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ON THE FOCUSING MASS-CRITICAL NONLINEAR FOURTH-ORDER
SCHRÖDINGER EQUATION BELOW THE ENERGY SPACE

VAN DUONG DINH

Abstract. In this paper, we consider the focusing mass-critical nonlinear fourth-order Schrödinger
equation. We prove that blowup solutions to this equation with initial data in Hγ(Rd), 5 ≤ d ≤

7, 56−3d+
√

137d2+1712d+3136
2(2d+32) < γ < 2 concentrate at least the mass of the ground state at the

blowup time. This extends the work in [35] where Zhu-Yang-Zhang studied the formation of
singularity for the equation with rough initial data in R4. We also prove that the equation
is globally well-posed with initial data u0 ∈ Hγ(Rd), 5 ≤ d ≤ 7, 8d

3d+8 < γ < 2 satisfying
‖u0‖L2(Rd) < ‖Q‖L2(Rd), where Q is the solution to the ground state equation.

1. Introduction

Consider the focusing mass-critical nonlinear fourth-order Schrödinger equation, namely{
i∂tu(t, x) + ∆2u(t, x) = (|u| 8du)(t, x), t ≥ 0, x ∈ Rd,

u(0, x) = u0(x) ∈ Hγ(Rd), (NL4S)

where u(t, x) is a complex valued function in R+ × Rd. The fourth-order Schrödinger equation
was introduced by Karpman [20] and Karpman-Shagalov [21] taking into account the role of small
fourth-order dispersion terms in the propagation of intense laser beams in a bulk medium with
Kerr nonlinearity. Such a fourth-order Schrödinger equation is of the form

i∂tu+ ∆2u+ ε∆u+ µ|u|ν−1u = 0, u(0) = u0, (1.1)

where ε ∈ {0,±1}, µ ∈ {±1} and ν > 1. The (NL4S) is a special case of (1.1) with ε = 0 and
µ = −1.

The (NL4S) enjoys a natural scaling invariance, that is if u solves (NL4S), then for any λ > 0,

uλ(t, x) := λ−
d
2 u(λ−4t, λ−1x) (1.2)

solves the same equation with initial data uλ(0, x) = λ−
d
2 u0(λ−1x). This scaling also preserves

the L2-norm, i.e. ‖uλ(0)‖L2(Rd) = ‖u0‖L2(Rd). It is known (see [11, 12]) that the (NL4S) is locally
well-posed in Hγ(Rd) for γ ≥ 0 satisfying for d 6= 1, 2, 4,

dγe ≤ 1 + 8
d
, (1.3)

where dγe is the smallest integer greater than or equal to γ. This condition ensures the nonlinearity
to have enough regularity. Moreover, the unique solution enjoys mass conservation, i.e.

M(u(t)) := ‖u(t)‖2L2(Rd) = ‖u0‖2L2(Rd),

2010 Mathematics Subject Classification. 35B44, 35G20, 35G25.
Key words and phrases. Blowup; Nonlinear fourth-order Schrödinger; Global well-posedness; Almost conserva-

tion law.
1



2 V. D. DINH

and H2-solution has conserved energy, i.e.

E(u(t)) :=
∫
Rd

1
2 |∆u(t, x)|2 − d

2d+ 8 |u(t, x)|
2d+8
d dx = E(u0).

In the sub-critical regime, i.e. γ > 0, the time of existence depends only on the Hγ-norm of the
initial data. Let T ∗ be the maximal time of existence. The local well-posedness gives the following
blowup alternative criterion: either T ∗ =∞ or

T ∗ <∞, lim
t→T∗

‖u(t)‖Hγ(Rd) =∞.

The study of blowup solutions for the focusing nonlinear fourth-order Schrödinger equation has
been attracted a lot of interest in a past decay (see e.g. [15], [3], [34], [35], [4] and references
therein). It is closely related to ground states Q of (NL4S) which are solutions to the elliptic
equation

∆2Q(x)−Q(x) + |Q(x)| 8dQ(x) = 0. (1.4)
The equation (1.4) is obtained by considering solitary solutions (standing waves) of (NL4S) of the
form u(t, x) = Q(x)e−it. The existence of solutions to (1.4) is proved in [34], but the uniqueness
of the solution is still an open problem. In the case ‖u0‖L2(Rd) < ‖Q‖L2(Rd), using the sharp
Gagliardo-Nirenberg inequality (see [15] or [34]), namely

‖u‖2+ 8
d

L
2+ 8

d (Rd)
≤ C(d)‖u‖

8
d

L2(Rd)‖∆u‖
2
L2(Rd), C(d) :=

1 + 4
d

‖Q‖
8
d

L2(Rd)

, (1.5)

together with the energy conservation, Fibich-Ilan-Papanicolaou in [15] (see also [3]) proved that
the (NL4S) is globally well-posed in H2(Rd). Moreover, the authors in [15] also provided some
numerical observations showing that the H2-solution to (NL4S) may blowup if the initial data
satisfies ‖u0‖L2(Rd) ≥ ‖Q‖L2(Rd). Baruch-Fibich-Mandelbaum in [3] proved some dynamical prop-
erties of the radially symmetric blowup solution such as blowup rate, L2-concentration. Later,
Zhu-Yang-Zhang in [34] removed the radially symmetric assumption and established the profile
decomposition, the existence of the ground state of elliptic equation (1.4) and the following con-
centration compactness property for the (NL4S).

Theorem 1.1 (Concentration compactness [34]). Let (vn)n≥1 be a bounded family of H2(Rd)
functions such that

lim sup
n→∞

‖∆vn‖L2(Rd) ≤M <∞ and lim sup
n→∞

‖vn‖
L

2+ 8
d (Rd)

≥ m > 0.

Then there exists a sequence (xn)n≥1 of Rd such that up to a subsequence

vn(·+ xn) ⇀ V weakly in H2(Rd) as n→∞,

with ‖V ‖
8
d

L2(Rd) ≥
‖Q‖

8
d

L2(Rd)
m

2+ 8
d

(1+ 4
d )M2 , where Q is the solution to the ground state equation (1.4).

Consequently, the authors in [35] established the limiting profile and L2-concentration for
(NL4S) with initial data u0 ∈ Hγ(R4), 9+

√
721

20 < γ < 2. Recently, Boulenger-Lenzmann in [4]
proved a general result on finite-time blowup for the focusing generalized nonlinear fourth-order
Schrödigner equation( i.e. (1.1) with µ = 1) with radial data in H2(Rd).

The goal of this paper is to extend the results of [35] to higher dimensions d ≥ 5 and to prove
the global existence of (NL4S) for initial data u0 ∈ Hγ(Rd), 0 < γ < 2 satisfying ‖u0‖L2(Rd) <
‖Q‖L2(Rd). Since we are working with low regularity data, the energy argument does not work. In
order to overcome this problem, we make use of the I-method. Due to the high-order term ∆2u, we
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requires the nonlinearity to have at least two orders of derivatives in order to successfully establish
the almost conservation law. We thus restrict ourself in spatial space of dimensions d = 5, 6, 7.
Our main results are as follows.
Theorem 1.2. Let d = 5, 6, 7 and u0 ∈ Hγ(Rd) with 56−3d+

√
137d2+1712d+3136
2(2d+32) < γ < 2. If the

corresponding solution to the (NL4S) blows up in finite time 0 < T ∗ < ∞, then there exists a
function U ∈ H2(Rd) such that ‖U‖L2(Rd) ≥ ‖Q‖L2(Rd) and there exist sequences (tn, λn, xn)n≥1 ∈
R+ × R+

∗ × Rd satisfying

tn ↗ T ∗ as n→∞ and λn . (T ∗ − tn)
γ
8 , ∀n ≥ 1

such that
λ
d
2
nu(tn, λn ·+xn) ⇀ U weakly in Ha(d,γ)−(Rd) as n→∞,

where
a(d, γ) := 4dγ2 + (2d+ 48)γ + 16d

16d+ (56− 3d)γ − 16γ2 ,

and Q is the solution of the ground state equation (1.4).
The proof of the above theorem is based on the combination of the I-method and the concen-

tration compactness property given in Theorem 1.1 which is similar to those given in [32] and [35].
The I-method was first introduced by I-Team in [7] in order to treat the nonlinear Schrödinger
equation at low regularity. It then becomes a useful way to address the low regularity problem
for the nonlinear dispersive equations. The idea is to replace the non-conserved energy E(u) when
γ < 2 by an “almost conserved” variance E(Iu) with I a smoothing operator which is the identity
at low frequency and behaves like a fractional integral operator of order 2 − γ at high frequency.
Since Iu is not a solution of (NL4S), we may expect an energy increment. The key is to show that
on intervals of local well-posedness, the modified energy E(Iu) is an “almost conserved” quantity
and grows much slower than the modified kinetic energy ‖∆Iu‖2L2(Rd). To do so, we need deli-
cate estimates on the commutator between the I-operator and the nonlinearity. Note that when
d = 4, the nonlinearity is algebraic, one can use the Fourier transform technique to write the
commutator explicitly and then control it by multi-linear analysis. In our setting, the nonlinearity
is not algebraic. Thus we can not apply the Fourier transform technique. Fortunately, thanks
to a special Strichartz estimate (2.5), we are able to apply the technique given in [32] to control
the commutator. The concentration compactness property given in Theorem 1.1 is very useful
to study the dynamical properties of blowup solutions for the nonlinear fourth-order Schrödinger
equation. With the help of this property, Zhu-Yang-Zhang proved in [34] the L2-concentration of
blowup solutions and the limiting profile of minimal-mass blowup solutions with non-radial data
in H2(Rd). In [35], they extended these results for non-radial data below the energy space in the
fourth dimensional space.

As a consequence of Theorem 1.2, we have the following mass concentration property.

Theorem 1.3. Let d = 5, 6, 7 and u0 ∈ Hγ(Rd) with 56−3d+
√

137d2+1712d+3136
2(2d+32) < γ < 2. Assume

that the corresponding solution u to the (NL4S) blows up in finite time 0 < T ∗ < ∞. If α(t) > 0
is an arbitrary function such that

lim
t↗T∗

(T ∗ − t)
γ
8

α(t) = 0,

then there exists a function x(t) ∈ Rd such that

lim sup
t↗T∗

∫
|x−x(t)|≤α(t)

|u(t, x)|2dx ≥
∫
Rd
|Q(x)|2dx,

where Q is the solution to the ground state equation (1.4).
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When the mass of the initial data equals to the mass of the solution of the ground state equation
(1.4), we have the following improvement of Theorem 1.2. Note that in the below result, we assume
that there exists a unique solution to the ground state equation (1.4) which is a delicate open
problem.

Theorem 1.4. Let d = 5, 6, 7 and u0 ∈ Hγ(Rd) with 56−3d+
√

137d2+1712d+3136
2(2d+32) < γ < 2 be such

that ‖u0‖L2(Rd) = ‖Q‖L2(Rd). If the corresponding solution u to the (NL4S) blows up in finite time
0 < T ∗ <∞, then there exist sequences (tn, eiθn , λn, xn)n≥1 ∈ R+ × S1 × R+

∗ × Rd satisfying

tn ↗ T ∗ as n→∞ and λn . (T ∗ − tn)
γ
8 , ∀n ≥ 1

such that
λ
d
2
n e

iθnu(tn, λn ·+xn)→ Q strongly in Ha(d,γ)−(Rd) as n→∞,
where

a(d, γ) := 4dγ2 + (2d+ 48)γ + 16d
16d+ (56− 3d)γ − 16γ2 ,

and Q is the unique solution to the ground state equation (1.4).

Our last result concerns with the global existence of (NL4S) with rough initial data u0 satisfying
‖u0‖L2(Rd) < ‖Q‖L2(Rd).

Theorem 1.5. Let d = 5, 6, 7 and u0 ∈ Hγ(Rd) with 8d
3d+8 < γ < 2 be such that ‖u0‖L2(Rd) <

‖Q‖L2(Rd), where Q is the solution to the ground state equation (1.4). Then the initial value problem
(NL4S) is globally well-posed.

The proof of this result is inspired by the argument of [14] which relies on the I-method and
the sharp Gagliardo-Nirenberg inequality (1.5). Using the smallness assumption of the initial data,
the sharp Gagliardo-Nirenberg inquality shows that the modified kinetic energy is controlled by
the total energy. This allows us to establish the almost conservation law for the modified energy.

This paper is organized as follows. In Section 2, we introduce some notations and recall some
results related to our problem. In Section 3, we recall some local existence results and prove the
modified local well-posedness. In Section 4, we prove two types of modified energy increment. In
Section 5, we give the proof of Theorem 1.2, Theorem 1.3 and Theorem 1.4. Finally, we prove the
global well-posedness with small initial data in Section 6.

2. Preliminaries

In the sequel, the notation A . B denotes an estimate of the form A ≤ CB for some constant
C > 0. The notation A ∼ B means that A . B and B . A. We write A � B if A ≤ cB for
some small constant c > 0. We also use 〈a〉 := 1 + |a| and a± := a± ε for some universal constant
0 < ε� 1 and

2.1. Nonlinearity. Let F (z) := |z| 8d z, d = 5, 6, 7 be the function that defines the nonlinearity in
(NL4S). The derivative F ′(z) is defined as a real-linear operator acting on w ∈ C by

F ′(z) · w := w∂zF (z) + w∂zF (z),

where
∂zF (z) = 2d+ 8

2d |z| 8d , ∂zF (z) = 4
d
|z| 8d z

z
.

We shall identify F ′(z) with the pair (∂zF (z), ∂zF (z)), and define its norm by

|F ′(z)| := |∂zF (z)|+ |∂zF (z)|.
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It is clear that |F ′(z)| = O(|z| 8d ). We also have the following chain rule
∂kF (u) = F ′(u)∂ku,

for k ∈ {1, · · · , d}. In particular, we have
∇F (u) = F ′(u)∇u.

We next recall the fractional chain rule to estimate the nonlinearity.

Lemma 2.1 (Fractional chain rule for C1 functions [6], [23]). Suppose that G ∈ C1(C,C), and
α ∈ (0, 1). Then for 1 < q ≤ q2 <∞ and 1 < q1 ≤ ∞ satisfying 1

q = 1
q1

+ 1
q2

,

‖|∇|αG(u)‖Lqx . ‖G
′(u)‖Lq1

x
‖|∇|αu‖Lq2

x
.

We refer the reader to [6, Proposition 3.1] for the proof of the above estimate when 1 < q1 <∞,
and to [23, Theorem A.6] for the proof when q1 = ∞. When G is no longer C1, but Hölder
continuous, we have the following fractional chain rule.

Lemma 2.2 (Fractional chain rule for C0,β functions [33]). Suppose that G ∈ C0,β(C,C), β ∈
(0, 1). Then for every 0 < α < β, 1 < q <∞, and α

β < ρ < 1,

‖|∇|αG(u)‖Lqx . ‖|u|
β−αρ ‖Lq1

x
‖|∇|ρu‖

α
ρ

L
α
ρ
q2

x

,

provided 1
q = 1

q1
+ 1

q2
and

(
1− α

βρ

)
q1 > 1.

We refer the reader to [33, Proposition A.1] for the proof of this result. We also need the
following fractional Leibniz rule.

Lemma 2.3 (Fractional Leibniz rule [22]). Let F ∈ Ck(C,C), k ∈ N\{0}. Assume that there is
ν ≥ k such that

|DiF (z)| . |z|ν−i, ∀z ∈ C, i = 1, ..., k.
Then for γ ∈ [0, k], 1 < q ≤ q2 <∞ and 1 < q1 ≤ ∞ satisfying 1

q = ν−1
q1

+ 1
q2

,

‖|∇|γF (u)‖Lqx . ‖u‖
ν−1
L
q1
x
‖|∇|γu‖Lq2

x
. (2.1)

Moreover, if F is a homogeneous polynomial in u and u, then (2.1) holds true for any γ ≥ 0.

The reader can find the proof of this fractional Leibniz rule in [22, Appendix].

2.2. Strichartz estimates. Let I ⊂ R and p, q ∈ [1,∞]. We define the mixed norm

‖u‖Lpt (I,Lqx) :=
(∫

I

(∫
Rd
|u(t, x)|qdx

) 1
q
) 1
p

with a usual modification when either p or q are infinity. When there is no risk of confusion, we
may write LptLqx instead of Lpt (I, Lqx). We also use Lpt,x when p = q.

Definition 2.4. A pair (p, q) is said to be Schrödinger admissible, for short (p, q) ∈ S, if

(p, q) ∈ [2,∞]2, (p, q, d) 6= (2,∞, 2), 2
p

+ d

q
≤ d

2 .

Throughout this paper, we denote for (p, q) ∈ [1,∞]2,

γp,q = d

2 −
d

q
− 4
p
. (2.2)

Definition 2.5. A pair (p, q) is called biharmonic admissible, for short (p, q) ∈ B, if
(p, q) ∈ S, q <∞, γp,q = 0.



6 V. D. DINH

Proposition 2.6 (Strichartz estimate for fourth-order Schrödinger equation [11]). Let γ ∈ R and
u be a (weak) solution to the linear fourth-order Schrödinger equation namely

u(t) = eit∆
2
u0 +

∫ t

0
ei(t−s)∆

2
F (s)ds,

for some data u0, F . Then for all (p, q) and (a, b) Schrödinger admissible with q <∞ and b <∞,

‖|∇|γu‖Lpt (R,Lqx) . ‖|∇|γ+γp,qu0‖L2
x

+ ‖|∇|γ+γp,q−γa′,b′−4F‖La′t (R,Lb′x ). (2.3)

Here (a, a′) and (b, b′) are conjugate pairs, and γp,q, γa′,b′ are defined as in (2.2).

We refer the reader to [11, Proposition 2.1] for the proof of Proposition 2.6. The proof is based
on the scaling technique instead of using a dedicate dispersive estimate of [1] for the fundamental
solution of the homogeneous fourth-order Schrödinger equation. Note that the estimate (2.3) is
exactly the one given in [27], [28] or [29] where the author considered (p, q) and (a, b) are either
sharp Schrödinger admissible, i.e.

p, q ∈ [2,∞]2, (p, q, d) 6= (2,∞, 2), 2
p

+ d

q
= d

2 ,

or biharmonic admissible.
The following result is a direct consequence of (2.3).

Corollary 2.7. Let γ ∈ R and u a (weak) solution to the linear fourth-order Schrödinger equation
for some data u0, F . Then for all (p, q) and (a, b) biharmonic admissible,

‖|∇|γu‖Lpt (R,Lqx) . ‖‖∇|γu0‖L2
x

+ ‖|∇|γF‖La′t (R,Lb′x ), (2.4)

and

‖∆u‖Lpt (R,Lqx) . ‖∆u0‖L2
x

+ ‖∇F‖
L2
t (R,L

2d
d+2
x )

. (2.5)

2.3. Littlewood-Paley decomposition. Let ϕ be a radial smooth bump function supported in
the ball |ξ| ≤ 2 and equal to 1 on the ball |ξ| ≤ 1. For M = 2k, k ∈ Z, we define the Littlewood-
Paley operators

P̂≤Mf(ξ) := ϕ(M−1ξ)f̂(ξ),

P̂>Mf(ξ) := (1− ϕ(M−1ξ))f̂(ξ),

P̂Mf(ξ) := (ϕ(M−1ξ)− ϕ(2M−1ξ))f̂(ξ),

where ·̂ is the spatial Fourier transform. Similarly, we can define

P<M := P≤M − PM , P≥M := P>M + PM ,

and for M1 ≤M2,

PM1<·≤M2 := P≤M2 − P≤M1 =
∑

M1<M≤M2

PM .

We recall the following standard Bernstein inequalities (see e.g. [2, Chapter 2] or [31, Appendix]).
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Lemma 2.8 (Bernstein inequalities). Let γ ≥ 0 and 1 ≤ p ≤ q ≤ ∞. We have

‖P≥Mf‖Lpx .M
−γ‖|∇|γP≥Mf‖Lpx ,

‖P≤M |∇|γf‖Lpx .M
γ‖P≤Mf‖Lpx ,

‖PM |∇|±γf‖Lpx ∼M
±γ‖PMf‖Lpx ,

‖P≤Mf‖Lqx .M
d
p−

d
q ‖P≤Mf‖Lpx ,

‖PMf‖Lqx .M
d
p−

d
q ‖PMf‖Lpx .

2.4. I-operator. Let 0 ≤ γ < 2 and N � 1. We define the Fourier multiplier IN by

ÎNf(ξ) := mN (ξ)f̂(ξ),

where mN is a smooth, radially symmetric, non-increasing function such that

mN (ξ) :=
{

1 if |ξ| ≤ N,
(N−1|ξ|)γ−2 if |ξ| ≥ 2N.

We shall drop the N from the notation and write I and m instead of IN and mN . We recall (see
[13, Lemma 2.7]) some basic properties of the I-operator in the following lemma.

Lemma 2.9. Let 0 ≤ σ ≤ γ < 2 and 1 < q <∞. Then

‖If‖Lqx . ‖f‖Lqx , (2.6)
‖|∇|σP>Nf‖Lqx . N

σ−2‖∆If‖Lqx , (2.7)
‖ 〈∇〉σ f‖Lqx . ‖ 〈∆〉 If‖Lqx , (2.8)

‖f‖Hγx . ‖If‖H2
x
. N2−γ‖f‖Hγx , (2.9)

‖If‖Ḣ2
x
. N2−γ‖f‖Ḣγx . (2.10)

When the nonlinearity F (u) is algebraic, one can use the Fourier transform to write the com-
mutator like F (Iu)− IF (u) as a product of Fourier transforms of u and Iu, and then measure the
frequency interactions. However, in our setting, the nonlinearity is no longer algebraic, we thus
need the following rougher estimate which is a modified version of the Schrödinger context (see
[32]).

Lemma 2.10. Let 1 < γ < 2, 0 < δ < γ − 1 and 1 < q, q1, q2 <∞ be such that 1
q = 1

q1
+ 1

q2
. Then

‖I(fg)− (If)g‖Lqx . N
−(2−γ+δ)‖If‖Lq1

x
‖ 〈∇〉2−γ+δ

g‖Lq2
x
. (2.11)

We refer the reader to [13, Lemma 2.9] for the proof of this result. A direct consequence of
Lemma 2.10 with the fact that

∇F (u) = ∇uF ′(u)

is the following commutator estimate.

Corollary 2.11. Let 1 < γ < 2, 0 < δ < γ − 1 and 1 < q, q1, q2 < ∞ be such that 1
q = 1

q1
+ 1

q2
.

Then

‖∇IF (u)− (I∇u)F ′(u)‖Lqx . N
−(2−γ+δ)‖∇Iu‖Lq1

x
‖ 〈∇〉2−γ+δ

F ′(u)‖Lq2
x
. (2.12)
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3. Modified local well-posedness

We firstly recall the local theory for (NL4S) in Sobolev spaces (see [11, 12]).
Proposition 3.1 (Local well-posedness in Sobolev spaces). Let 5 ≤ d ≤ 7, 0 < γ < 2 and
u0 ∈ Hγ(Rd). Then the equation (NL4S) is locally well-posed on [0, Tlwp] with

Tlwp ∼ ‖u0‖
− 4
γ

Hγx
.

Moreover,
sup

(a,b)∈B
‖u‖Lat ([0,Tlwp],Wγ,b

x ) . ‖u0‖Hγx .

The implicit constants depend only on the dimension d and the regularity γ.
Proof. Let us introduce

p = 2(d+ 4)
d− 2γ , q = 2d(d+ 4)

d2 + 8γ .

It is easy to check that (p, q) is biharmonic admissible. We next choose (m,n) so that
1
p′

=
8
d

m
+ 1
p
,

1
q′

=
8
d

n
+ 1
q
, (3.1)

or
m = 4(d+ 4)

d(2 + γ) , n = 2(d+ 4)
d− 2γ .

With this choice of n, we have the Sobolev embedding Ẇ γ,q
x ↪→ Lnx .

Now, we consider

X :=
{
u ∈ Lpt ([0, T ],W γ,q

x ) | ‖u‖Lpt ([0,T ],Wγ,q
x ) ≤M

}
equipped with the distance

d(u, v) := ‖u− v‖Lpt ([0,T ],Lqx),

where T,M > 0 to be chosen later. By Duhamel’s formula, it suffices to prove that the functional

Φ(u)(t) := eit∆
2
u0 − i

∫ t

0
ei(t−s)∆

2
|u(s)|ν−1u(s)ds

is a contraction on (X, d). By Strichartz estimate (2.4),
‖Φ(u)‖Lpt ([0,T ],Wγ,q

x ) . ‖u0‖Hγx + ‖F (u)‖
Lp
′
t ([0,T ],Wγ,q′

x ),

‖Φ(u)− Φ(v)‖Lpt ([0,T ],Lqx) . ‖F (u)− F (v)‖
Lp
′
t ([0,T ],Lq

′
x ),

where F (u) = |u| 8du and similarly for F (v). Using (3.1), we apply Lemma 2.3 with k = 2, γ ∈
(0, 2), ν = 1 + 8

d to have

‖F (u)‖
Wγ,q′
x
. ‖u‖

8
d

Lnx
‖u‖Wγ,q

x
. ‖u‖

8
d

Ẇγ,q
x
‖u‖Wγ,q

x
.

Note that ν ≥ k since 5 ≤ d ≤ 7. Using again (3.1), the Hölder inequality and Sobolev embedding
then imply

‖F (u)‖
Lp
′
t ([0,T ],Wγ,q′

x ) . ‖u‖
8
d

Lmt ([0,T ],Ẇγ,q
x )‖u‖Lpt ([0,T ],Wγ,q

x ) . T
2γ
d ‖u‖1+ 8

d

Lpt ([0,T ],Wγ,q
x ).

Similarly, we have

‖F (u)− F (v)‖
Lp
′
t ([0,T ],Lq

′
x ) . T

2γ
d

(
‖u‖

8
d

Lpt ([0,T ],Ẇγ,q
x

+ ‖v‖
8
d

Lpt ([0,T ],Ẇγ,q
x

)
‖u− v‖Lpt ([0,T ],Lqx)

. T
2γ
d

(
‖u‖

8
d

Lpt ([0,T ],Wγ,q
x

+ ‖v‖
8
d

Lpt ([0,T ],Wγ,q
x

)
‖u− v‖Lpt ([0,T ],Lqx).
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This shows that for all u, v ∈ X, there exists C > 0 independent of T and u0 ∈ Hγ
x so that

‖Φ(u)‖Lpt ([0,T ],Wγ,q
x ) . C‖u0‖Hγx + CT

2γ
d M1+ 8

d , (3.2)

d(Φ(u),Φ(v)) . CT
2γ
d M

8
d d(u, v).

If we set M = 2C‖u0‖Hγx and choose

T ∼ ‖u0‖
− 4
γ

Hγx
,

then X is stable by Φ and Φ is a contraction on (X, d). The fixed point argument proves the local
existence. Moreover, by Strichartz estimate (2.4),

sup
(a,b)∈B

‖u‖Lat ([0,T ],Wγ,b
x ) . ‖u0‖Hγx + ‖F (u)‖

Lp
′
t ([0,T ],Wγ,q′

x ) . ‖u0‖Hγx .

The proof is complete. �

Corollary 3.2 (Blowup criterion). Let 5 ≤ d ≤ 7, 0 < γ < 2 and u0 ∈ Hγ(Rd). Assume that the
unique solution u to (NL4S) blows up at time 0 < T ∗ <∞. Then,

‖u(t)‖Hγx & (T ∗ − t)−
γ
4 , (3.3)

for all 0 < t < T ∗.

Proof. We follow the argument of [5]. Let 0 < t < T ∗. If we consider (NL4S) with initial data
u(t), then it follows from (3.2) the fixed point argument that if for some M > 0

C‖u(t)‖Hγx + C(T − t)
2γ
d M1+ 8

d ≤M,

then T < T ∗. Thus,
C‖u(t)‖Hγx + C(T ∗ − t)

2γ
d M1+ 8

d > M,

for all M > 0. Choosing M = 2C‖u(t)‖Hγx , we see that

(T ∗ − t)
2γ
d ‖u(t)‖

8
d

Hγx
> C.

This proves (3.3) and the proof is complete. �

We next define for any spacetime slab J × Rd,

ZI(J) := sup
(p,q)∈B

‖ 〈∆〉 Iu‖Lpt (J,Lqx).

We have the following commutator estimates.

Lemma 3.3. Let 5 ≤ d ≤ 7, 1 < γ < 2, 0 < δ < γ − 1 and J a compact interval. Then

‖IF (u)‖
L2
t (J,L

2d
d+4
x )

. |J |
2γ
d (ZI(J))1+ 8

d , (3.4)

‖∇IF (u)− (I∇u)F ′(u)‖
L2
t (J,L

2d
d+2
x )

. N−(2−γ+δ)(ZI(J))1+ 8
d , (3.5)

‖∇IF (u)‖
L2
t (J,L

2d
d+2
x )

. |J |
2γ
d (ZI(J))1+ 8

d +N−(2−γ+δ)(ZI(J))1+ 8
d , (3.6)

‖∇IF (u)‖
L2
t (J,L

2d
d+4
x )

. (ZI(J))1+ 8
d . (3.7)
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Proof. We firstly note that the estimates (3.5) and (3.7) are given in [13, Lemma 3.1]. Let us
consider (3.4). By (2.6) and Hölder’s inequality,

‖IF (u)‖
L2
t (J,L

2d
d+4
x )

. ‖F (u)‖
L2
t (J,L

2d
d+4
x )

. ‖u‖
L

2(d+8)
d−4γ
t (J,L

2d(d+8)
d2+4d+16γ
x )

‖F ′(u)‖
L

d+8
2(2+γ)
t (J,L

d(d+8)
4d+16−8γ
x )

.

Since F ′(u) = O(|u| 8d ), the Sobolev embedding implies

‖IF (u)‖
L2
t (J,L

2d
d+4
x )

. ‖u‖
L

2(d+8)
d−4γ
t (J,L

2d(d+8)
d2+4d+16γ
x )

‖u‖
8
d

L

4(d+8)
d(2+γ)
t (J,L

2(d+8)
d+4−2γ
x )

. |J |
2γ
d ‖u‖

L

2(d+8)
d−4γ
t (J,L

2d(d+8)
d2+4d+16γ
x )

‖u‖
8
d

L

2(d+8)
d−4γ
t (J,L

2(d+8)
d+4−2γ
x )

. |J |
2γ
d ‖u‖

L

2(d+8)
d−4γ
t (J,L

2d(d+8)
d2+4d+16γ
x )

‖|∇|γu‖
L

2(d+8)
d−4γ
t (J,L

2d(d+8)
d2+4d+16γ
x )

. |J |
2γ
d ‖ 〈∇〉γ u‖1+ 8

d

L

2(d+8)
d−4γ
t (J,L

2d(d+8)
d2+4d+16γ
x )

. |J |
2γ
d (ZI(J))1+ 8

d .

Here we use (2.8) and the fact
(

2(d+8)
d−4γ ,

2d(d+8)
d2+4d+16γ

)
is biharmonic admissible to get the last estimate.

It remains to prove (3.6). We have from (3.5) and the triangle inequality that

‖∇IF (u)‖
L2
t (J,L

2d
d+2
x )

. ‖(∇Iu)F ′(u)‖
L2
t (J,L

2d
d+2
x )

+N−(2−γ+δ)(ZI(J))1+ 8
d . (3.8)

By Hölder’s inequality,

‖(∇Iu)F ′(u)‖
L2
t (J,L

2d
d+2
x )

. ‖∇Iu‖
L

2(d+8)
d−4γ
t (J,L

2d(d+8)
d2+2d+16(γ−1)
x )

‖F ′(u)‖
L

d+8
2(2+γ)
t (J,L

d(d+8)
4d+16−8γ
x )

. (3.9)

We use the Sobolev embedding to estimate

‖∇Iu‖
L

2(d+8)
d−4γ
t (J,L

2d(d+8)
d2+2d+16(γ−1)
x )

. ‖∆Iu‖
L

2(d+8)
d−4γ
t (J,L

2d(d+8)
d2+4d+16γ
x )

. ZI(J). (3.10)

Here
(

2(d+8)
d−4γ ,

2d(d+8)
d2+4d+16γ

)
is biharmonic admissible. Since F ′(u) = O(|u| 8d ), the Sobolev embedding

again gives

‖F ′(u)‖
L

d+8
2(2+γ)
t (J,L

d(d+8)
4d+16−8γ
x )

. ‖u‖
8
d

L

4(d+8)
d(2+γ)
t (J,L

2(d+8)
d+4−2γ
x )

. |J |
2γ
d ‖u‖

8
d

L

2(d+8)
d−4γ
t (J,L

2(d+8)
d+4−2γ
x )

. |J |
2γ
d ‖|∇|γu‖

8
d

L

2(d+8)
d−4γ
t (J,L

2d(d+8)
d2+4d+16γ
x )

. |J |
2γ
d (ZI(J)) 8

d . (3.11)

Collecting (3.8)− (3.11), we obtain (3.6). The proof is complete. �

Proposition 3.4 (Modified local well-posedness). Let 5 ≤ d ≤ 7, 1 < γ < 2, 0 < δ < γ − 1 and
u0 ∈ Hγ(Rd). Let

T̃lwp := c‖Iu0‖
− 4
γ

H2
x
,
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for a small constant c = c(d, γ) > 0. Then (NL4S) is locally well-posed on [0, T̃lwp]. Moreover, for
N sufficiently large,

ZI([0, T̃lwp]) . ‖Iu0‖H2
x
. (3.12)

Proof. By (2.9), ‖u0‖Hγx . ‖Iu0‖H2
x
. Thus,

T̃lwp = c‖Iu0‖
− 4
γ

H2
x
. c‖u0‖

− 4
γ

Hγx
≤ Tlwp,

provided c is small enough. Here Tlwp is as in Proposition 3.1. This shows that (NL4S) is locally
well-posed on [0, T̃lwp]. It remains to prove (3.12). Denote J = [0, T̃lwp]. By Strichartz estimates
(2.4) and (2.5),

ZI(J) . sup
(p,q)∈B

‖Iu‖Lpt (J,Lqx) + sup
(p,q)∈B

‖∆Iu‖Lpt (J,Lqx)

. ‖Iu0‖L2
x

+ ‖IF (u)‖
L2
t (J,L

2d
d+4
x )

+ ‖∆Iu0‖L2
x

+ ‖∇IF (u)‖
L2
t (J,L

2d
d+2
x )

. ‖Iu0‖H2
x

+ ‖IF (u)‖
L2
t (J,L

2d
d+4
x )

+ ‖∇IF (u)‖
L2
t (J,L

2d
d+2
x )

.

We next use (3.4) and (3.6) to have

ZI(J) . ‖Iu0‖H2
x

+
(
|J |

2γ
d +N−(2−γ+δ)

)
(ZI(J))1+ 8

d .

By taking c = c(d, γ) small enough (or |J | is small) and N large enough, the continuity argument
shows (3.12). The proof is complete. �

4. Modified energy increment

In this section, we will derive two types of the modified energy increment. The first one is to
show that the modified energy of u, namely E(Iu) grows much slower than the modified kinetic of
u, namely ‖∆Iu‖2L2

x
. It is crucial to prove the limiting profile for blowup solutions given in Theorem

1.2. The second one is the “almost” conservation law for initial data whose mass is smaller than
mass of the solution to the ground state equation (1.4). With the help of this “almost” conservation
law, we are able to prove the global well-posedness given in Theorem 1.5.

Lemma 4.1 (Local increment of the modified energy). Let 5 ≤ d ≤ 7,max{3− 8
d ,

8
d} < γ < 2, 0 <

δ < γ + 8
d − 3 and u0 ∈ Hγ(Rd). Let

T̃lwp := c‖Iu0‖
− 4
γ

H2
x
,

for some small constant c = c(d, γ) > 0. Then, for N sufficiently large,

sup
t∈[0,T̃lwp]

|E(Iu(t))− E(Iu0)| . N−(2−γ+δ)
(
‖Iu0‖

2+ 8
d

H2
x

+ ‖Iu0‖
2+ 16

d

H2
x

)
. (4.1)

Here the implicit constant depends only on γ and ‖u0‖Hγx .

Proof. By Proposition 3.4, the equation (NL4S) is locally well-posed on [0, T̃lwp] and the unique
solution u satisfies

ZI([0, T̃lwp]) . ‖Iu0‖H2
x
. (4.2)

Next, we have from a direct computation that

∂tE(Iu(t)) = Re
∫
I∂tu(∆2Iu− F (Iu))dx.
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The Fundamental Theorem of Calculus gives

E(Iu(t))− E(Iu0) =
∫ t

0
∂sE(Iu(s))ds = Re

∫ t

0

∫
I∂su(∆2Iu− F (Iu))dxds.

As I∂tu = i∆2Iu− iIF (u), we have

E(Iu(t))− E(Iu0) = Re
∫ t

0

∫
I∂s(IF (u)− F (Iu)dxds

= Im
∫ t

0

∫
∆2Iu− IF (u)(IF (u)− F (Iu)dxds

= Im
∫ t

0

∫
∆Iu∆(IF (u)− F (Iu))dxds

−Im
∫ t

0

∫
IF (u)(IF (u)− F (Iu))dxds.

We next write

∆(IF (u)− F (Iu)) = I(∆uF ′(u) + |∇u|2F ′′(u))−∆IuF ′(Iu)− |∇Iu|2F ′′(Iu)
= ∆Iu(F ′(u)− F ′(Iu)) + |∇Iu|2(F ′′(u)− F ′′(Iu)) +∇Iu · (∇u−∇Iu)F ′′(u)

+I(∆F ′(u))− (∆Iu)F ′(u) + I(∇u · ∇uF ′′(u))− (∇Iu) · ∇uF ′′(u).

Thus,

E(Iu(t))− E(Iu0) = Im
∫ t

0

∫
∆Iu∆Iu(F ′(u)− F ′(Iu))dxds (4.3)

+Im
∫ t

0

∫
∆Iu|∇Iu|2(F ′′(u)− F ′′(Iu))dxds (4.4)

+Im
∫ t

0

∫
∆Iu∇Iu · (∇u−∇Iu)F ′′(u)dxds (4.5)

+Im
∫ t

0

∫
∆Iu[I(∆uF ′(u))− (∆Iu)F ′(u)]dxds (4.6)

+Im
∫ t

0

∫
∆Iu[I(∇u · ∇uF ′′(u))− (∇Iu) · ∇uF ′′(u)]dxds (4.7)

−Im
∫ t

0

∫
IF (u)(IF (u)− F (Iu))dxds. (4.8)

Let J = [0, T̃lwp]. By Hölder’s inequality, we estimate

|(4.3)| . ‖∆Iu‖2
L4
t (J,L

2d
d−2
x )
‖F ′(u)− F ′(Iu)‖

L2
t (J,L

d
2
x )

. (ZI(J))2‖|u− Iu|(|u|+ |Iu|) 8
d−1‖

L2
t (J,L

d
2
x )

. (ZI(J))2‖P>Nu‖
L

16
d
t (J,L4

x)
‖u‖

8
d−1

L
16
d
t (J,L4

x)
. (4.9)

By (2.7),

‖P>Nu‖
L

16
d
t (J,L4

x)
. N−2‖∆Iu‖

L
16
d
t (J,L4

x)
. N−2ZI(J). (4.10)
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Here
(

16
d , 4

)
is biharmonic admissible. Similarly, by (2.8),

‖u‖
L

16
d
t (J,L4

x)
. ZI(J). (4.11)

Collecting (4.9)− (4.11), we get

|(4.3)| . N−2(ZI(J))2+ 8
d . (4.12)

Next, we bound

|(4.4)| . ‖∆Iu‖
L4
t (J,L

2d
d−2
x )
‖|∇Iu|2‖

L
16
11
t (J,L

4d
4d−11
x )

‖F ′′(u)− F ′′(Iu)‖
L16
t (J,L

4d
15−2d
x )

. ‖∆Iu‖
L4
t (J,L

2d
d−2
x )
‖∇Iu‖2

L
32
11
t (J,L

8d
4d−11
x )

‖F ′′(u)− F ′′(Iu)‖
L16
t (J,L

4d
15−2d
x )

. (ZI(J))3‖|u− Iu| 8d−1‖
L16
t (J,L

4d
15−2d
x )

. (ZI(J))3‖P>Nu‖
8
d−1

L
16(8−d)

d
t (J,L

4(8−d)
15−2d
x )

. N−2( 8
d−1)(ZI(J))2+ 8

d . (4.13)

The third line follows by dropping the I-operator and applying (2.8) with the fact γ > 1. We also
use the fact

|F ′′(z)− F ′′(ζ)| . |z − ζ| 8d−1, ∀z, ζ ∈ C,

for 5 ≤ d ≤ 7. The last estimate uses (4.10). Note that
(

32
11 ,

8d
4d−11

)
and

(
16(8−d)

d , 4(8−d)
15−2d

)
are

biharmonic admissible. Similarly, we estimate

|(4.5)| . ‖∆Iu‖
L4
t (J,L

2d
d−2
x )
‖∇Iu‖

L
32
11
t (J,L

8d
4d−11
x )

‖∇u−∇Iu‖
L

32
11
t (J,L

8d
4d−11
x )

‖F ′′(u)‖
L16
t (J,L

4d
15−2d
x )

. (ZI(J))2‖∇P>Nu‖
L

32
11
t (J,L

8d
4d−11
x )

‖F ′′(u)‖
L16
t (J,L

4d
15−2d
x )

.

Using (2.7), we have

‖∇P>Nu‖
L

32
11
t (J,L

8d
4d−11
x )

. N−1‖∆Iu‖
L

32
11
t (J,L

8d
4d−11
x )

. N−1ZI(J).

As F ′′(u) = O(|u| 8d−1), the estimate (2.8) gives

‖F ′′(u)‖
L16
t (J,L

4d
15−2d
x )

. ‖u‖
8
d−1

L
16(8−d)

d
t (J,L

4(8−d)
15−2d
x )

. (ZI(J)) 8
d−1. (4.14)

We thus obtain

|(4.5)| . N−1(ZI(J))2+ 8
d . (4.15)

By Hölder’s inequality,

|(4.6)| . ‖∆Iu‖
L2
t (J,L

2d
d−4
x )
‖I(∆uF ′(u))− (∆Iu)F ′(u)‖

L2
t (J,L

2d
d+4
x )

. (4.16)

We then apply Lemma 2.10 with q = 2d
d+4 , q1 = 2d(d−3)

d2−7d+16 and q2 = d(d−3)
2(2d−7) to get

‖I(∆uF ′(u))− (∆Iu)F ′(u)‖
L

2d
d+4
x

. N−α‖∆Iu‖
L

2d(d−3)
d2−7d+16
x

‖ 〈∇〉α F ′(u)‖
L

d(d−3)
2(2d−7)
x

,
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where α = 2− γ + δ. The Hölder inequality then implies

‖I(∆uF ′(u))− (∆Iu)F ′(u)‖
L2
t (J,L

2d
d+4
x )

. N−α‖∆Iu‖
L

2(d−3)
d−4

t (J,L
2d(d−3)
d2−7d+16
x )

× ‖ 〈∇〉α F ′(u)‖
L

2(d−3)
t (J,L

d(d−3)
2(2d−7)
x )

. (4.17)

We have
‖ 〈∇〉α F ′(u)‖

L
2(d−3)
t (J,L

d(d−3)
2(2d−7)
x )

. ‖F ′(u)‖
L

2(d−3)
t (J,L

d(d−3)
2(2d−7)
x )

+ ‖|∇|γF ′(u)‖
L

2(d−3)
t (J,L

d(d−3)
2(2d−7)
x )

.

(4.18)

As F ′(u) = O(|u| 8d ), the estimate (2.8) implies

‖F ′(u)‖
L

2(d−3)
t (J,L

d(d−3)
2(2d−7)
x )

. ‖u‖
8
d

L
16(d−3)

d
t (J,L

4(d−3)
2d−7
x )

. (ZI(J)) 8
d . (4.19)

Here
(

16(d−3)
d , 4(d−3)

2d−7

)
is biharmonic admissible. In order to treat the second term in (4.18), we

apply Lemma 2.1 with q = d(d−3)
2(2d−7) , q1 = 2d(d−3)

−d2+11d−26 and q2 = 2d(d−3)
d2−3d−2 to get

‖|∇|αF ′(u)‖
L

d(d−3)
2(2d−7)
x

. ‖F ′′(u)‖
L

2d(d−3)
−d2+11d−26
x

‖|∇|αu‖
L

2d(d−3)
d2−3d−2
x

. (4.20)

Hölder’s inequality then gives
‖|∇|αF ′(u)‖

L
2(d−3)
t (J,L

d(d−3)
2(2d−7)
x )

. ‖F ′′(u)‖
L

4(d−3)
t (J,L

2d(d−3)
−d2+11d−26
x )

‖|∇|αu‖
L

4(d−3)
t (J,L

2d(d−3)
d2−3d−2
x )

.

As F ′′(u) = O(|u| 8d−1), we have

‖F ′′(u)‖
L

4(d−3)
t (J,L

2d(d−3)
−d2+11d−26
x )

. ‖u‖
8
d−1

L
4(8−d)(d−3)

d
t (J,L

2(8−d)(d−3)
−d2+11d−26
x )

. (ZI(J)) 8
d−1. (4.21)

Here
(

4(8−d)(d−3)
d , 2(8−d)(d−3)

−d2+11d−26

)
is biharmonic admissible. Since

(
4(d − 3), 2d(d−3)

d2−3d−2

)
is also a bi-

harmonic admissible, we have from (2.8) that
‖|∇|αu‖

L
4(d−3)
t (J,L

2d(d−3)
d2−3d−2
x )

. ZI(J). (4.22)

Note that α < 1 < γ. Collecting (4.18)− (4.22), we show

‖ 〈∇〉α F ′(u)‖
L

2(d−3)
t (J,L

d(d−3)
2(2d−7)
x )

. (ZI(J)) 8
d . (4.23)

Combining (4.16), (4.17) and (4.23), we get

|(4.6)| . N−(2−γ+δ)(ZI(J))2+ 8
d . (4.24)

Similarly, we bound
|(4.7)| . ‖∆Iu‖

L4
t (J,L

2d
d−2
x )
‖I(∇u · ∇uF ′′(u))− (I∇u) · ∇uF ′′(u)‖

L
4
3
t (J,L

2d
d+2
x )

. (4.25)

Applying Lemma 2.10 with q = 2d
d+2 , q1 = 8d

4d−11 and q2 = 8d
19 and using Hölder inequality, we have

‖I(∇u · ∇uF ′′(u))− (I∇u) · ∇uF ′′(u)‖
L

4
3
t (J,L

2d
d+2
x )

. N−α‖I∇u‖
L

32
11
t (J,L

8d
4d−11
x )

× ‖ 〈∇〉α (∇uF ′′(u))‖
L

8
5
t (J,L

8d
19
x )

. (4.26)
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The fractional chain rule implies

‖ 〈∇〉α (∇uF ′′(u))‖
L

8
5
t (J,L

8d
19
x )
. ‖ 〈∇〉α+1

u‖
L

32
11
t (J,L

8d
4d−11
x )

‖F ′′(u)‖
L16
t (J,L

4d
15−2d
x )

+ ‖∇u‖
L

32
11
t (J,L

8d
4d−11
x )

‖ 〈∇〉α F ′′(u)‖
L16
t (J,L

4d
15−2d
x )

. (4.27)

By our assumptions on γ and δ, we see that α + 1 < γ. Thus, using (2.8) (and dropping the
I-operator if necessary) and (4.14), we have

‖I∇u‖
L

32
11
t (J,L

8d
4d−11
x )

, ‖∇u‖
L

32
11
t (J,L

8d
4d−11
x )

, ‖ 〈∇〉α+1
u‖

L
32
11
t (J,L

8d
4d−11
x )

. ZI(J), (4.28)

‖F ′′(u)‖
L16
t (J,L

4d
15−2d
x )

. (ZI(J)) 8
d−1. (4.29)

Here
(

32
11 ,

8d
4d−11

)
is biharmonic admissible. It remains to bound ‖ 〈∇〉α F ′′(u)‖

L16
t (J,L

4d
15−2d
x )

. To

do so, we use

‖ 〈∇〉α F ′′(u)‖
L16
t (J,L

4d
15−2d
x )

. ‖F ′′(u)‖
L16
t (J,L

4d
15−2d
x )

+ ‖|∇|αF ′′(u)‖
L16
t (J,L

4d
15−2d
x )

. (4.30)

We next use Lemma 2.2 with β = 8
d − 1, α = 2− γ + δ, q = 4d

15−2d and q1, q2 satisfying(8
d
− 1− α

ρ

)
q1 = α

ρ
q2 = 4(8− d)

15− 2d ,

and α
8
d−1 < ρ < 1. Note that the choice of ρ is possible since α < 8

d − 1 by our assumptions. With
these choices, we have (

1− α

βρ

)
q1 = 4d

15− 2d > 1,

for 5 ≤ d ≤ 7. Then,

‖|∇|αF ′′(u)‖
L

4d
15−2d
x

. ‖|u|
8
d−1−αρ ‖Lq1

x
‖|∇|ρu‖

α
ρ

L
α
ρ
q2

x

. ‖u‖
8
d−1−αρ

L
( 8
d
−1−α

ρ )q1
x

‖|∇|ρu‖
α
ρ

L
α
ρ
q2

x

.

By Hölder’s inequality,

‖|∇|αF ′′(u)‖
L16
t (J,L

4d
15−2d
x )

. ‖u‖
8
d−1−αρ

L
( 8
d
−1−α

ρ )p1
t (J,L

( 8
d
−1−α

ρ )q1
x )

‖|∇|ρu‖
α
ρ

L
α
ρ
p2

t (J,L
α
ρ
q2

x )

= ‖u‖
8
d−1−αρ

L
16(8−d)

d
t (J,L

4(8−d)
15−2d
x )

‖|∇|ρu‖
α
ρ

L
16(8−d)

d
t (J,L

4(8−d)
15−2d
x )

,

provided (8
d
− 1− α

ρ

)
p1 = α

ρ
p2 = 16(8− d)

d
.

Since
(

16(8−d)
d , 4(8−d)

15−2d

)
is biharmonic admissible, we have from (2.8) with the fact 0 < ρ < 1 < γ

that

‖|∇|αF ′′(u)‖
L16
t (J,L

4d
15−2d
x )

. (ZI(J)) 8
d−1. (4.31)

Collecting (4.25)− (4.31), we get

|(4.7)| . N−(2−γ+δ)(ZI(J))2+ 8
d . (4.32)
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Finally, we consider (4.8). We bound

|(4.8)| . ‖|∇|−1IF (u)‖
L2
t (J,L

2d
d−2
x )
‖∇(IF (u)− F (Iu))‖

L2
t (J,L

2d
d+2
x )

. ‖∇IF (u)‖
L2
t (J,L

2d
d+2
x )
‖∇(IF (u)− F (Iu))‖

L2
t (J,L

2d
d+2
x )

. (4.33)

By (3.7),
‖∇IF (u)‖

L2
t (J,L

2d
d+2
x )

. (ZI(J))1+ 8
d .

By the triangle inequality, we estimate

‖∇(IF (u)− F (Iu))‖
L2
t (J,L

2d
d+2
x )

. ‖(∇Iu)(F ′(u)− F ′(Iu))‖
L2
t (J,L

2d
d+2
x )

+ ‖∇IF (u)− (∇Iu)F ′(u)‖
L2
t (J,L

2d
d+2
x )

.

We firstly use Hölder’s inequality and estimate as in (4.9) to get

‖(∇Iu)(F ′(u)− F ′(Iu))‖
L2
t (J,L

2d
d+2
x )

. ‖∇Iu‖
L∞t (J,L

2d
d−2
x )
‖F ′(u)− F ′(Iu)‖

L2
t (J,L

d
2
x )

. ‖∆Iu‖L∞t (J,L2
x)‖P>Nu‖

L
16
d
t (J,L4

x)
‖u‖

8
d−1

L
16
d
t (J,L4

x)

. N−2(ZI(J))1+ 8
d . (4.34)

By (3.5),

‖∇IF (u)− (∇Iu)F ′(u)‖
L2
t (J,L

2d
d+2
x )

. N−(2−γ+δ)(ZI(J))1+ 8
d . (4.35)

Combining (4.33)− (4.35), we get

|(4.8)| . (ZI(J))1+ 8
d (N−2(ZI(J))1+ 8

d +N−(2−γ+δ)(ZI(J))1+ 8
d )

. N−(2−γ+δ)(ZI(J))2+ 16
d . (4.36)

Combining (4.12), (4.13), (4.15), (4.24), (4.32), (4.36) and using (4.2), we prove (4.1). The proof is
complete. �

We next introduce some notations. We define

Λ(t) := sup
0≤s≤t

‖u(s)‖Hγx , Σ(t) := sup
0≤s≤t

‖INu(s)‖H2
x
. (4.37)

Proposition 4.2 (Increment of the modified energy). Let 5 ≤ d ≤ 7 and 56−3d+
√

137d2+1712d+3136
2(2d+32) <

γ < 2. Let u0 ∈ Hγ(Rd) be such that the corresponding solution u to (NL4S) blows up at time
0 < T ∗ <∞. Let 0 < T < T ∗. Then for

N(T ) ∼ Λ(T )
a(γ)

2(2−γ) , (4.38)

we have
|E(IN(T )u(T ))| . Λ(T )a(γ).

Here the implicit constants depend only on γ, T ∗ and ‖u0‖Hγx , and 0 < a(γ) < 2 is given by

a(γ) :=
2
(

2 + 16
d + 4

γ

)
(2− γ)[

8
d − 1− (2− γ)

(
16
d + 4

γ

)]
−
. (4.39)
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Proof. Let τ := cΣ(T )−
4
γ for some constant c = c(d, γ) > 0 small enough. For N(T ) sufficiently

large, Proposition 3.4 shows the local existence and the unique solution satisfies

ZIN(T )([t, t+ τ ]) . ‖IN(T )u(t)‖H2
x
. Σ(T ),

uniformly in t provided that [t, t + τ ] ⊂ [0, T ]. We next split [0, T ] into O(T/τ) subintervals and
apply Lemma 4.1 on each of these intervals to have

sup
t∈[0,T ]

|E(IN(T )u(t))| . |E(IN(T )u0)|+ T

τ
N(T )−(2−γ+δ)

(
Σ(T )2+ 8

d + Σ(T )2+ 16
d

)
(4.40)

. |E(IN(T )u0)|+N(T )−(2−γ+δ)
(

Σ(T )2+ 8
d+ 4

γ + Σ(T )2+ 16
d + 4

γ

)
, (4.41)

for max
{

3− 8
d ,

8
d

}
< γ < 2 and 0 < δ < γ + 8

d − 3. Next, by (2.9), we have

Σ(T ) . N(T )2−γΛ(T ). (4.42)

Moreover, the Gagliardo-Nirenberg inequality (1.5) together with (2.10) imply

|E(IN(T )u0)| . ‖∆IN(T )u0‖2L2
x

+ ‖IN(T )u0‖
2+ 8

d

L
2+ 8

d
x

. ‖∆IN(T )u0‖2L2
x

+ ‖IN(T )u0‖
8
d

L2
x
‖∆IN(T )u0‖2L2

x

. N(T )2(2−γ)
(
‖u0‖2Hγx + ‖u0‖

2+ 8
d

Hγx

)
. N2(2−γ). (4.43)

Substituting (4.42) and (4.43) to (4.41), we get

sup
t∈[0,T ]

|E(IN(T )u(t))| . N(T )2(2−γ) +N(T )−(2−γ+δ)+(2−γ)(2+ 8
d+ 4

γ )Λ(T )2+ 8
d+ 4

γ

+N(T )−(2−γ+δ)+(2−γ)(2+ 16
d + 4

γ )Λ(T )2+ 16
d + 4

γ . (4.44)

Optimizing (4.44), we observe that if we take

N(T )2(2−γ) ∼ N(T )−(2−γ+δ)+(2−γ)(2+ 16
d + 4

γ )Λ(T )2+ 16
d + 4

γ ,

or

N(T ) ∼ Λ(T )
2+ 16

d
+ 4
γ

(2−γ+δ)−(2−γ)( 16
d

+ 4
γ ) ,

then

sup
t∈[0,T ]

|E(IN(T )u(t))| . N(T )2(2−γ) ∼ Λ(T )
2(2+ 16

d
+ 4
γ )(2−γ)

(2−γ+δ)−(2−γ)( 16
d

+ 4
γ ) .

Denote

a(γ) :=
2
(

2 + 16
d + 4

γ

)
(2− γ)

(2− γ + δ)− (2− γ)
(

16
d + 4

γ

) .
Since 2− γ + δ < 8

d − 1, we see that

a(γ) =
2
(

2 + 16
d + 4

γ

)
(2− γ)[

8
d − 1− (2− γ)

(
16
d + 4

γ

)]
−
.
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In order to make 0 < a(γ) < 2, we need
8
d − 1− (2− γ)

(
16
d + 4

γ

)
> 0,(

2 + 16
d + 4

γ

)
(2− γ) < 8

d − 1− (2− γ)
(

16
d + 4

γ

)
.

(4.45)

Solving (4.45), we obtain

γ >
56− 3d+

√
137d2 + 1712d+ 3136
2(2d+ 32) .

This completes the proof. �

Proposition 4.3 (Almost conservation law). Let 5 ≤ d ≤ 7,max{3− 8
d ,

8
d} < γ < 2 and 0 < δ <

γ + 8
d − 3. Let u0 ∈ Hγ(Rd) satisfying ‖u0‖L2

x
< ‖Q‖L2

x
, where Q is the solution to the ground

state equation (1.4). Assume in addition that E(Iu0) ≤ 1. Let

T̃lwp := c‖Iu0‖
− 4
γ

H2
x
,

for some small constant c = c(d, γ) > 0. Then, for N sufficiently large,

sup
t∈[0,T̃lwp]

|E(Iu(t))− E(Iu0)| . N−(2−γ+δ).

Here the implicit constant depends only on γ and E(Iu0).

Remark 4.4. Using the sharp Gagliardo-Nirenberg inequality together with the conservation of
mass, the modified energy is always positive for initial data satisfying ‖u0‖L2

x
< ‖Q‖L2

x
. Indeed,

E(Iu(t)) = 1
2‖∆Iu(t)‖2L2

x
− 1

2 + 8
d

‖Iu(t)‖2+ 8
d

L
2+ 8

d
x

≥ 1
2‖∆Iu(t)‖2L2

x
− 1

2

(‖Iu(t)‖L2
x

‖Q‖L2
x

) 8
d ‖∆Iu(t)‖2L2

x

≥ 1
2‖∆Iu(t)‖2L2

x
− 1

2

(‖u(t)‖L2
x

‖Q‖L2
x

) 8
d ‖∆Iu(t)‖2L2

x

≥ 1
2‖∆Iu(t)‖2L2

x
− 1

2

(‖u0‖L2
x

‖Q‖L2
x

) 8
d ‖∆Iu(t)‖2L2

x

> 0.

Here we use the fact that ‖Iu‖L2
x
≤ ‖u‖L2

x
which follows from the functional calculus and that

‖I(ξ)‖L∞
ξ
≤ 1.

Proof of Proposition 4.3. By Lemma 4.1, we have for N large enough,

sup
t∈[0,T̃lwp]

|E(Iu(t))− E(Iu0)| . N−(2−γ+δ)
(
‖Iu0‖

2+ 8
d

H2
x

+ ‖Iu0‖
2+ 16

d

H2
x

)
.
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We only need to control ‖Iu0‖H2
x
. To do so, we use the sharp Gagliardo-Nirenberg inequality (1.5)

and (2.6) to have

‖Iu0‖2H2
x
∼ ‖∆Iu0‖2L2

x
+ ‖Iu0‖2L2

x
= 2E(Iu0) + 1

1 + 4
d

‖Iu0‖
2+ 8

d

L
2+ 8

d
x

+ ‖Iu0‖2L2
x

≤ 2E(Iu0) +
(‖Iu0‖L2

x

‖Q‖L2
x

) 8
d ‖∆Iu0‖2L2

x
+ ‖Iu0‖2L2

x

≤ 2E(Iu0) +
(‖u0‖L2

x

‖Q‖L2
x

) 8
d ‖Iu0‖2H2

x
+ ‖u0‖2L2

x
.

Thus (
1−

(‖u0‖L2
x

‖Q‖L2
x

) 8
d
)
‖Iu0‖2H2

x
≤ 2E(Iu0) + ‖u0‖2L2

x
.

By our assumptions ‖u0‖L2
x
< ‖Q‖L2

x
and E(Iu0) ≤ 1, we obtain ‖Iu0‖H2

x
. 1. The proof is

complete. �

5. Limiting profile

In this section, we prove Theorem 1.2, Theorem 1.3 and Theorem 1.4.

5.1. Proof of Theorem 1.2. As the solution blows up at time 0 < T ∗ <∞, the blowup alternative
allows us to choose a sequence of times (tn)n≥1 such that tn → T ∗ as n → ∞ and ‖u(tn)‖Hγx =
Λ(tn)→∞ as n→∞ (see (4.37) for the notation). Denote

ψn(x) := λ
d
2
n IN(tn)u(tn, λnx),

where N(tn) is given as in (4.38) with T = tn and the parameter λn is given by

λ2
n :=

‖∆Q‖L2
x

‖∆IN(tn)u(tn)‖L2
x

. (5.1)

By (2.9) and the blowup criterion given in Corollary 3.2, we see that

λ2
n .

‖∆Q‖L2
x

‖u(tn)‖Hγx
. (T ∗ − tn)

γ
4 or λn . (T ∗ − tn)

γ
8 .

On the other hand, (ψn)n≥1 is bounded in H2(Rd). Indeed,
‖ψn‖L2

x
= ‖IN(tn)u(tn)‖L2

x
≤ ‖u(tn)‖L2

x
= ‖u0‖L2

x
,

‖∆ψn‖L2
x

= λ2
n‖∆IN(tn)u(tn)‖L2

x
= ‖∆Q‖L2

x
. (5.2)

By Proposition 4.2 with T = tn, we have
E(ψn) = λ4

nE(IN(tn)u(tn)) . λ4
nΛ(tn)a(γ) . Λ(tn)a(γ)−2.

As 0 < a(γ) < 2 for 56−3d+
√

137d2+1712d+3136
2(2d+32) < γ < 2, we see that E(ψn) → 0 as n → ∞.

Therefore, the expression of the modified energy and (5.2) give

‖ψn‖
2+ 8

d

L
2+ 8

d
x

→
(

1 + 4
d

)
‖∆Q‖2L2

x
, (5.3)

as n → ∞. Applying Theorem 1.1 to the sequence (ψn)n≥1 with M = ‖∆Q‖L2
x

and m =((
1 + 4

d

)
‖∆Q‖2L2

x

) d
2d+8 , there exist a sequence (xn)n≥1 ⊂ Rd and a function U ∈ H2(Rd) such

that ‖U‖L2
x
≥ ‖Q‖L2

x
and up to a subsequence,

ψn(·+ xn) ⇀ U weakly in H2(Rd),
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as n→∞. That is

λ
d
2
n IN(tn)u(tn, λn ·+xn) ⇀ U weakly in H2(Rd), (5.4)

as n→∞. To conclude Theorem 1.2, we need to remove IN(tn) from (5.4). To do so, we consider
for any 0 ≤ σ < γ,

‖λ
d
2
n (u− IN(tn)u)(tn, λn ·+xn)‖Ḣσx = λσn‖P≥N(tn)u(tn)‖Ḣσx

. λσnN(tn)σ−γ‖P≥N(tn)u(tn)‖Ḣγx

. Λ(tn)−σ2 Λ(tn)
(σ−γ)a(γ)

2(2−γ) ‖P≥N(tn)u(tn)‖Hγx
. Λ(tn)1−σ2 + (σ−γ)a(γ)

2(2−γ) . (5.5)

Using the explicit expression of a(γ) given in (4.39), we find that for

σ < a(d, γ) := 4dγ2 + (2d+ 48)γ + 16d
16d+ (56− 3d)γ − 16γ2 ,

the exponent of Λ(tn) in (5.5) is negative. Note that an easy computation shows that the condition
a(d, γ) < γ requires

24− 3d+
√

9d2 + 368d+ 576
32 < γ < 2,

which is satisfied by our assumption on γ. Thus,

‖λ
d
2
n (u− IN(tn)u)(tn, λn ·+xn)‖

H
a(d,γ)−
x

→ 0, (5.6)

as n→∞. Combining (5.4) and (5.6), we prove

λ
d
2
nu(tn, λn ·+xn) ⇀ U weakly in Ha(d,γ)−(Rd),

as n→∞. The proof is complete. �

5.2. Proof of Theorem 1.3. By Theorem 1.2, there exists a blowup profile U ∈ H2(Rd) with
‖U‖L2

x
≥ ‖Q‖L2

x
and there exist sequences (tn, λn, xn)n≥1 ⊂ R+ × R∗+ × Rd such that tn → T ∗,

λn

(T ∗ − tn) γ8
. 1, (5.7)

for all n ≥ 1 and λ
d
2
nu(tn, λn · +xn) ⇀ U weakly in Ha(d,γ)−(Rd) (hence in L2(Rd)) as n → ∞.

Thus for any R > 0, we have

lim inf
n→∞

λdn

∫
|x|≤R

|u(tn, λnx+ xn)|2dx ≥
∫
|x|≤R

|U(x)|2dx.

By change of variables, we get

lim inf
n→∞

sup
y∈Rd

∫
|x−y|≤Rλn

|u(tn, x)|2dx ≥
∫
|x|≤R

|U(x)|2dx.

Using the assumption (T∗−tn)
γ
8

α(tn) → 0 as n→∞, we have from (5.7) that λn
α(tn) → 0 as n→∞. We

thus obtain for any R > 0,

lim inf
n→∞

sup
y∈Rd

∫
|x−y|≤α(tn)

|u(tn, x)|2dx ≥
∫
|x|≤R

|U(x)|2dx.
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Let R→∞, we obtain

lim inf
n→∞

sup
y∈Rd

∫
|x−y|≤α(tn)

|u(tn, x)|2dx ≥ ‖U‖2L2
x
.

This implies
lim sup
t↗T∗

sup
y∈Rd

∫
|x−y|≤α(t)

|u(t, x)|2dx ≥ ‖Q‖2L2
x
.

Sine for any fixed time t, the map y 7→
∫
|x−y|≤α(t) |u(t, x)|2dx is continuous and goes to zero as

|y| → ∞, there exists x(t) ∈ Rd such that

sup
y∈Rd

∫
|x−y|≤α(t)

|u(t, x)|2dx =
∫
|x−x(t)|≤α(t)

|u(t, x)|2dx.

This shows
lim sup
t↗T∗

∫
|x−x(t)|≤α(t)

|u(t, x)|2dx ≥ ‖Q‖2L2
x
.

The proof is complete. �

5.3. Proof of Theorem 1.4. We firstly recall the following variational characterization of the
solution to the ground state equation (1.4). Note that the uniqueness up to translations in space,
phase and dilations of solution to this ground state equation is assumed here.

Lemma 5.1 (Variation characterization of the ground state [34]). If v ∈ H2(Rd) is such that
‖v‖L2

x
= ‖Q‖L2

x
and E(u) = 0, then v is of the form

v(x) = eiθλ
d
2Q(λx+ x0),

for some θ ∈ R, λ > 0 and x0 ∈ Rd, where Q is the unique solution to the ground state equation
(1.4).

Using the notation in the proof of Theorem 1.2 and the assumption ‖u0‖L2
x

= ‖Q‖L2
x
, we have

‖ψn‖L2
x
≤ ‖u0‖L2

x
= ‖Q‖L2

x
≤ ‖U‖L2

x
.

Sine ψn(·+ xn) ⇀ U weakly in L2(Rd), the semi-continuity of weak convergence implies
‖U‖L2

x
≤ lim inf

n→∞
‖ψn‖L2

x
≤ ‖Q‖L2

x
.

Thus,
‖U‖L2

x
= ‖Q‖L2

x
= lim
n→∞

‖ψn‖L2
x
. (5.8)

Hence up to a subsequence
ψn(·+ xn)→ U strongly in L2(Rd), (5.9)

as n → ∞. On the other hand, using (5.2), the Gagliardo-Nirenberg inequality (1.5) implies
ψn(·+ xn)→ U strongly in L2+ 8

d (Rd). Indeed, by (5.2),

‖ψn(·+ xn)− U‖2+ 8
d

L
2+ 8

d
x

. ‖ψ(·+ xn)− U‖
8
d

L2
x
‖∆(ψn(·+ xn)− U‖2L2

x

. (‖∆Q‖L2
x

+ ‖∆U‖L2
x
)2‖ψ(·+ xn)− U‖

8
d

L2
x
→ 0,

as n → ∞. Moreover, using (5.3) and (5.8), the sharp Gagliardo-Nirenberg inequality (1.5) also
gives

‖∆Q‖2L2
x

= 1
1 + 4

d

‖U‖2+ 8
d

L
2+ 8

d
x

≤
(‖U‖L2

x

‖Q‖L2
x

) 8
d ‖∆U‖2L2

x
= ‖∆U‖2L2

x
,
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or ‖∆Q‖L2
x
≤ ‖∆U‖L2

x
. By the semi-continuity of weak convergence and (5.2),

‖∆U‖L2
x
≤ lim inf

n→∞
‖∆ψn‖L2

x
= ‖∆Q‖L2

x
.

Therefore,

‖∆U‖L2
x

= ‖∆Q‖L2
x

= lim
n→∞

‖∆ψn‖L2
x
. (5.10)

Combining (5.8), (5.10) and using the fact ψn(· + xn) ⇀ U weakly in H2(Rd), we conclude that
ψn(·+ xn)→ U strongly in H2(Rd). In particular,

E(U) = lim
n→∞

E(ψn) = 0,

as n→∞. This shows that there exists U ∈ H2(Rd) satisfying

‖U‖L2
x

= ‖Q‖L2
x
, ‖∆U‖L2

x
= ‖∆Q‖L2

x
, E(U) = 0.

Applying the variational characterization given in Lemma 5.1, we have (taking λ = 1),

U(x) = eiθQ(x+ x0),

for some (θ, x0) ∈ R× Rd. Hence

λ
d
2
n IN(tn)u(tn, λn ·+xn)→ eiθQ(·+ x0) strongly in H2(Rd),

as n→∞. Using (5.6), we prove

λ
d
2
nu(tn, λn ·+xn)→ eiθQ(·+ x0) strongly in Ha(d,γ)−(Rd),

as n→∞. The proof is complete. �

6. Global well-posedness

In this section, we will give the proof of Theorem 1.5. By density argument, we assume that
u0 ∈ C∞0 (Rd). Let u be a global solution to (NL4S) with initial data u0 satisfying ‖u0‖Hγx < ‖Q‖L2

x
.

In order to apply the almost conservation law given in Proposition 4.3, we need the absolute value
of modified energy of initial data is small. Since E(Iu0) is not necessarily small, we will use the
scaling (1.2) to make E(Iuλ(0)) is small. We have

E(Iuλ(0)) ≤ 1
2‖∆Iuλ(0)‖2L2

x
. N2(2−γ)‖∆uλ(0)‖2L2

x
= N2(2−γ)λ−2γ‖u0‖2Ḣ2

x
.

Thus, we can make E(Iuλ(0)) ≤ 1
4 by taking

N ∼ λ
2−γ
γ . (6.1)

Moreover, since the scaling (1.2) preserves the L2-norm, we have ‖uλ(0)‖L2
x

= ‖u0‖L2
x
< ‖Q‖L2

x
.

Thus, the assumptions of Proposition 4.3 are satisfied. Therefore, there exists τ > 0 so that for N
sufficiently large,

E(Iuλ(t)) ≤ E(Iuλ(0)) + CN−(2−γ+δ),

for t ∈ [0, τ ] where max{3− 8
d ,

8
d} < γ < 2 and 0 < δ < γ+ 8

d −3. We may reapply this proposition
continuously so that E(Iuλ(t)) reaches 1, that is at least C1N

2−γ+δ times. Therefore,

E(Iuλ(C1τN
2−γ+δ)) ∼ 1. (6.2)

Now, given any T � 1, we choose N � 1 so that

T ∼ C1τ
N2−γ+δ

λ4 .
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Using (6.1), we have

T ∼ N2−γ+δ− 4(2−γ)
γ . (6.3)

As 0 < δ < γ + 8
d − 3 or 2− γ + δ < 8

d − 1, the exponent of N is positive provided that
8
d
− 1− 4(2− γ)

γ
> 0 or γ > 8d

3d+ 8 .

Thus the choice of N makes sense for arbitrary T � 1. A direct computation and (6.1), (6.2) and
(6.3) show

E(Iu(T )) = λ4E(Iuλ(λ4T )) = λ4E(Iuλ(C1τN
2−γ+δ) ∼ λ4 ≤ N

4(2−γ)
γ ∼ T

4(2−γ)
(2−γ+δ)γ−4(2−γ) .

This shows that there exists C2 = C2(τ, ‖u0‖Hγx ) such that

E(Iu(T )) ≤ C2T
4(2−γ)

(2−γ+δ)γ−4(2−γ) ,

for any T � 1. Finally, by (2.9),
‖u(T )‖2Hγx . ‖Iu(T )‖2H2

x
∼ ‖∆Iu(T )‖2L2

x
+ ‖Iu(T )‖2L2

x
. E(Iu(T )) + ‖u0‖2L2

x

. C3T
4(2−γ)

(2−γ+δ)γ−4(2−γ) + C4,

where C3, C4 depends only on ‖u0‖Hγx . The proof is complete. �
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