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Introduction

We are interested in the Markov chain (Z n ) n≥0 on [0, 1] introduced by P. Diaconis and D. Friedman in [START_REF] Diaconis | Iterated Random Functions SIAM review[END_REF]. As it is described there, if the chain is at x at time n, it selects at time n + 1 one of the two intervals, [0, x] or [x, 1] with equal probability 12 , and then moves to a random point y in the chosen interval. For x ∈]0, 1[, the transition probability of the chain (Z n ) n≥0 has a density k(x, •) with respect to the Lebesgue measure on ]0, 1[ given by

∀y ∈]0, 1[ k(x, y) = 1 2 × 1 x 1 1 ]0,x[ (y) + 1 2 × 1 1 -x 1 1 ]x,1[ (y).
Starting from 0 (resp. 1), the chain stays in 0 (resp. 1) with probability 1 2 or moves with probability 1 2 to a (uniformly chosen) random point in ]0, 1[. It is shown in [START_REF] Diaconis | Iterated Random Functions SIAM review[END_REF] that it possesses a unique invariant probability measure ν on ]0, 1[; this measure is the famous "arcsine law" which admits the density f 1 2 with respect to the Lebesgue measure on ]0, 1[ given by

∀x ∈]0, 1[, f 1 2 (x) = 1 π x(1 -x) 1 1 ]0,1[ (x).
The same applies when the intervals ]0, x [ and ]x, 1[ are chosen with the respective probabilities p ∈]0, 1[ and q = 1 -p. In this case, the invariant probability measure is the Beta distribution B(q, p) of parameters q and p whith density f p defined by: ∀x ∈]0, 1[, f p (x) = 1 Γ(p)Γ(q)

x q-1 (1 -x) p-1 1 1 ]0,1[ (x).

The transition operator Q of the chain (Z n ) n≥0 is defined by: for any bounded Borel function ϕ : [0, 1] → C, Qϕ(0) = pϕ(0) + q We may rewrite shortly Q as follows: for any x ∈ [0, 1],

Qϕ(x) = p 1 0 ϕ(tx)dt + q 1 0 ϕ(tx + 1 -t)dt. (1) 
This last expression shows that the chain (Z n ) n≥0 fits into the framework of iterated random continuous functions. For any t ∈ [0, 1], let H t be the homothety x → tx and A t be the affine transformation x → tx + 1 -t and denote by µ the probability measure on the space

C([0, 1], [0, 1]) of continuous functions from [0, 1] to [0, 1] defined by µ(dT ) = p 1 0 δ Ht (dT )dt + q 1 0 δ At (dT )dt,
where δ T is the Dirac masse at T . Equality (1) may be restated as

Qϕ(x) = C([0,1],[0,1]) ϕ(T (x))µ(dT ).
Thus we may introduce a sequence (T n ) n≥1 of independent random variables defined on a probability space (Ω, T , P) with law µ on C([0, 1], [0, 1]). We have

Z n = T n • • • T 1 • Z 0 ; in other words, the chain (Z n ) n≥0
is generated by iterating random functions and its behavior is strongly connected to the contraction properties of the maps H t and A t , 0 ≤ t ≤ 1. We refer to (Z n ) n≥0 as the Diaconis-Friedman's chain.

In [START_REF] Diaconis | Iterated Random Functions SIAM review[END_REF], the authors focus on the case when the weights p and q are depending on the position x, and in particular when p(x) = 1 -x. In the sequel, we propose a systematic examination of the general situation addressed by the two authors.

The study of Markov processes generated by composition products of random independent functions T n has been the object of numerous works for 50 years. When the probabilities that govern the choice of these transformations are spatially varying, the study of these processes escapes the random walks framework. We refer the reader to [START_REF] Guivarc | Products of random matrices and convergence theorems[END_REF], [START_REF] Letac | A contraction principle for certain Markov Chains and its applications[END_REF], [START_REF] Mirek | Heavy tail phenomenom and convergence to stable laws for iterated Lipschitz random maps Probability Theory and Related Fields[END_REF] or [START_REF] Stenflo | A survey of average contractive iterated function systems[END_REF] and references there in, and to [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compacity[END_REF] or [START_REF] Peigné | Iterated function systems and spectral decomposition of the associated Markov operator[END_REF] for the approach via the theory of quasi-compact operators. We use the terminology on Markov chains as stated in [START_REF] Revuz | Markov Chains North Holland[END_REF].

Iterated function systems

Let (E, d) be a metric compact space and denote C(E, E) the space of continuous functions from E to E endowed with the norm | • | ∞ of the uniform convergence on E. Let (T n ) n≥1 be a sequence of i.i.d random continuous functions from E to E with distribution µ. The case when the T n are Lipschitz continuous from E to E is fruitful, in particular to use the so-called "spectral gap property", based on the properties of contraction of the closed semi-group T µ generated by the support of µ.

Iterated function systems with place independent probabilities

We denote Lip(E, E) the space of Lipschitz continuous functions from E to E, i.e. of functions f :

E → E such that [f ] = sup x,y∈E x =y d(f (x), f (y)) d(x, y) < ∞,
and we endow Lip(E, E) with the norm

• = |•| ∞ +[•]
. Let (T n ) n≥1 be a sequence of independent random functions defined on a probability space (Ω, T , P), with values in Lip(E, E) and common distribution µ.

We consider the Markov chain (X n ) n≥0 on E, defined by: for any n ≥ 0,

X n+1 := T n+1 (X n )
where X 0 is a fixed random variable with values in E. One says that the chain (X n ) n≥0 is generated by the iterated function system (T n ) n≥1 . Its transition operator P is defined by: for any bounded Borel function ϕ : E → C and any

x ∈ E P ϕ(x) = Lip(E,E) ϕ(T (x))µ(dT ).
The chain (X n ) n≥0 has the "Feller property", i.e. the operator P acts on the space C(E) of continuous functions from E to C. The maps T n being Lipschitz continuous on E, the operator P acts also on the space of Lipschitz continuous from E to C and more generally on the space H α (E), 0 < α ≤ 1, of α-Hölder continuous functions from E to C, defined by

H α (E) := {f ∈ C(E) | f α := |f | ∞ + m α (f ) < +∞} where m α (f ) := sup x,y∈E x =y |f (x) -f (y)| d(x, y) α < ∞. Endowed, with the norm • α , the space H α (E) is a Banach space and the identity map from C(E) to H α (E) is compact.
The behavior of the chain (X n ) n≥0 is closely related to the spectrum of P on these spaces; under some "contraction in mean" assumption on the T n , the restriction of the operator P to H α (E) satisfies some spectral gap property. We first cite the following theorem, due to Diaconis & Friedman [START_REF] Diaconis | Iterated Random Functions SIAM review[END_REF]; we detail the proof for the sake of completeness.

Theorem 2.1 Assume that there exists α ∈]0, 1] such that

r := sup x,y∈E x =y Lip(E,E) d(T (x), T (y)) d(x, y) α µ(dT ) < 1. (2) 
Then there exists on E a unique P -invariant probability measure ν. Furthermore, there exists constants

κ > 0 and ρ ∈]0, 1[ such that ∀ϕ ∈ H α (E), ∀x ∈ E |P n ϕ(x) -ν(ϕ)| ≤ κρ n . (3) 
Proof. The Feller operator P is Markovian, thus its spectral radius ρ ∞ (P ) in C(E) equals 1. Furthermore, P acts on H α (E) and for any function ϕ ∈ H α (E), it holds

m α (P ϕ) ≤ r m α (ϕ), (4) 
which yields ∀ϕ ∈ H α (E), P ϕ α ≤ r ϕ α + |ϕ| ∞ . (5) 
Inequality ( 5) allows us to use the Ionescu-Tulcea and Marinescu theorem for quasi-compact operators. By Hennion's work [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux Lipschitziens[END_REF], it implies that the essential spectral radius of P on H α (E) is less than r; in other words, any spectral values with modulus strictly larger then r is an eigenvalue of P with finite multiplicity and is isolated in the spectrum of P .

To prove the theorem, it is sufficient to control the peripheral spectrum of P on H α (E). Let λ an eigenvalue of P of modulus 1 and consider an eigenfunction f associated to λ. For any n ≥ 1, the equality

P n f = λ n f combined with (5) yields m α (f ) = m α (λ n f ) = m α (P n f ) ≤ r n m α (f )
which implies m α (f ) = 0, since 0 ≤ r < 1. Consequently, the function f is constant on E and λ = 1. Thus, the operator P on H α (E) can be decomposed as,

P = Π + R (6) 
where (i) the operator Π is the projector from H α (E) to the eigenspace C • 1 1 associated to the eigenvalue 1, (ii) R is an operator with spectral radius ρ for some ρ ∈ [0, 1[, (iii) ΠR = RΠ = 0.

In particular, for any ϕ ∈ H α (E), the sequence (P n ϕ) n≥0 converges to Π(ϕ)1 1; thus, there exists on E a unique invariant probability measure ν and the projector Π may be written as Π : ϕ → ν(ϕ)1 1. Inequality (3) follows from decomposition [START_REF] Elton | An ergodic theorem for iterated maps Ergodic Theory Dynam[END_REF].

2 Application to the Diaconis-Friedman's chain for p fixed in ]0, 1[. Inequality [START_REF] Barnsley | A new class of Markov processes for image encoding[END_REF] 

holds with r = 1 1+α since in this case m(H t ) = m(A t ) = t for any 0 ≤ t ≤ 1. Hence sup x,y∈[0,1] x =y Lip([0,1],[0,1]) d(T (x), T (y)) d(x, y) α µ(dT ) ≤ p 1 0 m(H t ) α dt + q 1 0 m(A t ) α dt = 1 0 t α dt = 1 1 + α .
Thus, the chain (Z n ) n≥0 admits an unique invariant probability measure on [0, 1], this measure being the Beta distribution B(q, p). 2

Iterated function systems with spacial dependant increments probabilities

It this section, we replace the measure µ by a collection (µ x ) x∈E of probability measures on E, depending continuously on x. We consider the Markov chain (X n ) n≥0 on E whose transition kernel P is given by: for any bounded Borel function ϕ : E → C and any x ∈ E,

P ϕ(x) = Lip(E,E) ϕ(T (x))µ x (dT ).
First, we introduce the following definition.

Definition 2.2 A sequence (ξ n ) n≥0 of continuous functions from E to E is a contracting sequence if there exist x 0 ∈ E such that ∀x ∈ E lim n→+∞ ξ n (x) = x 0 .
The following statement is a generalization of Theorem 2.1.

Theorem 2.3 Assume that there exists α ∈ (0, 1] such that H1. r := sup

x,y∈E

x =y Lip(E,E)

d(T (x), T (y)) d(x, y) α µ x (dT ) < 1, H2. R α := sup x,y∈E x =y |µ x -µ y | d(x, y) α < +∞,
H3. there exists δ > 0 and a probability measure µ on E such that

∀x ∈ E µ x ≥ δµ (7)
and the closed semi-group T µ generated by the support S µ of µ possesses a contracting sequence.

Then, there exists on E a unique P -invariant probability measure ν; furthermore, for some constants κ > 0 and ρ ∈]0, 1[, it holds

∀ϕ ∈ H α (E), ∀x ∈ E |P n ϕ(x) -ν(ϕ)| ≤ κρ n . (8) 
Remark. Hypothesis H1 means that the maps T satisfy some contraction property "in mean", with respect to each measure µ x . Nevertheless, the measures µ x may be singular versus another; this implies that, starting from two different points, the maps which govern the transition may be totally different and it becomes quite impossible to control their common evolution. Thus, hypothesis H3 is useful to fill up this gap.

Proof. The operator P acts on C(E), with spectral radius 1 since it is Markovian. It also acts on H α (E); indeed, for any function ϕ ∈ H α (E) and any x, y ∈ E, it holds

|P ϕ(x) -P ϕ(y)| ≤ Lip(E,E) |ϕ(T (x)) -ϕ(T (y))|µ x (dT ) + |ϕ| ∞ Lip(E,E) |µ x -µ y |(dT ). Hence m α (P ϕ) ≤ rm α (ϕ) + R α |ϕ| ∞ (9) 
which readily yields

P ϕ α ≤ r ϕ α + (1 + R α )|ϕ| ∞ . (10) 
Thus, by [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux Lipschitziens[END_REF], the operator P is quasi-compact on H α (E); its spectral radius on H α (E) equals the modulus of a dominant eigenvalue, thus is less than the one of P on C(E), that is 1. To control the peripheral spectrum, the argument differs then from the one used to prove Theorem 2.1: property (4) does not hold here and inequality ( 9) is much weaker. We get use of the two following lemmas, valid under hypotheses H1, H2 and H3.

Lemma 2.4 Let h ∈ H α (E) such that P h = h. For any x ∈ E, the sequence (h(X n )) n≥0 is a bounded martingale on the space (Ω, F , P x ), where P x denotes the conditional probability P(•/X 0 = x). It converges P x -a.s. and in L 1 (Ω, P x ) to a random variable H ∞ and it holds

∀n ≥ 0 h(x) = E x (h(X n )) = E x (H ∞ ). (11) 
Furthermore, for any ξ ∈ T µ ,

H ∞ = lim n→+∞ h(ξ • X n ) P x -a.s. ( 12 
)
Proof of Lemma 2.4. The function h is P -harmonic and bounded; the first assertion and equality [START_REF] Hervé | Étude d'opérateurs quasi-compacts positifs. Applications aux opérateurs de transfert[END_REF] follow. Let us now prove [START_REF] Ionescu-Tulcea | Théorie ergodique pour des classes d'opérations non complètement continues[END_REF]. First, let us fix positive integers n an q and set

u n,q (x) := E x h(X n+q ) -h(X n ) 2 .
From the martingale equality, for any N ≥ 1, it holds

N n=1 u n,q (x) = N n=1 E x h(X n+q ) 2 - N n=1 E x h(X n ) 2 ≤ 2q h 2 ∞ .
Hence, +∞ n=1 u n,q (x) < +∞ and

+∞ n=1 E x Lip(E,E) q h(T q • • • T 1 • X n ) -h(X n ) 2 µ Xn (dT 1 ) • • • µ Tq-1•••T1•Xn (dT q ) < +∞. (13) 
Consequently, using H3,

+∞ n=1 E x Lip(E,E) q h(T q • • • T 1 • X n ) -h(X n ) 2 µ(dT 1 ) • • • µ(dT q ) < +∞ and Lip(E,E) q E x +∞ n=1 h(T q • • • T 1 • X n ) -h(X n ) 2 µ(dT 1 ) • • • µ(dT q ) < +∞.
For any q ≥ 1 and

µ ⊗q -almost all T 1 , T 2 , • • • , T q , the sequence (h(T q • • • T 1 • X n ) -h(X n )) n≥1 converges P x -a.
s. to 0. We conclude by a density argument. 2 Similarly, one may prove the following lemma, which is of interest to control the other modulus 1 eigenvalues of P in H α (E).

Lemma 2.5 Let φ ∈ H α (E) such that P φ = λφ where λ is a complex number of modulus 1. For any x ∈ E, the sequence (λ -n φ(X n )) n≥0 is a bounded martingale; it converges P x -a.s and in L 1 (Ω, P x ) to a random variable Φ ∞ and we have

∀n ≥ 0 φ(x) = E x (λ -n φ(X n )) = E x (Φ ∞ ) (14)
Furthermore, for any q ≥ 1 and any transformations T 1 , • • • , T q on the support S µ of µ, one has

Φ ∞ = lim n→+∞ λ -(n+q) φ(T q • • • T 1 • X n ) P x -a.s. ( 15 
)
Let us first prove that the P -harmonic functions in H α (E) are constant. Let h ∈ H α (E) such that P h = h. According to Lemma 2.4, for any x ∈ E, there exists a set Ω x ⊂ Ω of full measure with respect to P x such that, for any ω ∈ Ω x and any transformation ξ ∈ T µ , the sequences (h(X n (ω))) n≥0 and (h(ξ

• X n (ω))) n≥0 converge to H ∞ (ω).
Let (ξ k ) k≥0 be a contracting sequence in T µ , with limit point x 0 ∈ E. Since h is continuous on E, for any ω ∈ Ω x , any cluster value x ω of (X n (ω)) n≥0 and any k ≥ 0,

H ∞ (ω) = h(x ω ) = h(ξ k (x ω )).
Letting k → +∞, it yields H ∞ (ω) = h(x 0 ) and thus h(x) = h(x 0 ), by [START_REF] Hervé | Étude d'opérateurs quasi-compacts positifs. Applications aux opérateurs de transfert[END_REF]. Finally, the bounded P -harmonic functions in H α (E) are constant.

Using Lemma 2.5, we prove that the peripheral spectrum of P is reduced to 1. Let (n l ) l≥0 be a fixed sequence of integers such that lim l→+∞ λ -n l = 1 and (ξ k ) k≥0 be a contracting sequence on T µ , with limit point x 0 . For all integer q ≥ 1, the set {T = T q • • • T 1 | T 1 . . . , T q ∈ S µ } is dense in T µ . Without loss of generality, we assume that any function ξ k can be decomposed as a product

T q k • • • T 1 , with T i ∈ S µ , 1 ≤ i ≤ q k .
By Lemma 2.5, there exists Ω x ⊂ Ω, P x (Ω x ) = 1, such that, for any ω ∈ Ω x and k ≥ 0, the sequences

λ -n l φ(X n l (ω) l≥0 and λ -(n l +q k ) φ(ξ k • X n l (ω)
) ) l≥0 converge to the same limit Φ ∞ (ω). Let us choose sequences of integers (ϕ(l)) l≥0 (depending on ω) and (ψ(k)) k≥0 (which does not depend on ω) such that (λ -n ϕ(l) X n ϕ(l) (ω)) l≥0 and (λ -q ψ(k) ) k≥0 converge resp. to x ω ∈ E and e iβ , β ∈ R. Equalities ( 14) and ( 15)

yield Φ ∞ (ω) = φ(x ω ) = e iβ φ(x 0 ) and φ(x) = E x (Φ ∞ ) = e iβ φ(x 0 ).
Eventually, the function φ is constant on E and λ = 1. 2

The Diaconis-Friedman's chain

This section deals with the Diaconis-Friedman's chain (Z n ) n≥0 on E = [0, 1] described in the introduction; we assume that the weights p and q vary with x ∈ [0, 1]. The transition operator Q of (Z n ) n≥0 is given by: for any bounded Borel function ϕ : [0, 1] → C,

Qϕ(x) = p(x) 1 0 ϕ(tx)dt + q(x) 1 0 ϕ(tx + 1 -t)dt.
For x ∈ [0, 1], let µ x be the probability measure on the space Lip([0, 1], [0, 1]) of Lipschitz continuous functions from [0, 1] into [0, 1], defined by

µ x (dT ) = p(x) 1 0 δ Ht (dT )dt + q(x) 1 0 δ At (dT )dt. ( 16 
)
Then the transition operator Q may be rewritten as

Qϕ(x) = Lip([0,1],[0,1]) ϕ(T (x))µ x (dT ) = p(x) 1 0 ϕ(tx)dt + q(x) 1 0 ϕ(tx + 1 -t)dt.
Let us first consider explicit examples.

1. When p(x) = x, the chain (Z n ) n≥0 is a sequence of independent random variables of uniform distribution on [0, 1]; thus, its unique invariant measure is the uniform distribution on [0, 1].

2. When p(x) = 1 -x, the points 0 and 1 are absorbing points for (Z n ) n≥0 . Hence, the Dirac measures at 0 and 1 are Q-invariant. The following theorem states that these two measures are the only ergodic probability measures on [0, 1] and that (Z n ) n≥0 converges P x -a.s. to a random variable Z ∞ with values in {0, 1}.

Assume that

p ∈ H α [0, 1] satisfies ∀x ∈ [0, 1], p(x) > 0 (17) 
(or in a symmetric way, p(x) < 1 for any x ∈ [0, 1]). In this case, the chain (Z n ) n≥0 admits a unique Q-invariant probability measure on [0, 1]. This is a direct consequence of Theorem 2. The constant function H 0 : x → 0 belongs to the support of µ; hence, the semi-group T µ contains a contracting sequence, with limit point 0.

If p(0) = 1, the Dirac mass at 0 is the unique invariant probability measure for (Z n ) n≥0 . When p(0) < 1, one can prove that the unique invariant probability measure for (Z n ) n≥0 is absolutely continuous with respect to the Lebesgue measure (see Theorem 3.1 below).

If p and q are both strictly positive on [0, 1], by using the approach developed in [START_REF] Diaconis | Iterated Random Functions SIAM review[END_REF], we may prove that the unique invariant probability measure for (Z n ) n≥0 is absolutely continuous with respect to the Lebesgue measure. This property holds as soon as p(0) < 1 and q(1) < 1. Let us emphasize that the strict positivity of p or q is sufficient to ensure the unicity of an invariant probability measure but it is a too strong condition. These remarks lead to the following statement, which is not a direct consequence of Theorem 2.3 but whose proof is strongly inspired.

Theorem 3.1 Let (Z n ) n≥0 be the Diaconis-Friedman's chain on [0, 1] with weight functions p and q in H α [0, 1]. Then, one of the 3 following options holds.

1. If p(0) < 1 and q(1) < 1, then there exists on [0, 1] an unique Q-invariant probability measure ν p . Furthermore, this measure is absolutely continuous with respect to the Lebesgue measure on [0, 1] with density f p given by:

∀x ∈ [0, 1] f p (x) = C exp 1 2
x p(y) y dy + q(y) 1 -y dy where C is a normalization constant. At last, there exist constants κ > 0 and ρ ∈

[0, 1[ such that ∀ϕ ∈ H α [0, 1], ∀x ∈ [0, 1] |Q n ϕ(x) -ν p (ϕ)| ≤ κρ n ϕ α .
2. If p(0) = 1 and q(1) < 1, then the Dirac measure δ 0 is the unique Q-invariant probability measure on [0, 1]. Furthermore, there exist constants κ > 0 and ρ

∈ [0, 1[ such that ∀ϕ ∈ H α [0, 1], ∀x ∈ [0, 1] |Q n ϕ(x) -ϕ(0)| ≤ κρ n ϕ α .
(A similar statement holds when p(0) < 1 and q(1) = 1).

3. If p(0) = 1 and q(1) = 1, then the invariant probability measures of (Z n ) n≥0 are the convex combinations of δ 0 and δ 1 . Furthermore, for any x ∈ [0, 1], the chain (Z n ) n≥0 converges P x -a.s. to a random variable Z ∞ with values in {0, 1}; the law of Z ∞ is given by

P x (Z ∞ = 0) = 1 -h(x) and P x (Z ∞ = 1) = h(x),
where h is the unique function in

H α [0, 1] such that Qh = h and h(0) = 0, h(1) = 1. At last, there exist κ > 0 and ρ ∈ [0, 1[ such that ∀ϕ ∈ H α [0, 1], ∀x ∈ [0, 1] |Q n ϕ(x) -(1 -h(x))ϕ(0) -h(x)ϕ(1)| ≤ κρ n ϕ α .
Proof. First, let us consider the adjoint operator Q * of Q in L 2 [0, 1], defined by: for any ϕ, ψ ∈ L 2 [0, 1],

1 0 ϕ(x)Qψ(x)dx = 1 0 Q * ϕ(x)ψ(x)dx.
A straightforward computation yields to the following expression:

∀ϕ ∈ L 2 [0, 1], ∀x ∈ [0, 1] Q * ϕ(x) := x 0 q(t) 1 -t ϕ(t)dt + 1 x p(t) t ϕ(t)dt. (18) 
Notice that ( 18) is valid for any Borel function ϕ ∈ L 1 [0, 1]. Furthermore, if ϕ ∈ L 1 [0, 1] is non negative and satisfies the equality Q * ϕ = ϕ, then the measure with density ϕ with respect to the Lebesgue measure on [0, 1] is Q-invariant.

Assume for a while that ϕ is differentiable on ]0, 1[; the equation Example : p(x) = 1 -x. We are in the Case 4 above and the harmonic function h(x) = x. In particular, the sets [ǫ, 1-ǫ], 0 < ǫ < 1, are transient. This transience property can be obtained in a different way which is also of interest and we present briefly. Let us introduce the quantity ∆ defined by: for any x in [0, 1], ∆(x) := dist(x, {0, 1}) = inf(x, 1 -x).

Q * ϕ = ϕ yields ∀x ∈]0, 1[ ϕ ′ (x) = q(x) 1 -x - p ( 
Let us compute E x (∆(Z 1 )). We assume x ∈]0, 1 2 ], the case x ∈ [ 1 2 , 1[ can be treated in a similar way. 

1 0δ 1 0δ 1 0δ

 111 3. Indeed, hypotheses H1, H2 and H3 of Theorem 2.3 hold: (a) Hypothesis H1. For any x, y ∈ [0, 1], x = y, Hypothesis H2. For any x, y ∈ [0, 1], x = y, |µ x -µ y | |x -y| α ≤ |p(x) -p(y)| |x -y| α Ht dt + |q(x) -q(y)| |x -y| α At dt ≤ 2m α (p). (c) Hypothesis H3. For any x ∈ [0, 1] it holds µ x ≥ δµ with δ := inf x∈[0,1] p(x) > 0 and µ = Ht dt.

E

  Hence E(∆(Z n )|F n-1 ) ≤ 3 4 ∆(Z n-1) for any n ≥ 1 and, iterating,∀n ≥ 1, ∀x ∈ [0, 1] E x (∆(Z n )) x ∆(Z n ) < +∞,so that the sequence (∆(Z n )) n≥1 converges P x -a.s. to 0.
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with C p := with respect to the Lebesgue measure on [0, 1] is Q-invariant. Now, we come back to the proof of Theorem 3.1 and decompose the argument into 3 steps.

Step1-Quasi-compacity of the operator Q on H α [0, 1]

The operator Q is non negative, bounded on H α [0, 1] with spectral radius 1. Furthermore,

Hence, by [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux Lipschitziens[END_REF], the operator Q is quasi-compact on H α [0, 1].

Step 2-Description of the characteristic space of Q corresponding to λ = 1

We use here a general result of [START_REF] Hervé | Étude d'opérateurs quasi-compacts positifs. Applications aux opérateurs de transfert[END_REF], based on the notion of absorbing compact set.

It is minimal when it does not contain any proper absorbing compact subset. The condition p(x) > 0 ensures that Q(x, I) > 0 for any closed interval I ⊂ [0, x] not reduced to a single point.

(20)

Similarly, the condition q(x) > 0 implies

There are four cases to explore.

1. q(0) > 0 and p(1) > 0

In this case, the interval [0, 1] is the unique (and thus minimal) Q-absorbing compact set. To prove this, we fix a compact and proper subset K of [0, 1] ; we have to find a point

There are 3 sub-cases to consider.

(a) 0 / ∈ K Assume that q(x) = 1 for any x ∈ K. The condition p(1) > 0 implies q(1) < 1, so that 1 / ∈ K; thus, there exist ǫ > 0 such that K ⊂ [0, 1 -ǫ]. Consequently, for any x ∈ K,

which means that K is not absorbing. Contradiction. Consequently, there exists

∈ K The same argument holds, exchanging the role of 0 and 1.

(c) 0 ∈ K and 1 ∈ K

In this case, we can set x 0 = 0. Indeed, let us fix

2. q(0) = 0 and p(1) > 0 In this case, the set {0} is invariant and is the unique Q-absorbing minimal compact set. Indeed, there exists x ∈ K such that p(x) > 0. Otherwise, the function q equals 1 on K; by (21), it follows that [y, 1] ⊂ K for any y ∈ K. Consequently 1 ∈ K and q(1) = 1, which contradicts the condition p(1) > 0. Applying (20), it yields [0, x] ⊂ K and in particular {0} ⊂ K.

3. q(0) > 0 and p(1) = 0

In this case, the unique Q-absorbing minimal compact set is {1}. The proof is similar to the previous case, exchanging the role of 0 and 1.

4. q(0) = 0 and p(1) = 0

The sets {0} and {1} are the only minimal absorbing compact sets.

We apply Theorem 2.2 in [START_REF] Hervé | Étude d'opérateurs quasi-compacts positifs. Applications aux opérateurs de transfert[END_REF] to conclude that the eigenvalue 1 has index 1 in H α [0, 1]: in other words, the characteristic subspace of Q associated to 1 equals Ker(Q -Id). Therefore, we may apply Theorem 2.3 in [START_REF] Hervé | Étude d'opérateurs quasi-compacts positifs. Applications aux opérateurs de transfert[END_REF] to each of the four cases explored above.

1. If q(0) > 0 and p(1) > 0, then Ker(Q -Id) = C • 1 1; in this case, the unique Q-invariant probability measure on [0, 1] is absolutely continuous with respect to the Lebesgue measure on [0, 1], with density f p .

2. If q(0) = 0 and p(1) > 0, then Ker(Q -Id) = C • 1 1 and the Dirac mass δ 0 is the unique Q-invariant probability measure on [0, 1].

3. If q(0) > 0 and p(1) = 0, then Ker(Q -Id) = C • 1 1 and the Dirac mass δ 1 is the unique Q-invariant probability measure on [0, 1].

4. If q(0) = 0 and p(1) = 0, there exists a positive harmonic function h such that h(0) = 0 and h(1) = 1; the space Ker(Q -Id) has dimension 2 and equals C • 1 1 ⊕ C • h. The Q-invariant probability measure on [0, 1] are the convex combinations of δ 0 and δ 1 .

Step 3-Control of the peripheral spectrum of

We use here Lemma 2.5 and apply the same technics as in the previous discussion. Let λ ∈ C with modulus 1 and φ ∈ H α [0, 1] such that Qφ = λφ. For any x ∈ [0, 1], the sequence (λ -n φ(X n )) n≥0 is a bounded martingale in (Ω, F , P x ), thus it converges P x -a.s to a bounded random variable Φ ∞ . We use inequality ( 13) first with q = 1 and then q = 2; there exists Ω x ⊂ Ω, P x (Ω x ) = 1, and I 0 ⊂ [0, 1] of Lebesgue measure 1 such that, for any ω ∈ Ω x and any s, t ∈ I 0 , it holds

and lim

There are two cases to explore.

Fix ω ∈ Ω x and a cluster value z ω of the sequence (Z n (ω)) n≥0 .

If p(z ω ) = 0, then, applying ( 22) with s arbitrarily close to 0, it yields

If p(z ω ) = 0, we conclude similarly with (23) that φ(z ω ) = λ -1 φ(1).

Consequently, since φ(0) = φ(1), the sequence (φ(Z n (ω)) n≥0 converges to Φ ∞ (ω) = λ -1 φ(0) and φ(x) = E x (Φ ∞ ) = λ -1 φ(0). Thus, the function φ is constant and λ = 1.

φ(0) = φ(1)

Without loss of generality, we assume φ(0) = 0; the case φ(1) = 0 is treated the same way.

(a) First, assume that there exists x ∈ [0, 1] and ω x ∈ Ω x such that the sequence (Z n (ω x )) n≥0 possesses a cluster point z ωx with p(z ωx ) > 0. Applying first ( 22) with s arbitrarily close to 0 and second (24) with s arbitrarily close to 1 (so that p(H s • z ωx ) > 0) and t arbitrarily close to 0, it yields φ(z ωx ) = λ -1 φ(0) = λ -2 φ(0).

The condition φ(0) = 0 readily implies λ = 1 and thus φ ∈ C • 1 1. (b) Assume that q(z ω ) = 1 for any x ∈ [0, 1], any ω ∈ Ω x and any cluster values z ω of the sequence (Z n (ω)) n≥0 .

Applying first (23) with s arbitrarily close to 0 and second (25) with s arbitrarily close to 1 (so that q(A s • z ω ) > 0) and t arbitrarily close to 0, it yields

If φ(1) = 0, we deduce as above that λ = 1 and φ ∈ C • 1 1. If φ(1) = 0, the sequence (λ -n φ(Z n (ω)) n≥0 converges to 0 and the martingale equality

Eventually, the operator Q is quasi-compact on H α [0, 1] with spectral radius equals 1, its peripheral spectrum is reduced to {1} and the characteristic subspace associated to 1 equals Ker(Q -Id). More precisely, we have the 4 following cases.

1. If q(0) > 0 and p(1) > 0, there exists a bounded linear operator R on H α [0, 1] with spectral radius ρ ∈ [0, 1[ such that, for any ϕ ∈ H α [0, 1] and n ≥ 0,

In this case, the chain (Z n ) n≥0 is recurrent on [0, 1].

2. If q(0) = 0 and p(1) > 0, there exists a bounded operator R on H α (E) with spectral radius ρ ∈ [0, 1[ such that, for any ϕ ∈ H α [0, 1] and n ≥ 0,

In this case, for any x ∈ [0, 1], the chain (Z n ) n≥0 converges P x -a.s. to 0; furthermore, for any ǫ ∈]0, 1[, the set [ǫ, 1] is transient and there exists κ ǫ > 0 such that

3. If q(0) > 0 and p(1) = 0, there exists a bounded operator R on H α [0, 1] with spectral radius ρ ∈ [0, 1[ such that, for any ϕ ∈ H α [0, 1] and n ≥ 0,

For any x ∈ [0, 1], the chain (Z n ) n≥0 converges P x -a.s. to 1; furthermore, for any ǫ ∈]0, 1[, the set [0, 1 -ǫ] is transient and there exists κ ǫ > 0 such that

4. If q(0) = 0 and p(1) = 0, there exists an harmonic function h : [0, 1] → [0, 1] such that h(0) = 0 and h(1) = 1 and a bounded operator R on H α [0, 1] with spectral radius ρ ∈ [0, 1[ such that, for any ϕ ∈ H α [0, 1] and n ≥ 0, Q n ϕ = ϕ(0)(1 1 -h) + ϕ(1)h + R n ϕ.

For any x ∈ [0, 1], the chain (Z n ) n≥0 converges to 0 with probability 1 -h(x) and to 1 with probability h(x). Indeed, the bounded martingale (h(Z n )) n≥0 converges P-a.s. Since h(0) = h(1), it follows that (Z n ) n≥0 converges to a random variable Z ∞ with values in {0, 1}. The martingale property yields h(x) = E x (h(Z ∞ )) = P x (Z ∞ = 1). Consequently, for any ǫ ∈]0, 1[, the set [0, 1 -ǫ] is transient and there exists κ ǫ > 0 such that