α K ] T . If X is symmetric, then arg min X,α f (X, α) = arg min X,α g(X, α). Proof. Let h(X, α) = K k=1 A T k -α k X 2 . Since X is symmetric, it follows that arg min X,α f (X, α) = arg min X,α h(X, α) = arg min X,α f (X, α) + h(X, α).
By expanding the functions,

f (X, α) + h(X, α) = 2 X 2 K k=1 α 2 k -2 K k=1 α k tr{( A k + A T k )X} + 2 K k A k 2 , and g(X, α) = X 2 K k=1 α 2 k - K k=1 α k tr{( A k + A T k )X} + 1 4 K k=1 A k + A T k 2 ,
where tr is the trace operator. Thus, f (X, α) + h(X, α) = 2g(X, α) + c, for some constant c, and the proof is complete.

Proposition 5. Let S P4 and S P5 be the sets of rank-1 tensors that minimize Problems (P4) and (P5), respectively. Then S P4 ⊆ S P5 .

Proof. Since yy T is symmetric, we can apply Lemma 4 to the cost function of the slice form of Problem (P4) to show that arg min

y,w K k=1 T k -w k yy T 2 = arg min y,w K k=1 T k -w k yy T 2 .
That means that any rank-1 tensor X = y ⊗ y ⊗ w ∈ S P4 is a partially symmetric rank-1 tensor that minimizes (P5), which is in turn a best rank-1 approximation because of Theorem 1 in [START_REF] Friedland | Best rank one approximation of real symmetric tensors can be chosen symmetric[END_REF].

Discussion

In this section, we present some numerical experiments at which a solution of generic quadratic systems are computed by using the standard ALS algorithm for rank-1 tensor approximations. A total of 500 systems for each scenario (n, m) was generated with the entries of A j , b j , c j , 1 ≤ j ≤ m, distributed according to a uniform measure in [-1, 1]. To initialize ALS algorithm, we have employed a partially symmetric random initialization, which consists of the minimizer of the approximation error T -X among a sample of 10000 partially symmetric tensors X = y ⊗ y ⊗ w, with the entries of vectors y and w also uniformly distributed in [-1, 1]. Table 1 summarizes the percentage p of systems in which a solution was successfully obtained, and the average computational time for initialization, construction of T , and the rank-1 approximation itself. We assume that a solution satisfies a system if max(|y T Q 1 y|, (|y T Q 2 y|, . . . , (|y T Q m y|) ≤ 0.001. All time measurements are displayed in seconds. The experiments were performed with the software Matlab c in a MAC OSX 10.8.5 with processor 3.2 GHz Intel core i5, and memory 8G 1600MHz DDR3. Some conclusions and remarks about the rank-1 approximation approach:

• Although a solution of (P5) is not necessarily a solution of (P1), the experiments showed that ALS algorithm delivers a solution of (P1) in general. Indeed, only in the over-determined scenario (7, 9) a solution was not found for a few systems, but the reason was that ALS did not converge to a best rank-1 approximation;

• Routine simulations have shown that ALS delivers partially symmetric rank-1 approximations for partially symmetric tensors;

• The ALS algorithm is easy to implement and converges fast for generic tensors approximations. Additionally, ALS has also local linear convergence properties. If the starting point is in the neighborhood of a global solution of (P5) then the iterates of ALS converge linearly to this solution [START_REF] Uschmajew | Local convergence of the alternating least squares algorithm for canonical tensor approximation[END_REF];

• The results also confirmed that a solution of a quadratic polynomial system can be extracted in a few seconds with the rank-1 tensor approach. However, the computational time becomes large for scenarios (n, m) ≥ (10, 10). For instance, when n = 10, the tensor T can have dimensions up to 11 × 11 × 121.

• From Table 1, the computational time of the ALS algorithm is larger for systems having as many variables as equations. For instance, compare scenarios (4, 4) and (6, 6) with scenarios (5, 4) and [START_REF] Li | Numerical solution of multivariate polynomial systems by homotopy continuation methods[END_REF][START_REF] Davenport | An overview of low-rank matrix recovery from incomplete observations[END_REF], respectively;

• Despite the fact that the construction of T depends on the number of equations m, Problem (P5) itself does not. This is an advantage compared to other methods that take into account the number of equations.

  and write the objective function of (P3) as (y y) T M(y y) = K k=1 (y y) T t k t T k (y y). Set w k = (y y) T t k . Problem (P3) can be rewritten as max (y,w)∈C K k=1 w k t T k (y y)

Table 1 :

 1 Performance of the tensor approximation ALS algorithm to extract one solution of generic quadratic systems.

	Scenario (n, m) Initialization Time Time for constructing T	Time ALS Total Time p (%)
	(2, 3)	1.2707	8.5767e-04	0.0852	1.3567	100
	(4, 4)	1.5190	0.0014	2.0137	3.5340	100
	(5, 4)	1.5288	0.0024	0.4613	1.9925	100
	(6, 6)	1.5800	0.0035	3.5453	5.1288	100
	(7, 9)	1.6444	0.0051	0.9939	2.6433	98.6
	(10, 8)	2.7514	0.0133	2.0391	4.8037	100
	(10, 10)	2.7705	0.0133	8.8520	11.6358	100
	(20, 20)	11.8718	0.1993	51.4871	63.5582	100
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