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I. INTRODUCTION

Technological advancements over the past decade led to a significant increase of display resolutions. Ultra High Definition (UHD) videos are now available to the public and can be viewed on modern TVs or even mobile phones with HR displays. This situation creates a lot of interest for Super-Resolution (SR) techniques which enhance the quality of LR legacy video content or provide a valuable tool in scalable transmission systems.

Video Super-Resolution (SR) tackles the problem of reconstructing a Higher Resolution (HR) or quality video from one or multiple Low Resolution (LR), degraded representations of the video. In general, this problem is approached either by super resolving each frame individually or by using multiple frames from one or more video sequences in order to further enhance the quality of a frame by exploiting the additional information contained in videos. The simplest SR methods use filter based interpolation. Some of the most popular interpolation methods are bicubic [START_REF] Keys | Cubic convolution interpolation for digital image processing[END_REF] or Lanczos [START_REF] Turkowski | Filters for common resampling tasks[END_REF]. Other filters were also developed as a part of the scalable video compression standards such as the AVC/H.264 and HEVC extensions SVC [START_REF] Wiegand | 10/amd. 3 scalable video coding[END_REF] and SHVC [START_REF] Chen | Scalable HEVC (SHVC) Test Model 10 (SHM 10)[END_REF], respectively.

More complex SR methods can be generally divided in model based and learning based methods. The most popular learning/example based methods usually rely on finding and storing correlations between LR and HR representations [START_REF] Glasner | Super-resolution from a single image[END_REF]- [START_REF] Timofte | A+: Adjusted anchored neighborhood regression for fast superresolution[END_REF]. This is achieved by creating a dictionary of LR and HR image patches and learning a mapping between them from a 978-1-5090-3649-3/17/$31.00 ©2017 European Union large number of samples. If trained on a sufficient amount of data, this type of methods can provide very good results and an efficient computational time. However, taking into account multiple degradation models (e.g. different smoothing levels or compression artifacts) is relatively tricky, as using too many degradation models in the training may decrease the mapping precision. Other learning based SR methods use convolutional neural networks [START_REF] Dong | Learning a deep convolutional network for image super-resolution[END_REF]. Kappeler et al. [START_REF] Kappeler | Super-resolution of compressed videos using convolutional neural networks[END_REF] train a convolutional neural network to take 3 consecutive frames of a video sequence as input in order to perform the up-sampling of the middle frame.

Model based SR, unlike example based methods attempt to model the degradation process of the image and impose a series of constraints based on prior knowledge or assumptions about the image. The so obtained model is then used to retrieve a HR image that best suits this objective function given the known LR image. One of the most popular approaches for Multi Frame SR (MF-SR) is based on a Bayesian formulation with SR priors based on smoothness with Total Variation (TV) [START_REF] Babacan | Variational bayesian super resolution[END_REF], l 1 norm based priors [START_REF] Villena | Bayesian combination of sparse and non sparse priors in image super resolution[END_REF] or non-stationary image prior combinations [START_REF] Villenaa | A non-stationary image prior combination in super-resolution[END_REF]. However these methods are best suited for image registration where a high number of descriptions are available with a rather simple motion between them. In [START_REF] Liu | On bayesian adaptive video super resolution[END_REF] Liu and Sun extend the Bayesian formulation to videos.

A different approach for image SR and reconstruction which shows great promise is based on proximal dual splitting convex optimization [START_REF] Gaetano | A convex optimization approach for image resolution enhancement from compressed representations[END_REF]. In our recent work [START_REF] Boyadjis | Superresolution of hevc videos via convex optimization[END_REF] we extended this method to intra coded HEVC videos and in [START_REF] Purica | A convex optimization framework for video quality and resolution enhancement from multiple descriptions[END_REF] we defined a framework that can combine multiple descriptions of a video using individual compression and degradation models.

Most model based SR methods rely on iterative approaches to find a solution that best fits the model. A critical aspect is the metric used to measure the closeness of the solution to the model, as this determines the changes performed during each iteration. More precisely, in proximal approaches, the function/metric determines the computation of the proximity operator of the objective function. While the l 2 norm is expected to maximize the PSNR of the result, it is a well known fact that PSNR is not always the best measure of quality. As such, using other norms may provide better results on other quality evaluation metrics in certain cases.

This paper investigates the use of different norms in proximal approaches for SR, in order to determine the impact on different quality evaluation metrics and establish which norm is best suited for such an approach. We perform a large number of tests using 5 different norms and up to 11 metrics for various descriptions of multiple videos. The rest of this paper is organized as follows. In Section II we provide a brief description of the key aspects of the framework we use in our tests. Section III describes the computation of proximity operators for different norms. Experimental results are provided in Section IV while Section V concludes the paper.

II. PROXIMAL BASED VIDEO ENHANCEMENT FRAMEWORK

In this section we provide a summary of the SR resolution framework we use. Note that any proximal approach method can be used, however, we relate here to our recent work [START_REF] Purica | A convex optimization framework for video quality and resolution enhancement from multiple descriptions[END_REF] due to the encouraging results obtained and the flexibility of the framework. For a more detailed description of the approach we refer the reader to [START_REF] Gaetano | A convex optimization approach for image resolution enhancement from compressed representations[END_REF] for a description of image SR and our recent work [START_REF] Purica | A convex optimization framework for video quality and resolution enhancement from multiple descriptions[END_REF] for a detailed description of the complete framework used in these experiments. We begin by denoting with x = [x 1 , ..., x k ] with ∀i ∈ [1, k], x i ∈ R N the original HR video sequence which we want to reconstruct. This is subjected to a down-sampling and compression process. The down-sampling operator is denoted by L and involves a typical decimation and filtering step. For example, the most common filters in literature, used for image down-sampling, are known as bicubic [START_REF] Keys | Cubic convolution interpolation for digital image processing[END_REF] or Lanczos [START_REF] Turkowski | Filters for common resampling tasks[END_REF] filters. Furthermore, to account for the compression step we need to relate to the typical hybrid video coders architecture depicted here in Fig. 1. The transform operator T denotes a linear transformation as performed by all hybrid video coders, while Q denotes a quantization operator. As in this work we use High Efficiency Video Coding standards (HEVC) we will not go into more details and refer the reader to [START_REF] Sullivan | Overview of the high efficiency video coding (HEVC) standard[END_REF] for a more detailed overview of the HEVC including the prediction tools, transforms and quantization process which are of significance to our framework. As such, we denote by z the quantized transform coefficients obtained for the residual of a frame and with x the prediction of a frame. Note that x can be intra or inter predicted. Using the above notations and taking into acount the possibility of having M input videos, we can now formulate the data fidelity (DF) function as:

J DF (x) = M m=1 1 M ||T m (L m x -x m ) -z m | | p , (1) 
where x denotes the reconstructed frame and || • || p is the l p -norm. This criterion is further combined with additional constraints based on the available information. First we use the reconstruction intervals of the quantized coefficients denoted by the convex set C to impose an additional constraint as:

M m=1 ι Cm (T m (L m x -x m )) , (2) 
where ι Cm is the characteristic function of the convex set C m , defined as:

ι C (x) = 0 if x ∈ C +∞ otherwise. ( 3 
)
Other constraints used in this model are based on Total Variation (TV) and a limitation of the solution to [0, 255]. They are denoted by F 1 and F 2 respectively, and defined as:

F 1 = (∇ h , ∇ v ), (4) 
D 1 (m, i) = {x ∈ R N : ∇ 2 h x + ∇ 2 v , x ≤ η}, (5) 
and

F 2 = Id , (6) 
D 2 (m) = {x ∈ R N : x (k) ∈ [0, 255] ∀k ∈ [1, N ]}, (7) 
where ∇ h and ∇ v are the horizontal and vertical gradients and η is a TV threshold.

Finally the objective function can be expressed as:

Find x ∈ argmin x∈R K×N J DF (x)+ M m=1 ι Cm (T m (L m x -x m )) + M m=1 2 s=1 ι Ds(m) (F s x) , (8) 
where ι Ds(m) is the characteristic function of the convex sets D s for each video.

The above problem is solved using an adaptation of the proximal primal-dual algorithm in [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, lipschitzian, and parallelsum type monotone operators[END_REF]. A detailed presentation of the algorithm is available in [START_REF] Purica | A convex optimization framework for video quality and resolution enhancement from multiple descriptions[END_REF]. For the sake of brevity we will not go into additional details regarding the implementation. We simply note that the algorithm is based on successive computations of the proximity operator [START_REF] Moreau | Proximite et dualite dans un espace hilbertien[END_REF].

The following section will detail the proximity operator and it's computation on various norms used in this work.

III. PROXIMITY OPERATORS

The proximity operator in a real Hilbert space H with norm • for a function ϕ ∈ Γ 0 (H) where, Γ 0 (H) denotes the class of proper lower semi-continuous convex functions from H to ]-∞, +∞] is defined as:

prox ϕ : H → H : u → argmin v∈H 1 2 v -u 2 + ϕ(v). (9) 
In this work we want to compute the proximity operator for different norms used in the DF term of the objective function. This problem was extensively studied and explicit expressions and computation methods are available for a large number of functions [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF], [START_REF] Chaux | A variational formulation for frame based inverse problems[END_REF].

The objective function described in Section II using the algorithm presented in [START_REF] Purica | A convex optimization framework for video quality and resolution enhancement from multiple descriptions[END_REF] requires successive computations of the proximity operator of a function ϕ

p (y) = γ•||y|| p where γ ∈ R, || • || p is the l p -norm, y = T m (L m x -x m ) -z m and
x and x are single-band 8-bit images. In this work we extend the original framework and in addition to the commonly used l 2 norm we use l 1 , l 4/3 , l 3/2 and l 4 norms. The proximity operators of ϕ p (y) in explicit form for p = 1, 4/3, 3/2, 2, 4 are:

prox ϕ1 (y) = max{(|y| -γ), 0} • sign(y), (10) 
where | • | denotes the absolute value.

τ = 256 • γ 3 + 729 • y 2 , ( 11 
)
prox ϕ 4/3 (y) = ((108•|y|+4•τ ) 2 3 -16•γ) 3 864 27 • |y| + τ • sign(y), ( 12 
)
prox ϕ 3/2 (y) = y + 9 8 • γ • sign y • (γ -γ 2 + 16 9 • |y|) (13) prox ϕ2 (y) = y 1 + 2 • γ (14) 
β = y 2 + 1 27 * γ , (15) 
prox ϕ 4/3 (y) = ((y + β)

1 3 -(β -y) 1 3 ) (8 • γ) 1 3 , (16) 
Based on the above explicit expressions we can efficiently compute the proximity operator for different norms. Note, that this only applies to the DF term. The additional constraints use the same computation method detailed in [START_REF] Purica | A convex optimization framework for video quality and resolution enhancement from multiple descriptions[END_REF].

IV. EXPERIMENTS

A. Experimental setup 1) Input data: We test the video enhancement framework using 6 CIF video sequences (Akiyo, Foreman, Bus, Mobile, Football, Flower) containing both smooth and complex textures. Two descriptions are generated for each sequence using a bicubic polyphase filter with 4-taps defined on [-2, 2] [1] and an 8-tap extension of the filter obtained by stretching the function to [-4, 4]. The encoding of each LR description (QCIF) is performed using HEVC [START_REF] Team | JVT) of ISO/IEC MPEG & ITU-T VCEG[END_REF]. The prediction ( x) is extracted directly from the stream at the time of decoding. Due to the algorithms constant performance across frames we limit the tests to 1 GOP of 8 frames in an IP configuration. Four compression levels are used by setting the QPs to 1, 15, 20 and 25. Note, that videos compressed using a QP of 1 are almost un-degraded by compression. 2) Algorithm setup: The proximal based Convex Optimization solver denoted by CO is then ran on pairs of descriptions using the same compression and different down-sampling operators. The TV threshold η is defined as:

η = η 0 • T V (x 0 ) (17) 
where x 0 is the initialization of the algorithm and η 0 ∈ R is used to adjust the threshold. To better emphasize the behavior of the DF function we use two values for η 0 , first an empirically determined value of 0.95 which was shown to provide overall good results and a value of 1.1 which relaxes the smoothness constraint. The initialization is computed as the average of the two up-sampled descriptions. For reference we also include the results obtained using bicubic (Bic) upsampling and one of the best performing learning based SR methods [START_REF] Timofte | A+: Adjusted anchored neighborhood regression for fast superresolution[END_REF] (A+SR). Furthermore, we limit the number of iterations to 200. We empirically found that the solution can be determined with a per-pixel precision of ∼ 10 -4 for 200 iterations. Albeit, most of the gains are obtained in the first 50-100 iterations as shown in [START_REF] Purica | A convex optimization framework for video quality and resolution enhancement from multiple descriptions[END_REF], we are interested in studying the behavior of the algorithm when using different norms which requires a more precise computation.

3) Video quality evaluation: Using only a Mean Square Error based quality metric such as PSNR would most likely be biased towards the l 2 -norm. Thus, we evaluate our results using multiple video quality evaluation methods including metrics that take into acount the particularities of the human visual system. Table I shows the quality evaluation methods used in these experiments. For additional information on each quality evaluation method and implementation details we refer the reader to [START_REF]Metrix mux[END_REF].

B. Experimental results

As discussed in Section IV-A1 we used 4 QPs, 6 sequences, 5 norms each with 2 TV thresholds. Due to the limited space available we only include the complete tables for two representative sequences: Foreman and Flower. Foreman sequence contains smooth texture while Flower sequence has high frequency components. The other sequences can be viewed as in-between from a texture complexity point of view. For the full results please download the supplementary materials from https://purica.wp.imt.fr/files/2017/06/MMSP2017 supplementary materials.pdf. Tables IV and V show the numerical results obtained on Akiyo and Flower sequences.

QP SAD PSNR SSIM MSSIM VSNR VIF VIFP UQI IFC NQM WSNR 1 l 1 l 1 l 1 l 1 l 1 l 1 l 4/3 l 1 l 3/2 l 2 l 3/2 15 l 4 l 4 l 4 l 4 l 4 l 4 l 2 l 2 l 4 l 2 l 4 20 l 2 l 2 l 2 l 2 l 4 l 2 l 3/2 l 2 l 2 l 2 l 4 25 l 3/2 l 3/2 l 3/2 l 3/2 l 2 l 3/2 l 4/3 l 3/2 l 3/2 l 2 l 2

TABLE II BEST PERFORMING NORMS FOR EACH METRIC AND QP.

Each table is divided in 3 parts. The first part contains the reference results obtained with bicubic up-sampling and the A+SR learning based SR method [START_REF] Timofte | A+: Adjusted anchored neighborhood regression for fast superresolution[END_REF]. The second part depict the results obtained with the Convex Optimization (CO) video enhancement framework described in [START_REF] Purica | A convex optimization framework for video quality and resolution enhancement from multiple descriptions[END_REF] when using different norms and a TV threshold defined as in Eq. 17 using η 0 = 0.95 while the third part uses η 0 = 1.1 (i.e. relaxes the smoothness constraint). The light colors green, cyan, red and blue correspond to QPs 1, 15, 20 and 25, respectively. Saturated colors indicate the best result obtained for a fixed metric and QP over the different norms in each block of the table. To interpret these results and identify behavioral trends with respect to different norms in the proximal based CO algorithm we have several possibilities. We begin by analyzing the results with respect to compression levels. In doing so, we can easily notice that the best results for QP 1 (almost no compression) are generally grouped for all tested metrics. This seems to indicate that the quality evaluation methods score the artifacts introduced by filter smoothing in a similar manner as opposed to compression artifacts where the best results generally vary between different metrics. Another interesting aspect to note is that the best results for QP 1 are generally obtained using l 1 norm. However, the results for QP 1 are generally very close between norms. A more significant differentiation is obtained for higher compression levels.

A second way to interpret the results is related to the behavior of the CO method w.r.t. different norms and texture complexity. We can easily notice that on Flower sequence (high texture complexity) the best results are obtained for l 4 norm while for the smooth texture in Foreman sequence the best performance seems to be obtained towards l 1 norm. Furthermore, the different thresholds used in the TV constraint also plays an important role. For example on Foreman sequence we can see that relaxing this constraint will shift the best results towards l 1 , a similar behavior can also be observed on other sequences. It is interesting to note that SAD, SSIM, VIFP, UQI metrics generally tend to obtain higher scores for lower power norms on higher QPs, while PSNR and WSNR tend to be closer to l 2 norm.

Note, that if the DF function is used without any constraint MSE based metrics are always optimized for l 2 norm. While DF with l 2 norm is maximizing the PSNR of the result, the other constraints which are independent of DF are "pulling" the solution in a different direction. Furthermore, the skipped blocks do not allow the precise recovery of quantized values and the results may convergence towards a somewhat less precise value making it harder to isolate the gains or losses produced by the changing of the norm. Using l 2 norm, even if it maximizes the PSNR it will do so w.r.t. the value reconstructed from the intra/inter prediction without the residual, thus the behavior is somewhat unpredictable when evaluating the quality against the real values.

For all sequences, we notice that the best results for medium to high compression levels tend to be obtained for l 3/2 norm. However, textures with high frequency components present the best results towards a high power norm (Flower, l 4 norm). When compression is very low we notice that the best results are obtained for l 1 norm and in the case of complex textures best results are achieved with a relaxed TV constraint which allows the reconstruction of high frequency components. Note, that the reconstruction precision is higher for low compression as the quantization intervals are very small, for high compression the reconstruction reliability decreases and the model may introduce less accurate high frequency components. Overall, properly adjusting the norm selection and TV thresholding w.r.t. the compression level and texture complexity of the super resolved sequence can provide additional gains over the widely used l 2 norm. Table III shows the maximum gains that can be obtained over l 2 norm and Table II shows the best performing norms for each metric and QP.

V. CONCLUSIONS

In this paper we performed an extensive study on the use of different norms for a proximal based convex optimization algorithm for super resolution and video enhancement. In addition to the commonly used l 2 norm we implemented and tested the l 1 , l 4/3 , l 3/2 and l 4 norms. Extensive test were performed on 6 video sequences compressed with HEVC at QPs 1, 15, 20 and 25 and super-resolved using a proximal based convex optimization algorithm with each norm and two thresholds of the total variation constraint. 11 metrics were used to evaluate the quality of each approach and 2 additional methods were included as reference: bicubic and A+SR [START_REF] Timofte | A+: Adjusted anchored neighborhood regression for fast superresolution[END_REF]. Our results indicate a strong relation between norms, texture complexity and compression. Gains of up to 0.5 dB can be achieved over the l 2 norm. 
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 1 Fig. 1. Hybrid video coding generic scheme.

TABLE III HIGHEST
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TABLE IV RESULTS

 IV OBTAINED ON FOREMAN SEQUENCE USING 4 QPS, 5 NORMS EACH WITH 2 TV THRESHOLDS AND 11 OF THE MOST POPULAR VIDEO QUALITY

				Metrics				
	Method	QP	SAD	PSNR SSIM MSSIM VSNR	VIF	VIFP	UQI	IFC	NQM WSNR
		1	1011859.50 22.97 0.8288 0.9734 19.44 0.3859 0.3296 0.5905 3.600 26.76	39.32
	Bic	15 1019696.00 22.96 0.8262 0.9725 19.40 0.3769 0.3243 0.5288 3.135 26.16 20 1027394.13 22.94 0.8225 0.9711 19.30 0.3653 0.3184 0.5076 2.926 25.69	39.21 39.01
		25 1049480.63 22.84 0.8125 0.9673 18.91 0.3379 0.3040 0.4765 2.605 24.36	38.29
		1	974043.63	23.19 0.8640 0.9797 19.93 0.4097 0.3511 0.6525 3.792 26.51	39.72
	A + SR	15 20	982369.63 989709.13	23.19 0.8611 0.9788 19.90 0.3989 0.3437 0.5701 3.253 25.97 23.18 0.8570 0.9775 19.83 0.3860 0.3364 0.5456 3.041 25.52	39.60 39.38
		25 1007933.00 23.13 0.8463 0.9740 19.49 0.3577 0.3201 0.5119 2.726 24.23	38.64
		1	680159.63	26.54 0.9248 0.9909 25.23 0.5815 0.4467 0.6890 5.632 36.00	49.88
	CO η 0 =0.95 l 1	15 20	742828.63 817470.88	25.94 0.9045 0.9870 23.71 0.5071 0.4103 0.6044 4.221 31.06 25.18 0.8832 0.9828 22.28 0.4464 0.3776 0.5626 3.545 28.83	46.40 43.70
		25	920409.50	24.16 0.8545 0.9760 20.70 0.3766 0.3357 0.5108 2.880 25.59	40.50
		1	680144.63	26.54 0.9248 0.9909 25.23 0.5814 0.4467 0.6892 5.631 36.01	49.88
	CO η 0 =0.95 l 4/3	15 20	740399.00 810957.25	25.96 0.9055 0.9872 23.73 0.5088 0.4117 0.6085 4.246 31.18 25.23 0.8859 0.9832 22.35 0.4501 0.3806 0.5699 3.582 28.97	46.46 43.83
		25	909720.63	24.24 0.8585 0.9767 20.80 0.3818 0.3395 0.5222 2.922 25.76	40.71
		1		26.54 0.9248 0.9909 25.24 0.5815 0.4468 0.6892 5.632 36.00	49.88
	CO η 0 =0.95 l 3/2	15 20	739244.00 807800.50	25.97 0.9060 0.9872 23.74 0.5097 0.4123 0.6099 4.257 31.20 25.26 0.8870 0.9834 22.40 0.4520 0.3819 0.5718 3.599 29.04	46.49 43.90
		25	904595.38	24.29 0.8602 0.9770 20.86 0.3842 0.3411 0.5246 2.943 25.82	40.80
		1	680124.88	26.54 0.9248 0.9909 25.23 0.5815 0.4468 0.6891 5.632 35.99	49.88
	CO η 0 =0.95 l 2	15 20	735804.50 797675.75	26.00 0.9071 0.9874 23.80 0.5126 0.4141 0.6123 4.294 31.28 25.36 0.8902 0.9839 22.55 0.4587 0.3859 0.5760 3.659 29.18	46.60 44.16
		25	889103.25	24.45 0.8643 0.9776 21.06 0.3910 0.3455 0.5280 2.994 26.04	41.08
		1	679845.50	26.54 0.9248 0.9909 25.24 0.5817 0.4470 0.6893 5.636 36.01	49.89
	CO η 0 =0.95 l 4	15 20	727505.00 781279.50	26.09 0.9099 0.9878 24.02 0.5207 0.4181 0.6150 4.379 31.35 25.55 0.8944 0.9847 23.14 0.4734 0.3902 0.5793 3.772 29.24	46.83 44.76
		25	899429.38	24.34 0.8623 0.9773 21.19 0.3912 0.3397 0.5271 2.992 26.04	41.33
		1	650478.75	27.05 0.9303 0.9921 26.28 0.6178 0.4647 0.6835 6.198 37.50	51.98
	CO η 0 =1.1 l 1	15 20	748579.88 833752.63	25.99 0.9053 0.9874 23.85 0.5131 0.4117 0.5953 4.279 31.34 25.09 0.8840 0.9833 22.38 0.4492 0.3769 0.5637 3.551 28.87	46.62 43.74
		25	942759.88	24.03 0.8532 0.9760 20.65 0.3762 0.3328 0.5097 2.859 25.52	40.44
		1	650655.38	27.05 0.9302 0.9921 26.28 0.6178 0.4645 0.6836 6.203 37.59	51.98
	CO η 0 =1.1 l 4/3	15 20	746551.50 828081.38	26.01 0.9060 0.9875 23.88 0.5162 0.4130 0.5992 4.320 31.49 25.14 0.8855 0.9835 22.43 0.4532 0.3790 0.5678 3.593 29.07	46.74 43.91
		25	934682.25	24.11 0.8551 0.9765 20.74 0.3810 0.3355 0.5137 2.902 25.76	40.67
		1	650743.38	27.05 0.9302 0.9921 26.28 0.6177 0.4645 0.6832 6.202 37.59	51.98
	CO η 0 =1.1 l 3/2	15 20	745619.13 825243.88	26.02 0.9063 0.9876 23.90 0.5176 0.4135 0.6004 4.337 31.54 25.17 0.8862 0.9837 22.46 0.4554 0.3800 0.5693 3.614 29.12	46.80 44.00
		25	930164.75	24.15 0.8560 0.9767 20.79 0.3834 0.3366 0.5161 2.922 25.83	40.77
		1	651026.63	27.05 0.9301 0.9920 26.27 0.6173 0.4642 0.6812 6.188 37.52	51.96
	CO η 0 =1.1 l 2	15 20	743633.63 816152.50	26.04 0.9069 0.9877 23.97 0.5211 0.4145 0.6031 4.378 31.62 25.28 0.8878 0.9840 22.67 0.4623 0.3829 0.5715 3.674 29.28	46.94 44.29
		25	916375.13	24.31 0.8586 0.9772 21.00 0.3894 0.3395 0.5212 2.967 26.02	41.07
		1	651641.00	27.04 0.9301 0.9920 26.19 0.6145 0.4636 0.6785 6.126 37.28	51.79
	CO η 0 =1.1 l 4	15 20	739231.25 796836.50	26.10 0.9076 0.9878 24.07 0.5268 0.4162 0.6058 4.429 31.75 25.57 0.8877 0.9839 23.15 0.4744 0.3855 0.5695 3.748 29.34	47.12 44.86
		25	926938.13	24.19 0.8552 0.9762 21.06 0.3864 0.3321 0.5192 2.935 25.98	41.27
				EVALUATION TECHNIQUES.				

TABLE V RESULTS

 V OBTAINED ON FLOWER SEQUENCE USING 4 QPS, 5 NORMS EACH WITH 2 TV THRESHOLDS AND 11 OF THE MOST POPULAR VIDEO QUALITY EVALUATION TECHNIQUES.