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Abstract—Advancements over the last decade in video acqui-
sition and display technologies lead to a continuous increase of
video content resolution. These aspects combined with the shift
towards cloud multimedia services and the underway adoption
of High Efficiency Video Coding standards (HEVC) create a
lot of interest for Super-Resolution (SR) and video enhancing
techniques. Recent works showed that proximal based convex
optimization approaches provide a promising direction in video
restoration. An important aspect in the definition of a SR model
is the metric used in defining the objective function. Most
techniques are based on the classical l2 norm. In this paper
we further investigate the use of other norms and their behavior
w.r.t. multiple quality evaluation metrics. We show that significant
gains of up to 0.5 dB can be obtained when using different norms.

I. INTRODUCTION

Technological advancements over the past decade led to a
significant increase of display resolutions. Ultra High Defini-
tion (UHD) videos are now available to the public and can
be viewed on modern TVs or even mobile phones with HR
displays. This situation creates a lot of interest for Super-
Resolution (SR) techniques which enhance the quality of LR
legacy video content or provide a valuable tool in scalable
transmission systems.

Video Super-Resolution (SR) tackles the problem of recon-
structing a Higher Resolution (HR) or quality video from one
or multiple Low Resolution (LR), degraded representations of
the video. In general, this problem is approached either by
super resolving each frame individually or by using multiple
frames from one or more video sequences in order to further
enhance the quality of a frame by exploiting the additional
information contained in videos. The simplest SR methods
use filter based interpolation. Some of the most popular
interpolation methods are bicubic [1] or Lanczos [2]. Other
filters were also developed as a part of the scalable video
compression standards such as the AVC/H.264 and HEVC
extensions SVC [3] and SHVC [4], respectively.

More complex SR methods can be generally divided in
model based and learning based methods. The most popular
learning/example based methods usually rely on finding and
storing correlations between LR and HR representations [5]–
[9]. This is achieved by creating a dictionary of LR and HR
image patches and learning a mapping between them from a
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large number of samples. If trained on a sufficient amount
of data, this type of methods can provide very good results
and an efficient computational time. However, taking into
account multiple degradation models (e.g. different smoothing
levels or compression artifacts) is relatively tricky, as using
too many degradation models in the training may decrease
the mapping precision. Other learning based SR methods use
convolutional neural networks [10]. Kappeler et al. [11] train
a convolutional neural network to take 3 consecutive frames of
a video sequence as input in order to perform the up-sampling
of the middle frame.

Model based SR, unlike example based methods attempt
to model the degradation process of the image and impose a
series of constraints based on prior knowledge or assumptions
about the image. The so obtained model is then used to retrieve
a HR image that best suits this objective function given the
known LR image. One of the most popular approaches for
Multi Frame SR (MF-SR) is based on a Bayesian formulation
with SR priors based on smoothness with Total Variation (TV)
[12], l1 norm based priors [13] or non-stationary image prior
combinations [14]. However these methods are best suited for
image registration where a high number of descriptions are
available with a rather simple motion between them. In [15]
Liu and Sun extend the Bayesian formulation to videos.

A different approach for image SR and reconstruction which
shows great promise is based on proximal dual splitting convex
optimization [16]. In our recent work [17] we extended this
method to intra coded HEVC videos and in [18] we defined a
framework that can combine multiple descriptions of a video
using individual compression and degradation models.

Most model based SR methods rely on iterative approaches
to find a solution that best fits the model. A critical aspect is
the metric used to measure the closeness of the solution to
the model, as this determines the changes performed during
each iteration. More precisely, in proximal approaches, the
function/metric determines the computation of the proximity
operator of the objective function. While the l2 norm is
expected to maximize the PSNR of the result, it is a well
known fact that PSNR is not always the best measure of
quality. As such, using other norms may provide better results
on other quality evaluation metrics in certain cases.

This paper investigates the use of different norms in prox-
imal approaches for SR, in order to determine the impact



on different quality evaluation metrics and establish which
norm is best suited for such an approach. We perform a
large number of tests using 5 different norms and up to 11
metrics for various descriptions of multiple videos. The rest
of this paper is organized as follows. In Section II we provide
a brief description of the key aspects of the framework we
use in our tests. Section III describes the computation of
proximity operators for different norms. Experimental results
are provided in Section IV while Section V concludes the
paper.

II. PROXIMAL BASED VIDEO ENHANCEMENT FRAMEWORK

In this section we provide a summary of the SR resolution
framework we use. Note that any proximal approach method
can be used, however, we relate here to our recent work [18]
due to the encouraging results obtained and the flexibility of
the framework. For a more detailed description of the approach
we refer the reader to [16] for a description of image SR and
our recent work [18] for a detailed description of the complete
framework used in these experiments.

We begin by denoting with x = [x1, ..., xk] with ∀i ∈
[1, k], xi ∈ RN the original HR video sequence which we want
to reconstruct. This sequence is subjected to a down-sampling
and compression process. The down-sampling operator is
denoted by L and involves a typical decimation and filtering
step. For example, the most common filters in literature, used
for image down-sampling, are known as bicubic [1] or Lanczos
[2] filters. Furthermore, to account for the compression step we
need to relate to the typical hybrid video coders architecture
depicted here in Fig. 1. The transform operator T denotes a
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Fig. 1. Hybrid video coding generic scheme.
linear transformation as performed by all hybrid video coders,
while Q denotes a quantization operator. As in this work we
use High Efficiency Video Coding standards (HEVC) we will
not go into more details and refer the reader to [19] for a more
detailed overview of the HEVC including the prediction tools,
transforms and quantization process which are of significance
to our framework. As such, we denote by z the quantized
transform coefficients obtained for the residual of a frame and
with x̃ the prediction of a frame. Note that x̃ can be intra
or inter predicted. Using the above notations and taking into
acount the possibility of having M input videos, we can now
formulate the data fidelity (DF) function as:

JDF(x) =

M∑
m=1

1

M
||Tm(Lmx̂− x̃m)− zm| |p, (1)

where x̂ denotes the reconstructed frame and || · ||p is the
lp-norm. This criterion is further combined with additional

constraints based on the available information. First we use the
reconstruction intervals of the quantized coefficients denoted
by the convex set C to impose an additional constraint as:

M∑
m=1

(
ιCm

(Tm(Lmx̃− x̃m))
)
, (2)

where ιCm is the characteristic function of the convex set Cm,
defined as:

ιC(x) =

{
0 if x ∈ C
+∞ otherwise.

(3)

Other constraints used in this model are based on Total
Variation (TV) and a limitation of the solution to [0, 255].
They are denoted by F1 and F2 respectively, and defined as:

F1 = (∇h,∇v), (4)

D1(m, i) = {x ∈ RN :
√
∇2
hx+∇2

v, x ≤ η}, (5)

and

F2 = Id , (6)

D2(m) = {x ∈ RN : x(k) ∈ [0, 255]∀k ∈ [1, N ]}, (7)

where ∇h and ∇v are the horizontal and vertical gradients
and η is a TV threshold.

Finally the objective function can be expressed as:

Find x̂ ∈ argmin
x∈RK×N

(
JDF(x)+

M∑
m=1

(
ιCm

(Tm(Lmx− x̃m))
)

+

M∑
m=1

( 2∑
s=1

ιDs(m)(Fsx)
))

, (8)

where ιDs(m) is the characteristic function of the convex sets
Ds for each video.

The above problem is solved using an adaptation of the
proximal primal-dual algorithm in [20]. A detailed presen-
tation of the algorithm is available in [18]. For the sake of
brevity we will not go into additional details regarding the
implementation. We simply note that the algorithm is based
on successive computations of the proximity operator [21].
The following section will detail the proximity operator and
it’s computation on various norms used in this work.

III. PROXIMITY OPERATORS

The proximity operator in a real Hilbert space H with norm
‖·‖ for a function ϕ ∈ Γ0(H) where, Γ0(H) denotes the class
of proper lower semi-continuous convex functions from H to
]−∞,+∞] is defined as:

proxϕ : H → H : u 7→ argmin
v∈H

1

2
‖v − u‖2 + ϕ(v). (9)

In this work we want to compute the proximity operator for
different norms used in the DF term of the objective function.
This problem was extensively studied and explicit expressions



and computation methods are available for a large number of
functions [22], [23].

The objective function described in Section II using the
algorithm presented in [18] requires successive computations
of the proximity operator of a function ϕp(y) = γ ·||y||p where
γ ∈ R, || · ||p is the lp-norm, y = Tm(Lmx̂− x̃m)− zm and
x̂ and x̃ are single-band 8-bit images. In this work we extend
the original framework and in addition to the commonly used
l2 norm we use l1, l4/3, l3/2 and l4 norms. The proximity
operators of ϕp(y) in explicit form for p = 1, 4/3, 3/2, 2, 4
are:

proxϕ1
(y) = max{(|y| − γ), 0} · sign(y), (10)

where | · | denotes the absolute value.

τ =
√

256 · γ3 + 729 · y2, (11)

proxϕ4/3
(y) =

((108·|y|+4·τ)
2
3−16·γ)3

864

27 · |y|+ τ
· sign(y), (12)

proxϕ3/2
(y) = y +

9

8
· γ · sign y · (γ −

√
γ2 +

16

9
· |y|) (13)

proxϕ2
(y) =

y

1 + 2 · γ
(14)

β =

√
y2 +

1

27 ∗ γ
, (15)

proxϕ4/3
(y) =

((y + β)
1
3 − (β − y)

1
3 )

(8 · γ)
1
3

, (16)

Based on the above explicit expressions we can efficiently
compute the proximity operator for different norms. Note, that
this only applies to the DF term. The additional constraints use
the same computation method detailed in [18].

IV. EXPERIMENTS

A. Experimental setup

1) Input data: We test the video enhancement framework
using 6 CIF video sequences (Akiyo, Foreman, Bus, Mobile,
Football, Flower) containing both smooth and complex tex-
tures. Two descriptions are generated for each sequence using
a bicubic polyphase filter with 4-taps defined on [−2, 2] [1]
and an 8-tap extension of the filter obtained by stretching
the function to [−4, 4]. The encoding of each LR description
(QCIF) is performed using HEVC [24]. The prediction (x̃) is
extracted directly from the stream at the time of decoding.
Due to the algorithms constant performance across frames we
limit the tests to 1 GOP of 8 frames in an IP configuration.
Four compression levels are used by setting the QPs to 1, 15,
20 and 25. Note, that videos compressed using a QP of 1 are
almost un-degraded by compression.

Metric Description Metric Description

SAD Sum of Absolute
Difference PSNR Peak Signal to

Noise Ratio

SSIM Structural SIMilarity
index MSSIM Multi-scale SSIM

VSNR Visual Signal to
Noise Ratio VIF Visual Information

Fidelity

VIFP pixel-based VIF UQI Universal Quality
Index

IFC Information Fidelity
Criterion NQM Noise Quality

Measure

WSNR Weighted Signal to
Noise Ratio

TABLE I
VIDEO QUALITY EVALUATION METHODS USED IN OUR EXPERIMENTS.

2) Algorithm setup: The proximal based Convex Optimiza-
tion solver denoted by CO is then ran on pairs of descriptions
using the same compression and different down-sampling
operators. The TV threshold η is defined as:

η = η0 · TV (x0) (17)

where x0 is the initialization of the algorithm and η0 ∈ R
is used to adjust the threshold. To better emphasize the
behavior of the DF function we use two values for η0, first
an empirically determined value of 0.95 which was shown to
provide overall good results and a value of 1.1 which relaxes
the smoothness constraint. The initialization is computed as
the average of the two up-sampled descriptions. For reference
we also include the results obtained using bicubic (Bic) up-
sampling and one of the best performing learning based SR
methods [9] (A+SR). Furthermore, we limit the number of
iterations to 200. We empirically found that the solution can
be determined with a per-pixel precision of ∼ 10−4 for 200
iterations. Albeit, most of the gains are obtained in the first 50-
100 iterations as shown in [18], we are interested in studying
the behavior of the algorithm when using different norms
which requires a more precise computation.

3) Video quality evaluation: Using only a Mean Square
Error based quality metric such as PSNR would most likely
be biased towards the l2-norm. Thus, we evaluate our results
using multiple video quality evaluation methods including
metrics that take into acount the particularities of the human
visual system. Table I shows the quality evaluation methods
used in these experiments. For additional information on each
quality evaluation method and implementation details we refer
the reader to [25].

B. Experimental results

As discussed in Section IV-A1 we used 4 QPs, 6 sequences,
5 norms each with 2 TV thresholds. Due to the limited
space available we only include the complete tables for two
representative sequences: Foreman and Flower. Foreman se-
quence contains smooth texture while Flower sequence has
high frequency components. The other sequences can be
viewed as in-between from a texture complexity point of view.
For the full results please download the supplementary ma-
terials from https://purica.wp.imt.fr/files/2017/06/MMSP2017

supplementary materials.pdf. Tables IV and V show the
numerical results obtained on Akiyo and Flower sequences.



QP SAD PSNR SSIM MSSIM VSNR VIF VIFP UQI IFC NQM WSNR
1 l1 l1 l1 l1 l1 l1 l4/3 l1 l3/2 l2 l3/2
15 l4 l4 l4 l4 l4 l4 l2 l2 l4 l2 l4
20 l2 l2 l2 l2 l4 l2 l3/2 l2 l2 l2 l4
25 l3/2 l3/2 l3/2 l3/2 l2 l3/2 l4/3 l3/2 l3/2 l2 l2

TABLE II
BEST PERFORMING NORMS FOR EACH METRIC AND QP.

Each table is divided in 3 parts. The first part contains
the reference results obtained with bicubic up-sampling and
the A+SR learning based SR method [9]. The second part
depict the results obtained with the Convex Optimization (CO)
video enhancement framework described in [18] when using
different norms and a TV threshold defined as in Eq. 17 using
η0 = 0.95 while the third part uses η0 = 1.1 (i.e. relaxes
the smoothness constraint). The light colors green, cyan, red
and blue correspond to QPs 1, 15, 20 and 25, respectively.
Saturated colors indicate the best result obtained for a fixed
metric and QP over the different norms in each block of
the table. To interpret these results and identify behavioral
trends with respect to different norms in the proximal based
CO algorithm we have several possibilities. We begin by
analyzing the results with respect to compression levels. In
doing so, we can easily notice that the best results for QP 1
(almost no compression) are generally grouped for all tested
metrics. This seems to indicate that the quality evaluation
methods score the artifacts introduced by filter smoothing in a
similar manner as opposed to compression artifacts where the
best results generally vary between different metrics. Another
interesting aspect to note is that the best results for QP 1 are
generally obtained using l1 norm. However, the results for QP
1 are generally very close between norms. A more significant
differentiation is obtained for higher compression levels.

A second way to interpret the results is related to the
behavior of the CO method w.r.t. different norms and texture
complexity. We can easily notice that on Flower sequence
(high texture complexity) the best results are obtained for
l4 norm while for the smooth texture in Foreman sequence
the best performance seems to be obtained towards l1 norm.
Furthermore, the different thresholds used in the TV constraint
also plays an important role. For example on Foreman se-
quence we can see that relaxing this constraint will shift the
best results towards l1, a similar behavior can also be observed
on other sequences. It is interesting to note that SAD, SSIM,
VIFP, UQI metrics generally tend to obtain higher scores for
lower power norms on higher QPs, while PSNR and WSNR
tend to be closer to l2 norm.

Note, that if the DF function is used without any constraint
MSE based metrics are always optimized for l2 norm. While
DF with l2 norm is maximizing the PSNR of the result, the
other constraints which are independent of DF are “pulling”
the solution in a different direction. Furthermore, the skipped
blocks do not allow the precise recovery of quantized values
and the results may convergence towards a somewhat less
precise value making it harder to isolate the gains or losses
produced by the changing of the norm. Using l2 norm, even
if it maximizes the PSNR it will do so w.r.t. the value recon-
structed from the intra/inter prediction without the residual,

SAD PSNR SSIM MSSIM VSNR VIF
+167279 +0.51 +0.0112 +0.0021 +1.15 +0.0363

VIFP UQI IFC NQM WSNR
+0.0179 +0.0172 +0.571 +1.59 +2.10

TABLE III
HIGHEST GAINS THAT CAN BE OBTAINED OVER THE l2 NORM.

thus the behavior is somewhat unpredictable when evaluating
the quality against the real values.

For all sequences, we notice that the best results for medium
to high compression levels tend to be obtained for l3/2 norm.
However, textures with high frequency components present
the best results towards a high power norm (Flower, l4 norm).
When compression is very low we notice that the best results
are obtained for l1 norm and in the case of complex textures
best results are achieved with a relaxed TV constraint which
allows the reconstruction of high frequency components. Note,
that the reconstruction precision is higher for low compression
as the quantization intervals are very small, for high compres-
sion the reconstruction reliability decreases and the model may
introduce less accurate high frequency components. Overall,
properly adjusting the norm selection and TV thresholding
w.r.t. the compression level and texture complexity of the super
resolved sequence can provide additional gains over the widely
used l2 norm. Table III shows the maximum gains that can be
obtained over l2 norm and Table II shows the best performing
norms for each metric and QP.

V. CONCLUSIONS

In this paper we performed an extensive study on the use
of different norms for a proximal based convex optimization
algorithm for super resolution and video enhancement. In
addition to the commonly used l2 norm we implemented and
tested the l1, l4/3, l3/2 and l4 norms. Extensive test were
performed on 6 video sequences compressed with HEVC at
QPs 1, 15, 20 and 25 and super-resolved using a proximal
based convex optimization algorithm with each norm and two
thresholds of the total variation constraint. 11 metrics were
used to evaluate the quality of each approach and 2 additional
methods were included as reference: bicubic and A+SR [9].
Our results indicate a strong relation between norms, texture
complexity and compression. Gains of up to 0.5 dB can be
achieved over the l2 norm.
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Metrics
Method QP SAD PSNR SSIM MSSIM VSNR VIF VIFP UQI IFC NQM WSNR

Bic

1 301998.75 32.14 0.9397 0.9928 30.06 0.7309 0.6270 0.8204 6.034 32.90 44.70
15 321895.63 32.01 0.9315 0.9907 29.64 0.6788 0.6031 0.7677 4.681 31.27 43.88
20 345672.63 31.78 0.9204 0.9876 28.97 0.6114 0.5730 0.7233 3.887 29.52 42.48
25 389785.50 31.25 0.8998 0.9805 27.43 0.5036 0.5193 0.6576 2.998 26.69 39.64

A+ SR

1 257530.25 33.27 0.9546 0.9948 32.55 0.8250 0.6924 0.8551 6.688 33.28 45.14
15 280684.50 33.11 0.9453 0.9925 31.98 0.7551 0.6610 0.7940 5.070 31.46 44.22
20 308158.00 32.80 0.9323 0.9894 31.04 0.6683 0.6215 0.7433 4.138 29.59 42.69
25 358227.88 32.07 0.9089 0.9819 28.77 0.5369 0.5541 0.6695 3.126 26.69 39.74

COη0=0.95
l1

1 183231.00 38.65 0.9683 0.9968 37.44 0.8663 0.7440 0.8756 7.563 39.52 56.88
15 246176.63 36.06 0.9443 0.9926 33.36 0.7471 0.6667 0.7831 5.167 33.45 48.49
20 284672.50 34.74 0.9302 0.9893 31.47 0.6570 0.6191 0.7290 4.167 30.67 44.86
25 344488.13 33.01 0.9071 0.9817 28.96 0.5309 0.5497 0.6587 3.148 27.05 40.45

COη0=0.95
l4/3

1 183357.13 38.65 0.9682 0.9968 37.44 0.8660 0.7438 0.8754 7.555 39.52 56.85
15 244354.50 36.13 0.9451 0.9928 33.48 0.7522 0.6686 0.7869 5.219 33.61 48.76
20 283245.13 34.80 0.9308 0.9895 31.62 0.6615 0.6205 0.7331 4.198 30.80 45.07
25 343674.50 33.05 0.9075 0.9819 29.03 0.5334 0.5502 0.6627 3.160 27.18 40.59

COη0=0.95
l3/2

1 183429.75 38.64 0.9682 0.9968 37.43 0.8659 0.7437 0.8752 7.550 39.52 56.84
15 243866.25 36.16 0.9454 0.9929 33.54 0.7535 0.6689 0.7879 5.228 33.64 48.84
20 283149.13 34.83 0.9309 0.9895 31.66 0.6624 0.6202 0.7341 4.199 30.82 45.13
25 343878.88 33.07 0.9074 0.9819 29.06 0.5337 0.5495 0.6634 3.159 27.21 40.64

COη0=0.95
l2

1 183639.13 38.64 0.9681 0.9968 37.43 0.8654 0.7434 0.8746 7.530 39.47 56.78
15 243543.25 36.22 0.9457 0.9929 33.65 0.7545 0.6682 0.7893 5.223 33.66 48.96
20 284850.25 34.84 0.9302 0.9895 31.79 0.6607 0.6160 0.7339 4.177 30.83 45.21
25 347969.63 33.02 0.9056 0.9818 29.06 0.5301 0.5427 0.6619 3.131 27.23 40.68

COη0=0.95
l4

1 184018.25 38.60 0.9679 0.9968 37.38 0.8646 0.7435 0.8737 7.498 39.34 56.61
15 248833.50 36.17 0.9445 0.9928 33.83 0.7464 0.6564 0.7863 5.091 33.54 48.95
20 303273.88 34.31 0.9239 0.9886 31.61 0.6369 0.5868 0.7241 3.964 30.68 45.14
25 373245.88 32.30 0.8958 0.9804 28.39 0.5054 0.5114 0.6477 2.957 27.11 40.61

COη0=1.1
l1

1 207191.88 37.57 0.9598 0.9956 35.94 0.8659 0.7369 0.8653 7.656 40.24 55.19
15 266382.88 35.63 0.9387 0.9922 32.97 0.7583 0.6598 0.7818 5.151 33.67 48.46
20 303294.00 34.43 0.9248 0.9890 31.19 0.6661 0.6128 0.7308 4.139 30.79 44.93
25 361586.25 32.80 0.9012 0.9814 28.75 0.5344 0.5436 0.6592 3.109 27.14 40.53

COη0=1.1
l4/3

1 207850.25 37.54 0.9595 0.9955 35.90 0.8653 0.7364 0.8651 7.672 40.30 55.20
15 266281.63 35.66 0.9386 0.9923 33.04 0.7590 0.6593 0.7812 5.182 33.74 48.62
20 303752.88 34.45 0.9242 0.9891 31.30 0.6665 0.6111 0.7294 4.162 30.86 45.06
25 362290.50 32.82 0.9003 0.9814 28.85 0.5349 0.5415 0.6581 3.123 27.22 40.63

COη0=1.1
l3/2

1 208106.88 37.52 0.9594 0.9955 35.88 0.8648 0.7360 0.8649 7.672 40.31 55.19
15 266612.88 35.67 0.9384 0.9923 33.05 0.7586 0.6585 0.7808 5.177 33.74 48.64
20 304655.13 34.45 0.9236 0.9890 31.32 0.6654 0.6094 0.7281 4.157 30.86 45.08
25 363647.63 32.80 0.8994 0.9813 28.88 0.5339 0.5393 0.6571 3.120 27.23 40.65

COη0=1.1
l2

1 208677.25 37.49 0.9591 0.9955 35.86 0.8637 0.7349 0.8648 7.654 40.33 55.19
15 268096.00 35.68 0.9376 0.9922 33.07 0.7558 0.6556 0.7792 5.137 33.73 48.65
20 309459.75 34.39 0.9211 0.9887 31.32 0.6587 0.6018 0.7239 4.100 30.82 45.07
25 372074.13 32.67 0.8952 0.9809 28.77 0.5262 0.5285 0.6519 3.069 27.20 40.64

COη0=1.1
l4

1 209295.63 37.48 0.9593 0.9957 35.94 0.8602 0.7318 0.8644 7.561 40.07 55.33
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