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Gif-sur-Yvette, France
dDepartment of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy

Abstract

This paper deals with observer-based control design for a class of switched

discrete-time linear systems with parameter uncertainties. The main contri-

bution of the paper is to propose a convenient way based on Finsler’s lemma to

enhance the synthesis conditions, expressed in terms of Linear Matrix Inequal-

ities (LMIs). Indeed, this judicious use of Finsler’s lemma provides additional

decision variables, which render the LMIs less conservative and more general

than all those existing in the literature for the same class of systems. Two nu-

merical examples followed by a Monte Carlo evaluation are proposed to show

the superiority of the proposed design technique.

Keywords: Switched discrete-time systems; Output feedback control;

Switched Lyapunov function (SLF); Finsler’s lemma; LMI.

1. Introduction

Switching systems deserve to be investigated for theoretical motivations jus-

tified by their fascinating construction as well as practical reasons, due to several
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applications, such as networked control systems [46], air traffic control [35], ser-

vomechanism systems [45]. For an overview on stability analysis, we refer the5

reader to [16, 32, 33, 38], which summarize some contributions on the analysis

and design of switching systems. New investigations on stabilization and con-

trol for both linear and nonlinear switched systems have been addressed in the

monograph [47], see also [42].

Several methodologies have been developed in the literature for both10

continuous-time an discrete-time systems [2, 8, 12, 34, 42]. Among the existing

methods, we have: dwell-time and average dwell-time approaches for stability

analysis and stabilization problems [21, 43]; approaches based on a specific class

of switching laws [4], [23] and under arbitrary switching sequences [3]; slid-

ing mode technique [39]; algebraic approach [2]; Lyapunov-Metzler approach15

[14, 18]; input-output approach [31].

In this paper, we investigate the problem of robust observer-based stabi-

lization for linear switched discrete-time systems in the presence of parameter

uncertainties. The switching mode is assumed to be arbitrary, but its instanta-

neous values are available in real time.20

Most of the existing control strategies of switched systems focus on full-

state feedback; see, e.g., [44] and [37]. However, in practice, full measurement

of the states of a switched system may be expensive or unavailable at any

cost. For this reason, considerable efforts have been paid to state estimation

of linear and nonlinear switched systems [4, 8, 19]. On the other hand, it is25

always more suitable to design a control system which is not only stable, but

also guarantees an adequate level of performance. This is why control systems

design in the presence of model uncertainties has been a challenging topic and

received considerable attention [20, 28, 36, 42].

One of hot topics in switched systems is to find non conservative conditions30

to guarantee the stabilization of the systems under arbitrary switching rules.

A breakthrough regarding this issue is the switched quadratic Lyapunov func-

tions (SLF) introduced in [12]. Within LMI framework, control techniques by

switching among different controllers have been applied extensively in recent
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years, see in particular [6, 7, 14, 15, 45]. Control synthesis techniques via static35

output feedback for switched systems under arbitrary switching rule have been

first considered in [12]. Sufficient LMI conditions subject to an equality con-

straint that guarantees the asymptotic stability of the closed-loop system have

been given. Using similar techniques, the issue has been reconsidered in [22],

in the observer-based static output feedback context, in presence of parameter40

uncertainties. Relevant results and interesting improvements of [12] have been

considered in [7]. As for the dynamic output feedback, it has been investigated

in [14].

Finsler’s lemma has been used previously in the control literature mainly in

order to eliminate some unlike matrix terms, see e.g. [9]. Switched quadratic45

Lyapunov functions combined with Finsler’s lemma have been used in [17] to

get necessary and sufficient LMI conditions for the asymptotic stability issue.

However, based on the pioneering work in [17], some attempts using Finsler’s

lemma-based approach have been presented in [29] and [36]. Unfortunately, the

obtained LMI conditions still remain very conservative. Indeed, they are either50

subjected to strong equality constraints [36], or require particular choices of the

decision variables [29]. From LMI point of view, the stabilization problem is far

from being solved. Indeed, finding a systematic LMI technique for handling the

bilinear matrix terms related to the controller gains and the Finsler inequality

is a hard task. This is one of the main motivations of the work investigated in55

this paper.

The main objective of this paper consists in developing new and less con-

servative LMI synthesis conditions for the observer-based stabilization prob-

lem for switched discrete-time linear systems with parameter uncertainties. As

mentioned previously, the addressed problem has been investigated in [29] and60

[36] in the LMI context by using switched Lyapunov functions combined with

Finsler’s lemma. However, the obtained LMI conditions are conservative be-

cause of the particular use of Finsler’s lemma in its basic formulation. In addi-

tion, the switched Lyapunov matrices used in [29] are assumed to be diagonal,

and the LMI synthesis conditions proposed in [36] require additional equality65
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constraints, which turns out to be very conservative. To show the importance

of the work we proposed in this paper, we summarize the contributions in the

following items:

• A new linearization scheme is proposed, thanks to a convenient use of

Finsler’s lemma. This novel use of Finsler’s lemma may open some new70

directions to solve more complicated control design problems.

• Analytical developments to show the superiority of the proposed design

method compared to the existing techniques in the literature are proposed

in Section 3.2.

• As compared to the Young inequality based approach introduced recently75

in [24] and [26], the proposed technique in this paper allows to eliminate

some bilinear terms arising from the use of the Young relation-based ap-

proach, and then leads to less conservative LMI conditions.

• The proposed LMI method is more general than those established in the

literature for the same stabilization problem. We essentially demonstrated80

that the way to select the matrices inferred from Finsler’s lemma plays an

important role in the feasibility of the obtained LMIs. Some scenarios are

provided as comparisons to the existing results in the literature.

It is worth noticing that this paper considers only the stabilization problem in

the LMI framework. Therefore, all the results provided in the paper are com-85

pared with existing LMI techniques only. The proposed method is completely

different from, for instance, those in [1, 30, 39, 40, 41], which dealt with Fi-

bonacci switched-capacitor (SC) DC-AC inverter, optimal switching approach,

dwell-time approach, sliding mode approach, and model approximation problem

for T-S fuzzy switched systems with stochastic disturbances, respectively.90

The remainder of the paper is organized as follows. Section 2.1 is devoted

to the problem formulation and some preliminary results. The main contribu-

tion of this paper is presented in Section 3. Some numerical design aspects
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and constructive comments are provided in Secton 4. Section 5 gives simula-

tion examples and comparisons to show the superiority of the proposed design95

methodology. Finally, some conclusions and future works are reported in Sec-

tion 6.

Notation. We provide some notations used throughout this paper. Given a

symmetric matrix S, then the symbol S > 0 (< 0) means that the matrix S is

positive (negative) definite. Rm×n denotes the set of m × n real matrices; the100

symbol Sn×n+ denotes the set of n× n real symmetric positive-definite matrices;

the notation (?) is used for the blocks induced by symmetry; AT denotes the

transpose of A; He(A) denotes A+AT , and G−T denotes the transpose of G−1.

Before formulating the problem, let us introduce the following lemma [13],

which plays an important role and constitutes the main tool in this paper.105

Lemma 1 (Finsler). Let x ∈ Rn, P ∈ Sn×n, and H ∈ Rm×n such that

rank(H) = r < n. The following statements are equivalent:

1. xTPx < 0, ∀Hx = 0, x 6= 0;

2. ∃X ∈ Rn×m such that P +XH +HTXT < 0.

2. Problem Formulation and Background Results110

This section is devoted to the formulation of the problem and background

results before stating the main results of the paper.

2.1. Formulation of the Problem

Consider a class of switched discrete-time linear systems described by the

following equations: xt+1 = (Aσ + ∆Aσ)xt + (Bσ + ∆Bσ)ut

yt = (Cσ + ∆Cσ)xt
(1)

where xt ∈ Rn is the state vector, yt ∈ Rm is the output measurement vector,

ut ∈ Rp is the control input vector, and σ : N → Λ , {1, 2, . . . , N}, t 7→ σt, is

a switching rule. If there is no ambiguity, we simply write σ instead of σt. Aσ,
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Bσ, and Cσ, σ ∈ Λ, are n × n , n ×m and p × n real matrices, respectively.

Assume that

[∆Aσ,∆Bσ,∆Cσ] ,MσDσ[Eσ1, Eσ2, Eσ3], (2)

where, for each σ ∈ Λ, the uncertainty Dσ satisfies

DT
σDσ ≤ I. (3)

Mσ, Eσ1, Eσ2, Eσ3 are constant matrices characterizing the structure of the un-

certainties. Note that such a model can be used to describe a large class of115

practical systems, such as cognitive radio networks [27], stepper motors [10],

and control of an F-16 aircraft [35]. The references [32], [34], [38] provide a

general and accurate modeling framework for many relevant real-world models

and processes. In particular, a discrete-time version of the Lipschitz nonlinear

switched system modeling the longitudinal dynamics of an F-18 aircraft [43] can120

be viewed as a switched linear discrete-time system with parameter uncertain-

ties. Indeed, any Lipschitz system can be transformed to a linear system with

structured and norm-bounded parameter uncertainties [25].

Throughout the paper, the following assumption is needed [29]:

Assumption 1. The switching function σ satisfies the two following items:125

i) σ is unknown a priori, but it is available in real-time;

ii) the switching of the observer should coincide exactly with the switching of

the system.

As speculated in [20], assuming an unknown switching rule σ can be very

useful in many practical applications such as the case when σ is computed via130

complex algorithms by a higher level supervisor or when it is generated by a

human operator (for instance the switch of gears in a car).

The observer-based controller we consider in this paper is under the form :
x̂t+1 = Aσx̂t + Lσ(yt − Cσx̂t) +Bσut

ŷt = Cσx̂t

ut = Kσx̂t

(4)
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where x̂t ∈ Rn is the estimate of xt, Lσ ∈ Rn×p, Kσ ∈ Rm×n, σ ∈ Λ, are the

observer-based controller gains. Consider the generalized state vector

x̄t = [x̂Tt eTt ]T ,

where et = x̂t−xt is the estimation error. Then the closed-loop system resulted

from (1) and (4) can be written as:

xt+1 = Aσx̄t (5)

where

Aσ =

 Aσ +BσKσ + Lσ∆Cσ −Lσ(Cσ + ∆Cσ)

−(∆Aσ + ∆BσKσ − Lσ∆Cσ) Aσ + ∆Aσ − Lσ(Cσ + ∆Cσ)

 . (6)

The objective is to design output feedback matrices Kσ and Lσ, σ ∈ Λ, so that

the closed-loop system (5) is asymptotically stable. Let us define the indicator

function

ξ(t) = [ξ1(t), ξ2(t), . . . , ξN (t)]T

as follows:

ξi(t) =

 1, σt = i;

0, otherwise.

Therefore, system (5) can be rewritten in the unified form:

x̄t+1 =

N∑
i=1

ξi(t)Aix̄t, (7)

where Ai is defined in (6), when σt = i.

To analyze stability of the closed-loop system (7), we use the switched Lya-

punov function defined as:

V (x̄t, ξ(t)) = x̄Tt P̂ (ξ(t))x̄t

=

N∑
i=1

ξi(t)x̄
T
t

P̂ 11
i P̂ 12

i

(?) P̂ 22
i

 x̄t. (8)
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Notice that the Lyapunov function (8) is well known in the literature, (see for

instance [11] and [5]). For shortness we use σt = i and σt+1 = j. This means

that ξi(t) = 1 and ξj(t+ 1) = 1. Then we get

∆V , V (x̄t+1, ξ(t+ 1))− V (x̄t, ξ(t))

= x̄Tt+1

 N∑
j=1

ξj(t+ 1)P̂j

 x̄t+1 − x̄Tt

(
N∑
i=1

ξi(t)P̂i

)
x̄t

=

N∑
j=1

ξj(t+ 1)

 N∑
i=1

ξi(t)

 x̄t

x̄t+1

T −P̂i 0

0 P̂j

 x̄t

x̄t+1


 . (9)

We have to show that, under suitable conditions, ∆V < 0, which means that

the closed-loop system (7) is asymptotically stable.135

2.2. Background Results

This section is devoted to two LMI techniques reported in the literature,

with which we will compare the proposed main contribution of this paper. On

the other hand, it is worth mentioning that these two techniques can be con-

sidered as preliminary results because they are not available for the same class140

of systems. First, we will recall the standard Finsler lemma based approach

in [29] that we will correct because of some erroneous mathematical decompo-

sitions in [29]. Second, we will generalize the Young inequality based approach

introduced in [24, 26] to switched linear systems in the presence of parameter

uncertainties.145

2.2.1. Standard Finsler’s lemma based approach [29]

Finsler’s lemma has been frequently used in the literature for numerous

control design problems. Especially in [29], this lemma has been used for the

same class of systems in (1). Unfortunately, a mistake has significantly affected

the LMI synthesis conditions, which renders the final result in [29] erroneous.150

Throughout this section, we will give a correct version of the result in [29] and

we will provide some comments on the way Finsler’s lemma has been used.
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In [29], the Finsler lemma has been used with the following parameters

x =

 xt

xt+1

 , Pij =

−P̂i 0

0 P̂j

 , Hi =
[
Ai −I

]
, Xi =

 F̂i
ĜTi

 , (10)

which lead to ∆V < 0 if the following second Finsler inequality:

Pij +XiHi +HT
i X

T
i < 0 (11)

holds for all i, j ∈ Λ. By substituting (10) in (11) we get the detailed inequality:

F̂iAi +A
T

i F̂
T
i − P̂i −F̂i +A

T

i Ĝi

−F̂Ti + ĜTi Ai P̂j − Ĝi − ĜTi

 < 0, (12)

instead of [29, Inequality (9)] which is erroneous.

Now, using the same matrices as in [29], defined as follows:

F̂i = diag(Fi, I), Ĝi = diag(Gi, I), P̂i = diag(P̂ 11
i , P̂ 22

i ),

with Fi = GTi .

To simplify the presentation and to understand more the corrected version

of the result, we consider, as in [29], systems without uncertainties, i.e:

∆Ai = 0,∆Bi = 0,∆Ci = 0, ∀i ∈ Λ.

By substituting F̂i, Ĝi, and P̂i in (12), and after developing, we get the following

detailed inequalities:
Ωi11 −FiLiCi Ωi13 0

(?) Ωi22 −CTi LTi Gi Ωi24

(?) (?) P̂ 11
j −GTi −Gi 0

(?) (?) (?) P̂ 22
j − 2I

 < 0, i, j ∈ Λ (13)

where

Ωi11 = −P̂ 11
i + He

(
FiAi + FiBiKi

)
,

Ωi13 = −Fi +Ai
TGi +KT

i B
T
i Gi,

Ωi22 = −P̂ 22
i + He

(
Ai − LiCi

)
,

9



Ωi24 = −I +ATi − CTi LTi .

Note that, for each i, j ∈ Λ, inequality (13) is a BMI, which cannot be linearized155

by choosing Fi = GTi as in [29]. This difficulty is due to the presence of the

coupling FiBiKi and GTi BiKi, which are vanished from [29, Inequality (9)]

because of the mistake.

To linearize such a BMI, we use several steps. First, we pre- and post-

multiply (13) by diag
(
F−1
i , I, G−Ti , I

)
, we obtain:

Ω̂i11 −LiCi Ω̂i13 0

(?) Ωi22 −CTi LTi Ωi24

(?) (?) G−Ti P̂ 11
j G−1

i −G
−T
i −G−1

i 0

(?) (?) (?) P̂ 22
j − 2I

 < 0, (14)

where

Ω̂i11 = −F−1
i P̂ 11

i F−Ti + He
(
AiF

−T
i +BiKiF

−T
i

)
,

Ω̂i13 = −G−1
i + F−1

i Ai
T + F−1

i KT
i B

T
i .

There are still two bilinear terms in (14), namely −F−1
i P̂ 11

i F−Ti and

G−Ti P̂ 11
j G−1

i . To avoid these terms, we first introduce the following change

of variables

F−1
i = F̃i, (P̂ 11

i )−1 = P̃ 11
i , G−1

i = G̃i, Ri = KiF
−T
i .

Then, using the inequality

−F−1
i P̂ 11

i F−Ti ≤ P̃ 11
i − F̃i − F̃Ti ,

it follows that (14) is fulfilled if the following inequality holds:
Υi

11 −LiCi Υi
13 0

(?) Ωi22 −CTi LTi Ωi24

(?) (?) G̃Ti P̂
11
j G̃i − G̃Ti − G̃i 0

(?) (?) (?) P̂ 22
j − 2I

 < 0, (15)
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where

Υi
11 = P̃ 11

i + He
(
− F̃i +AiF̃

T
i +BiRi

)
,

Υi
13 = −G̃i + F̃iAi

T +RTi B
T
i .

Finally, a simple application of Schur lemma [9] on (15) leads to the following

theorem, which is a corrected version of [29, Theorem 1].160

Theorem 1. Assume that there exist matrices P̃ 11
i , P̂ 22

i ∈ Sn×n+ , invertible ma-

trices F̃i ∈ Rn×n, G̃i ∈ Rn×n, and arbitrary matrices Ri ∈ Rm×n, Li ∈ Rn×p,

i ∈ Λ, such that the following LMIs are fulfilled:

Υi
11 −LiCi Υi

13 0 0

(?) Υi
22 −CTi LTi −I +ATi − CTi LTi 0

(?) (?) −G̃i − G̃Ti 0 G̃Ti

(?) (?) (?) P̂ 22
j − 2I 0

(?) (?) (?) (?) −P̃ 11
j


< 0, i, j ∈ Λ (16)

with

Υi
11 = P̃ 11

i + He
(
− F̃i +AiF̃

T
i +BiRi

)
,

Υi
13 = −G̃i + F̃iAi

T +RTi B
T
i ,

Υi
22 = −P̂ 22

i + He
(
Ai − LiCi

)
.

Then, the closed-loop system (5) is asymptotically stable for the observer-based

controller gains

Ki = RiF̃
−T
i , i ∈ Λ (17)

and Li, i ∈ Λ, are free solutions of (16).

Proof. The rest of the proof is omitted. It is based on the use of the Schur

lemma on (15) to linearize the remaining bilinear term G−Ti P̂ 11
j G−1

i .

2.2.2. Young’s inequality based approach

This section is dedicated for the application of Young’s relation based ap-165

proach introduced in [24, 26] to solve the problem of observer-based stabiliza-

tion problem of linear uncertain systems. The Young inequality based approach
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in [24] corresponds to F̂i = 0 and Ĝi = diag(G11, G22
i ), with G22

i = (G22
i )T . It

follows that inequality (12) has the same structure than [24, Inequality (11)].

The crucial linearization problem lies in the presence of the isolated term170

(Ci + ∆Ci)
TLTi , while the matrix Li is elsewhere coupled with the matrix G22

i .

Then, to retrieve the term LTi G
22
i and eliminate the isolated term related to Li,

in order the make a change of variables, a solution has been proposed in [24, 26],

which provides straightforwardly the next theorem valid for linear switched

systems (1).175

Theorem 2. Assume that for some fixed positive scalars εi, γi and µi, i ∈

Λ, there exist positive definite matrices Di ,

P̃ 11
i P̃ 12

i

(?) P̂ 22
i

 ∈ R2n×2n and

G22
i , G̃

11 ∈ Rn×n, K̃i ∈ Rm×n, L̂i ∈ Rn×p, for i ∈ Λ, such that the LMI (18)

holds for all i, j ∈ Λ



−P̃ 11
i −P̃ 12

i (1.3) 0 0 0 (1.7) 0 (1.9) 0

(?) −P̂ 22
i 0 (2.4) −CTi L̂Ti 0 ETi1 0 −ETi3 0

(?) (?) (3.3) P̃ 12
j 0 I 0 0 0 0

(?) (?) (?) (4.4) 0 0 0 G22
i Mi 0 L̂iMi

(?) (?) (?) (?) −εiG22
i 0 0 0 0 L̂iMi

(?) (?) (?) (?) (?) −ε−1
i G22

i 0 0 0 0

(?) (?) (?) (?) (?) (?) −γiI 0 0 0

(?) (?) (?) (?) (?) (?) (?) −γ−1
i I 0 0

(?) (?) (?) (?) (?) (?) (?) (?) −µiI 0

(?) (?) (?) (?) (?) (?) (?) (?) (?) −µ−1
i I



< 0

(18)

(1.3) = (G̃11)TATi + K̃T
i B

T
i , (1.7) = −(G̃11)TETi1 − K̃T

i E
T
i1

(1.9) = (G̃11)TETi3, (2.4) = ATi G
22
i − CTi L̂Ti

(3.3) = P̃ 11
j − G̃11 − (G̃11)T , (4.4) = P̂ 22

j − 2G22
i

(19)

Then the closed-loop system (5) is asymptotically stable with the observer-

based controller gains:

Ki = K̃iG̃
11, Li = (G22

i )−1L̂i. (20)
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Proof. The proof is omitted. It is straightforward and follows exactly the

same steps than [24]. The matrix Di comes from the change of variable:

Di ,

(G̃11)T 0

0 I

P̂ 11
i P̂ 12

i

(?) P̂ 22
i

G̃11 0

0 I

 =

P̃ 11
i P̃ 12

i

(?) P̂ 22
i

 .
Although Theorem 1 and Theorem 2 provide solutions to the observer-based180

stabilization problem for switched linear systems, the obtained LMIs still remain

conservative, and then there are some possibilities for improvements from LMI

feasibility point of view. This is the objective of the next section, where new

and enhanced LMI conditions will be proposed by exploiting the Finsler lemma

in a non-standard way.185

3. Main Results: Enhanced LMI Conditions

In this section, we introduce the main result of this paper, which consists in

new LMI conditions to solve the problem of robust observer-based stabilization

for switched systems. We will show that thanks to the use of convenient matrices

in the Finsler lemma, we get more general and less conservative LMIs compared190

to the those presented in the previous section.

3.1. Introductory developments

We will analyze all the bilinear terms in (12) by considering the detailed

structures of F̂i, Ĝi, and P̂i as follows:

F̂i ,

F 11
i F 12

i

F 21
i F 22

i

 , Ĝi ,
G11

i G12
i

G21
i G22

i

 , P̂i ,
P̂ 11

i P̂ 12
i

(?) P̂ 22
i

 . (21)

By substituting (21) in (12) and after developing, we get the new inequality:


Ωi11 Ωi12 Ωi13 Ωi14

(?) Ωi22 Ωi23 Ωi24

(?) (?) P̂ 11
j − (G11

i )T −G11
i P̂ 12

j − (G21
i )T −G12

i

(?) (?) (?) P̂ 22
j −G22

i − (G22
i )T

 < 0, (22)

13



where

Ωi11 =− P̂ 11
i + He

(
F 11
i Ai + F 11

i BiKi + (F 11
i + F 12

i )Li∆Ci − F 12
i ∆Ai − F 12

i ∆BiKi

)
,

Ωi12 =− P̂ 12
i + F 12

i (Ai + ∆Ai)− (F 11
i + F 12

i )Li(Ci + ∆Ci) +ATi (F 21
i )T ,

+KT
i B

T
i (F 21

i )T + ∆CTi L
T
i (F 21

i + F 22
i )T −∆ATi (F 22

i )T −KT
i ∆BTi (F 22

i )T ,

Ωi13 =− F 11
i +Ai

TG11
i +KT

i B
T
i G

11
i −∆ATi G

21
i −KT

i ∆BTi G
21
i + ∆CTi L

T
i (G11

i +G21
i ),

Ωi14 =− F 12
i +ATi G

12
i +KT

i B
T
i G

12
i −∆Ai

TG22
i −KT

i ∆BTi G
22
i + ∆CTi L

T
i (G12

i +G22
i ),

Ωi22 =− P̂ 22
i + He

(
F 22
i (Ai + ∆Ai)− (F 21

i + F 22
i )Li(Ci + ∆Ci)

)
,

Ωi23 =− F 21
i − (Ci + ∆Ci)

TLTi (G11
i +G21

i ) +ATi G
21
i + ∆ATi G

21
i ,

Ωi24 =− F 22
i +ATi G

22
i + ∆ATi G

22
i − (Ci + ∆Ci)

TLTi (G12
i +G22

i ).

As we can see, the linearization problem is a hard challenge due to the195

presence of twelve bilinear terms without counting the bilinearities related to

the uncertainties. We cannot use change of variables because the matrices Li,

i ∈ Λ, are coupled with eight different matrices, namely G11
i , G12

i , G22
i , G21

i ,

F 11
i , F 12

i , F 22
i , and F 21

i . The strategy consists in exploiting the invertibility

of the matrices G11
i , and G22

i , which is a consequence of (22). Then we use200

the congruence principle with convenient matrices. To do this, we first start

by linearizing the bilinear terms related to the gains Ki. The linearization

procedure is presented in the next section.

3.2. A new linearization procedure

To enhance the clarity of the contributions and to simplify the understanding205

of the main ideas, the proposed linearization strategy is shared into three steps.

3.2.1. First step: Linearization with respect to Ki

Since the matrices G11
i and G22

i are necessarily invertible, then us-

ing a congruence transformation on (22) by pre- and post-multiplying by

14



diag
(

(G11
i )−T , I, (G11

i )−T , I
)

, we get
Ω̂i11 Ω̂i12 Ω̂i13 Ω̂i14

(?) −Ω̂i22 Ω̂i23 Ω̂i24

(?) (?) Ω̂ij33 Ω̂ij34

(?) (?) (?) P̂ 22
j −G22

i − (G22
i )T

 < 0, (23)

where

Ω̂i11 =− (G11
i )−T P̂ 11

i (G11
i )−1 + He

(
(G11

i )−TF 11
i Ai(G

11
i )−1

+ (G11
i )−TF 11

i BiKi(G
11
i )−1 + ((G11

i )−TF 11
i + (G11

i )−TF 12
i )Li∆Ci(G

11
i )−1

− (G11
i )−TF 12

i ∆Ai(G
11
i )−1 − (G11

i )−TF 12
i ∆BiKi(G

11
i )−1

)
,

Ω̂i12 =− (G11
i )−T P̂ 12

i + (G11
i )−TF 12

i (Ai + ∆Ai)

− ((G11
i )−TF 11

i + (G11
i )−TF 12

i )Li(Ci + ∆Ci) + (G11
i )−TATi (F 21

i )T

+ (G11
i )−TKT

i B
T
i (F 21

i )T + (G11
i )−T∆CTi L

T
i (F 21

i + F 22
i )T

− (G11
i )−T∆ATi (F 22

i )T − (G11
i )−TKT

i ∆BTi (F 22
i )T ,

Ω̂i13 =− (G11
i )−TF 11

i (G11
i )−1 + (G11

i )−TAi
T + (G11

i )−TKT
i B

T
i

− (G11
i )−T∆ATi G

21
i (G11

i )−1 − (G11
i )−TKT

i ∆BTi G
21
i (G11

i )−1

+ (G11
i )−T∆CTi L

T
i (I +G21

i (G11
i )−1),

Ω̂i14 =− (G11
i )−TF 12

i + (G11
i )−TATi G

12
i + (G11

i )−TKT
i B

T
i G

12
i

− (G11
i )−T∆Ai

TG22
i − (G11

i )−TKT
i ∆BTi G

22
i

+ (G11
i )−T∆CTi L

T
i (G12

i +G22
i ),

Ω̂i22 =Ωi22,

Ω̂i23 =− F 21
i (G11

i )−1 − (Ci + ∆Ci)
TLTi (I +G21

i (G11
i )−1) +ATi G

21
i (G11

i )−1

+ ∆ATi G
21
i (G11

i )−1,

Ω̂i24 =Ωi24,

Ω̂ij33 =(G11
i )−T P̂ 11

j (G11
i )−1 − (G11

i )−1 − (G11
i )−T

Ω̂ij34 =(G11
i )−T P̂ 12

j − (G11
i )−TG12

i − (G11
i )−T (G21

i )T .

15



Then, we can be see, there are two ”similar” bilinear terms in inequality (23),

namely, (G11
i )−T P̂ 11

i (G11
i )−1 and (G11

i )−T P̂ 11
j (G11

i )−T , in the expressions of

Ω̂i11, and Ω̂ij33, respectively.210

By choosing G11
i = G11 for all i, then we can introduce a suitable change of

variables. On the other hand, in order to avoid some bilinear terms containing

Ki, we focus on the case where F 11
i = 0. To sum up, we introduce the convenient

change of variables:

(G11)−1 , G̃11, K̃i , KiG̃
11, (G̃11)T P̂ 11

i G̃11 , P̃ 11
i , (G̃11)T P̂ 12

i , P̃ 12
i .

Therefore, inequality (23) becomes:
Ω̃i11 Ω̃i12 Ω̃i13 Ω̃i14

(?) Ω̃i22 Ω̃i23 Ω̃i24

(?) (?) P̃ 11
j − G̃11 − (G̃11)T P̃ 12

j − G̃11G12
i − G̃11(G21

i )T

(?) (?) (?) P̂ 22
j −G22

i − (G22
i )T

 < 0, (24)

where

Ω̃i11 =− P̃ 11
i + He

(
(G̃11)TF 12

i Li∆CiG̃
11 − (G̃11)TF 12

i ∆Ai(G̃
11)− (G̃11)TF 12

i ∆BiK̃i

)
,

Ω̃i12 =− P̃ 12
i + (G̃11)TF 12

i (Ai + ∆Ai)− (G̃11)TF 12
i Li(Ci + ∆Ci)

+ (G̃11)TATi (F 21
i )T + K̃T

i B
T
i (F 21

i )T + (G̃11)T∆CTi L
T
i (F 21

i + F 22
i )T

− (G̃11)T∆ATi (F 22
i )T − K̃T

i ∆BTi (F 22
i )T ,

Ω̃i13 =(G̃11)TATi + K̃T
i B

T
i − (G̃11)T∆ATi G

21
i G̃

11 − K̃T
i ∆BTi G

21
i G̃

11

+ (G̃11)T∆CTi L
T
i (I +G21

i G̃
11),

Ω̃i14 =− (G̃11)TF 12
i + (G̃11)TATi G

12
i + K̃T

i B
T
i G

12
i − (G̃11)T∆Ai

TG22
i

− K̃T
i ∆BTi G

22
i + (G̃11)T∆CTi L

T
i (G12

i +G22
i ),

Ω̃i22 =− P̂ 22
i + He

(
F 22
i (Ai + ∆Ai)− (F 21

i + F 22
i )Li(Ci + ∆Ci)

)
,

Ω̃i23 =− F 21
i G̃11 − (Ci + ∆Ci)

TLTi (I +G21
i G̃

11) +ATi G
21
i G̃

11 + ∆ATi G
21
i G̃

11,

Ω̃i24 =− F 22
i +ATi G

22
i + ∆ATi G

22
i − (Ci + ∆Ci)

TLTi (G12
i +G22

i ).

Inequality (24) is still a BMI with respect to K̃i, even in the uncertainty free

case. This is due to their coupling with the matrices F 21
i and G12

i . Then, these
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bilinear terms vanish if G12
i = F 21

i = 0. Then, in such a case, inequality (24) is

equivalent to the following one:
Θi

11 Θi
12 Θi

13 Θi
14

(?) Θi
22 Θi

23 Θi
24

(?) (?) P̃ 11
j − G̃11 − (G̃11)T P̃ 12

j − G̃11(G21
i )T

(?) (?) (?) P̂ 22
j −G22

i − (G22
i )T

 < 0, (25)

where

Θi
11 =− P̃ 11

i + He
(

(G̃11)TF 12
i Li∆CiG̃

11 − (G̃11)TF 12
i ∆Ai(G̃

11)− (G̃11)TF 12
i ∆BiK̃i

)
,

Θi
12 =− P̃ 12

i + (G̃11)TF 12
i (Ai + ∆Ai)− (G̃11)TF 12

i Li(Ci + ∆Ci)

+ (G̃11)T∆CTi L
T
i (F 22

i )T − (G̃11)T∆ATi (F 22
i )T − K̃T

i ∆BTi (F 22
i )T ,

Θi
13 =(G̃11)TATi + K̃T

i B
T
i − (G̃11)T∆ATi G

21
i G̃

11 − K̃T
i ∆BTi G

21
i G̃

11

+ (G̃11)T∆CTi L
T
i (I +G21

i G̃
11),

Θi
14 =− (G̃11)TF 12

i − (G̃11)T∆Ai
TG22

i − K̃T
i ∆BTi G

22
i + (G̃11)T∆CTi L

T
i G

22
i ,

Θi
22 =− P̂ 22

i + He
(
F 22
i (Ai + ∆Ai)− F 22

i Li(Ci + ∆Ci)
)
,

Θi
23 =− (Ci + ∆Ci)

TLTi (I +G21
i G̃

11) +ATi G
21
i G̃

11 + ∆ATi G
21
i G̃

11,

Θi
24 =− F 22

i +ATi G
22
i + ∆ATi G

22
i − (Ci + ∆Ci)

TLTi G
22
i .

Now that the BMI (22) is linearized with respect to the controller matrices

K̃i, we will proceed to the linearization with respect to the observer gains Li.

This is the aim of the next linearization step.

3.2.2. Second step: Linearization of (25) with respect to Li

Throughout this step, we aim to linearize all the bilinear terms related to

the observer gains Li, namely the terms (G̃11)TF 12
i LiCi, (I + G21

i G̃
11)TLiCi,

F 22
i LiCi, and (G22

i )TLiCi. The other terms containing the uncertainties will be

handled in the third linearization step. To avoid all the previous bilinear terms,

the strategy consists in taking

(G̃11)TF 12
i = I +G21

i G̃
11 = (G22

i )T and F 22
i = 0.

17



This identities lead to

F 12
i = (G11)T (G22

i )T , G21
i = G22

i G
11 −G11 and F 22

i = 0,

which means that the matrices F̂i and Ĝi have the following structures:215

F̂i =

0 (G11)T (G22
i )T

0 0

 , Ĝi =

 G11 0

G22
i G

11 −G11 G22
i

 . (26)

It follows that the following change of variable

L̂i = (G22
i )TLi

is possible.

By substituting (26) in (25) we get the new inequality:
Θ̂i

11 Θ̂i
12 Θ̂i

13 Θ̂i
14

(?) −P̂ 22
i Θ̂i

23 Θ̂i
24

(?) (?) P̃ 11
j − G̃11 − (G̃11)T P̃ 12

j + I − (G22
i )T

(?) (?) (?) P̂ 22
j −G22

i − (G22
i )T

 < 0, (27)

where

Θ̂i
11 =− P̃ 11

i + He
(
L̂i∆CiG̃

11 − (G22
i )T∆AiG̃

11
i − (G22

i )T∆BiK̃i

)
,

Θ̂i
12 =− P̃ 12

i + (G22
i )T (Ai + ∆Ai)− L̂i(Ci + ∆Ci),

Θ̂i
13 =(G̃11)TAi

T + K̃T
i B

T
i − (G̃11)T∆Ai

T (G22
i − I)

− K̃T
i ∆BTi (G22

i − I) + (G̃11)T∆CTi L̂
T
i ,

Θ̂i
14 =− (G22

i )T − (G̃11)T∆Ai
TG22

i − K̃T
i ∆BTi G

22
i + (G̃11)T∆CTi L̂

T
i ,

Θ̂i
23 =− (Ci + ∆Ci)

T L̂Ti + (ATi + ∆ATi )(G22
i − I), (28)

Θ̂i
24 =ATi G

22
i + ∆ATi G

22
i − (Ci + ∆Ci)

T L̂Ti .

All the bilinear terms, except those related to ∆Ai, ∆Bi, and ∆Ci, are

avoided. These terms will be handled in the next and last linearization step.

3.2.3. Third step: Full linearization

This step is classic and well-known in the literature, see in particular [24]. By

developing ∆Ai, ∆Bi, and ∆Ci, we can rewrite (27) in the following convenient

18



from:

Ξij + He
(
ZTi1D

T
i Zi2 + ZTi3D

T
i Zi4

)
< 0, (29)

where

Zi1 =
[
(Θi

15)T Ei1 0 0
]T
, Zi3 =

[
Ei3G̃

11 −Ei3 0 0
]T
,

Zi2 =
[
MT
i G

22
i 0 MT

i (G22
i − I) MT

i G
22
i

]
,

Zi4 =
[
MT
i L̂

T
i 0 MT

i L̂
T
i MT

i L̂
T
i

]
,

Ξij =


−P̃ 11

i Θ̃i
12 Θ̃i

13 −(G22
i )T

(?) −P̂ 22
i Θ̃i

23 Θ̃i
24

(?) (?) P̃ 11
j − G̃11 − (G̃11)T P̃ 12

j + I − (G22
i )T

(?) (?) (?) P̂ 22
j −G22

i − (G22
i )T

 ,

Θ̃i
12 =− P̃ 12

i + (G22
i )TAi − L̂iCi,

Θ̃i
13 =(G̃11)TATi + K̃T

i B
T
i ,

Θ̃i
15 =− (G̃11)TETi1 − K̃T

i E
T
i2,

Θ̃i
23 =− CTi L̂Ti +ATi (G22

i − I),

Θ̃i
24 =ATi G

22
i − CTi L̂Ti ,

Θi
15 =− (G̃11)TETi1 − K̃T

i E
T
i2.

Using the Young inequality [9] and the fact that DT
σDσ ≤ I, we deduce that

inequality (29) is fulfilled if the following one holds:

Ξij + α−1
i ZTi1Zi1 + αiZ

T
i2Zi2 + λ−1

i ZTi3Zi3 + λiZ
T
i4Zi4 < 0, (30)

where αi and λi are some positive scalars. Now, it remains to use Schur lemma220

on the right hand side of (30) to get an LMI. This LMI is stated in the next

theorem.

Theorem 3. Assume that there exist positive definite matrices

Di ,

P̃ 11
i P̃ 12

i

(?) P̂ 22
i

 ∈ R2n×2n,

19



invertible matrices G22
i and G̃11 ∈ Rn×n, and matrices K̃i ∈ Rm×n, L̂i ∈ Rn×p,

for i ∈ Λ, such that the LMI (31) holds for some positive constants αi and λi,

for all i, j ∈ Λ.



−P̃ 11
i (1.2) (1.3) −(G22

i )T (1.5) (G22
i )TMi (G̃11)TETi3 L̂iMi

(?) −P̂ 22
i (2.3) (2.4) ETi1 0 −ETi3 0

(?) (?) (3.3) (3.4) 0 (3.6) 0 L̂iMi

(?) (?) (?) (4.4) 0 (G22
i )TMi 0 L̂iMi

(?) (?) (?) (?) −αiI 0 0 0

(?) (?) (?) (?) (?) −α−1
i I 0 0

(?) (?) (?) (?) (?) (?) −λiI 0

(?) (?) (?) (?) (?) (?) (?) −λ−1
i I


< 0

(31)

(1.2) = −P̃ 12
i + (G22

i )TAi − L̂iCi, (1.3) = (G̃11)TATi + K̃T
i B

T
i

(1.5) = −(G̃11)TETi1 − K̃T
i E

T
i2, (2.3) = −CTi L̂Ti +ATi (G22

i − I)

(3.3) = P̃ 11
j − G̃11 − (G̃11)T , (2.4) = ATi G

22
i − CTi L̂Ti

(3.4) = P̃ 12
j + I − (G22

i )T , (4.4) = P̂ 22
j −G22

i − (G22
i )T

(3.6) = (G22
i − I)TMi,

225

Then the closed-loop system (5) is asymptotically stable with the observer-

based controller gains:

Ki = K̃iG̃
11, Li = (G22

i )−T L̂i, i ∈ Λ. (32)

Proof. The proof is done in the three previous linearization steps. It remains

to apply the Schur lemma on the right hand side of (30) to get the LMI (31).

The matrices Di, for i ∈ Λ, come from the change of variable:

Di ,

P̃ 11
i P̃ 12

i

(?) P̂ 22
i

 =

(G̃11)T 0

0 I

P̂ 11
i P̂ 12

i

(?) P̂ 22
i

G̃11 0

0 I

 , ∀i ∈ Λ.
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4. Numerical Design Aspects and Some Comments

4.1. On the Optimization of the uncertainty bounds

Notice that the scalars αi and λi are to be fixed a priori to render linear the

condition (31). Moreover, in order to overcome this drawback and to maximize

the uncertainty bounds tolerated by (31), the uncertainties are replaced by the

more general form:

∆Ai = M i
ADi(t)Ei1, ∆Bi = M i

BFi(t)Ei2, ∆Ci = M i
CHi(t)Ei1. (33)

The uncertain matrices, containing the uncertainty bounds, are replaced by:

DT
i (t)Di(t) ≤ δ2

i I, F
T
i (t)Fi(t) ≤ β2

i I, H
T
i (t)Hi(t) ≤ γ2

i I (34)

instead of (3). This formulation is often used in decentralized stabilization

problem of interconnected systems. The objective consists in maximizing the

bounds δi, βi, and γi. Such a strategy leads to an LMI without a priori choice230

of the scalars αi and λi.

Under these new considerations, inequality (29) becomes

Ξij + He
(
ZTi1D

T
i Zi2 + ZTi3 F

T
i Zi4 + ZTi5H

T
i Zi6

)
< 0, (35)

where

Zi1 =
[
−Ei1G̃11 Ei1 0 0

]T
, Zi2 = M i

A
T
[
G22
i 0 (G22

i − I) G22
i

]
Zi3 =

[
−Ei2K̃i 0 0 0

]T
, Zi4 = M i

B
T
[
G22
i 0 (G22

i − I) G22
i

]
Zi5 =

[
Ei3G̃

11 −Ei3 0 0
]T
, Zi6 =

[
M i
C
T
L̂Ti 0 M i

C
T
L̂Ti M i

C
T
L̂Ti

]
.

Using the classical Young’s relation and taking into account (34), we deduce

that (35) holds if the following one is fulfilled:

Ξij +
(
aiδ

2
iZ

T
i1Zi1 + a−1

i ZTi2Zi2 + biβ
2
i Z

T
i3Zi3

+ b−1
i ZTi4Zi4 + ciγ

2
i Z

T
i5Zi5 + c−1

i ZTi6Zi6

)
< 0.
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Finally, with the change of variables

ξi =
1

aiδ2
i

, νi =
1

biβ2
i

, κi =
1

ciγ2
i

and by using the Schur lemma, we get the following enhanced version of Theo-

rem 3.

Theorem 4. Assume that there exist positive definite matrices Di ∈ R2n×2n

and G22
i , G̃

11 ∈ Rn×n, K̃i ∈ Rm×n, L̂i ∈ Rn×p, for i ∈ Λ, such that the following

convex optimization problem holds:

min Trace(Γi) subject toΞij
[
ZTi1 Zi2 Zi3 Zi4 Zi5 Zi6

]
(?) −Γi

 < 0, i, j ∈ Λ (36)

Γi = diag
{
ξiI, aiI, νiI, biI, κiI, ciI

}
.

Then the closed-loop system (5) is asymptotically stable with the observer-based

controller gains:

Ki = K̃iG̃
11, Li = (G22

i )−T L̂i, (37)

for all δi, βi, γi, i ∈ Λ, satisfying

δi ≤
1√
aiξi

, βi ≤
1√
biνi

, γi ≤
1

√
ciκi

.

4.2. Some comments235

This section is dedicated to some constructive remarks, which may be helpful

and useful for any application of the proposed enhanced LMI methodology.

4.2.1. On the a priori choice of some scalar variables

Conditions (31) and (18) are LMIs if the positive scalars αi, λi, εi, γi and µi

are fixed a priori. Then to get LMIs we need to use some techniques providing240

these a priori choices of the scalar variables. One of the famous techniques can

be found in [24, Remark 3], namely the gridding method. It is worth noticing

that this alternative solution will be used in case where the bounds of the

uncertainties are fixed and not to be maximized. Indeed, this latter may be

handled by using Theorem 4.245
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4.2.2. Comparison with the Young relation based approach

As compared to the Young inequality based approach, the judicious choice

of the slack variable in (21) coming from Finsler’s lemma (especially the trian-

gular structure of Ĝi), has eliminated the isolated term (Ci + ∆Ci)
TLTi arising

from the diagonal structure of Ĝi used in the Young inequality based approach.250

Hence, the proposed enhanced LMI design methodology based on a convenient

use of Finsler’s inequality allows to avoid all these bilinear terms without using

Young’s inequality several times, which leads to conservative LMI conditions

like in the Young relation based approach [24].

4.2.3. Handling the uncertainties to get full linearization255

It should be mentioned that Young’s relation is almost unavoidable when

dealing with uncertainties satisfying equations (2)-(3). This is due mainly to

their structure and the condition (3), namely DT
σ (t)Dσ(t) ≤ I. This technique

is standard and well known in the literature. We can proceed otherwise if we are

dealing with other uncertainties, such as LPV uncertainties. These latter can260

be handled more easily, thanks to the use of the convexity principle. This LPV

reformulation of the uncertainties is not suitable in the context of the paper

dealing with switched systems. Indeed, in case of switched systems with large

number of subsystems we have a large number of LMIs to solve. Then the LPV

reformulation of the uncertainties leads to a higher number of LMIs, which may265

causes numerical problems from computational point of view.

On the other hand, the Young inequality based approach may be used even in

the uncertainty free case to handle the BMI coming from some coupling between

decision variables. Young’s inequality based approach is more conservative than

the new proposed enhanced LMI methodology based on the novel and non stan-270

dard use of the Finsler lemma. As we have mentioned above, the source of the

conservatism is the diagonal structure of the variables Gi. The conservatism

comes also crucially from the manner to handle the term (Ci + ∆Ci)
TLTi .
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4.3. On the numerical complexity of the proposed LMI techniques

The numerical complexity associated with the proposed LMI conditions can

be computed in terms of the number of scalar variables and number of LMI to be

solved. As for the relaxed algorithm proposed in Theorem 4, the computational

complexity can easily be evaluated. Indeed, we must solve N2 LMIs conditions

to get 12N+1 decision variables, or N(3n2+n(m+p+1)+6)+n2 scalar variables.

As compared with the other conditions presented in this paper, following the

comment in subsection 4.2.3, if we use the gridding method, we must solve

conditions (18) by scaling the parameters εi, γi, µi via the change of variables

si := εi/(1 + εi), ti := γi/(1 + γi), κi := µi/(1 + µi), with si, ti, κi ∈ (0, 1).

Thus, for each mode i, we have to make a (uniform) mesh of the interval (0, 1)

with length equal to ∆si
i , ∆ti

i and ∆κi
i , respectively. If conditions (18) are found

feasible for (s∗i , t
∗
i , κ
∗
i ), then this means that we solved, for each i, j ∈ Λ, the

following number of LMI conditions:[
s∗i

∆si
i

] [
t∗i

∆ti
i

] [
κ∗i

∆κi
i

]
where [x] denotes the integer part of a real number x. This amounts to solving

a number of LMI equal to

N∑
j=1

N∑
i=1

[
s∗i

∆si
i

] [
t∗i

∆ti
i

] [
κ∗i

∆κi
i

]
.

It should be noted that this number is greater than or equal to N2. We have275

N2 LMIs to solve only if the LMI (18) is found feasible at the first step when

the gridding method is applied, i.e:
[
s∗i

∆
si
i

]
=
[
t∗i

∆
ti
i

]
=
[
κ∗
i

∆
κi
i

]
= 1. The compu-

tational complexity of the algorithm given by (31) can be evaluated similarly.

Table 1 shows the number, ]SV, of the scalar variables, the number, ]DV, of

decision variables, and the number, ]LMI, of LMI conditions to be solved for280

the three tests presented here. From a numerical complexity point of view, the

superiority of (36) is quite clear.
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Algorithm ]SV ]DV ]LMIs

LMI (36) N
(

3n2 + n(m+ p+ 1) + 6
)

+ n2 12N + 1 N2

LMI (31) N
(

3n2 + n(m+ p+ 1) + 2
)

+ n2 8N + 1 N

N∑
i=1

[
τ∗i

∆τi
i

] [
υ∗
i

∆υi
i

]

LMI (18) N
(

3n2 + n(m+ p+ 1) + 3
)

+ n2 9N + 1 N

N∑
i=1

[
s∗i

∆si
i

] [
t∗i

∆ti
i

] [
κ∗
i

∆κi
i

]

Table 1: Numerical complexity associated with the proposed algorithms

5. Numerical examples and comparisons

In this section, we present numerical examples to show the validity and

effectiveness of the proposed design methodology. For a comparison reason, we285

reconsider the examples given in [24] and [29]. We will also provide a Monte

Carlo simulation to evaluate the superiority of the enhanced LMI conditions (31)

in the uncertainty free case.

5.1. Example 1

Here we consider the example proposed in [29]. First, we take exactly the

same example (given without uncertainties). That is ∆Ai = ∆Bi = ∆Ci = 0

and the other parameters are described as follows:

A1 =

1.5 1

0 2

 , B1 =

1 2

4 0

 , C1 =

3 2

0 −1

 , (38a)

A2 =

1.7 1

0.5 2

 , B2 =

1 2

0 −1

 , C2 =

 1 0

−1 −1

 . (38b)

It is clear that all the matrices A1 and A2 are unstable. It should be noticed that290

the LMI conditions proposed in [29] are not feasible for this example, contrarily

to what has been speculated in [29]. Indeed, first, the LMI conditions given

in [29] are false because the authors made a mistake in [29, Inequality (9)]. This

mistake removes many bilinear terms and conducted the authors to very simple

LMIs. On the other hand, despite this error, the LMIs in [29] are not feasible for295
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this example because of the particular choice Ĝi = F̂Ti and a conservative way

of using Finsler’s inequality. The same goes to the approach presented in [36],

which is found infeasible due to a strong equality constraint. However, using

Matlab LMI toolbox, we get that both LMI (31) and LMI (18) are feasible. Note

that the solvability of (18) is performed via the gridding technique with respect300

to epsiloni. Indeed, by scaling εi, i ∈ {1, 2}, by defining si = εi/(1 + εi), with

si ∈ [0.1, 0.9], then with a uniform subdivision of the interval [0.1, 0.9] of length

equal to ∆si
i = 0.1, ∀i ∈ {1, 2}, we get LMI (18) feasible for s1 = 0.7, s2 = 0.8,

i.e., ε1 = 2.3333, ε2 = 4. The observer-based controller gains are given in

Table 2. Notice that the symbol (!) means that the corresponding LMI condition305

is found infeasible.

LMI (16) LMI [36] LMI (31) LMI (18)

ε1 = 2.3333, ε2 = 4

K1 (!) (!)

−0.1737 −0.6394

−0.2222 −0.0530

 −0.1373 −0.5938

−0.2100 −0.0146


K2 (!) (!)

−2.3124 −4.2526

−0.1131 1.4825

 −2.0309 −3.6428

−0.1534 1.3106


L1 (!) (!)

+0.3877 −0.3601

0.0103 −1.9046

 +0.3403 −0.5823

0.0435 −1.7723


L2 (!) (!)

 0.5731 −1.0100

−1.0873 −1.7078

 −0.7444 −1.7542

−0.9839 −1.6725


Table 2: Observer-based controllers for the proposed LMI design applied to system (38)

The simulation results corresponding to these observer-based controller gains

obtained by solving LMIs (31) are given in Figure 1. These simulations are

done for an horizon T = 40s, with x0 =
[
−3 −5

]T
and x̂0 =

[
7 −15

]T
. The

switching rule is taken in this form:

σt = 1 + round (ωt) (39)

for t = 1 to T , where ωt is an uniformly distributed random variable on the
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interval [0, 1], and round(x) is the nearest integer function of real number x.

Then, the switching signal can be realized by Matlab and a possible case is

shown in Figure 1(d). Note that the switching instants in Figure 1(d) are310

arbitrary.
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(a) Example 1: Time-behaviors of x1 and x̂1 in the uncertainty free case.
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(b) Example 1: Time-behaviors of x2 and x̂2 in the uncertainty free case.

In order to boost comparisons between the proposed LMI conditions (31),

(18) and (36), we add to the previous example parameter uncertainties as fol-

lows:

M1 =

0.35 0.2

0.3 0.15

 , M2 =

0.3 −0.1

0.3 0.2

 , (40a)

E11 =

0.22 0.22

0.2 0.25

 , E12 =

0.4 0.5

0.6 0.5

 , E13 =

 0.2 0.21

0.15 0.25

 , (40b)
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(c) Example 1: Time-behaviors of u1 and u2 in the uncertainty free case.
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(d) Example 1: Switching mode

Figure 1: Example 1: Controlled states and their estimates in the uncertainty free case.

E21 =

0.25 0.15

0.31 0.25

 , E22 =

0.15 0.25

0.15 0.2

 , E23 =

0.15 0.2

0.2 0.2

 . (40c)

Then, the proposed LMIs (31) and (36) work successfully. LMI (31) is found

feasible for τ∗1 = τ∗2 = 0.5, υ∗1 = 0.7, υ∗2 = 0.6, and ∆τi
i = ∆υi

i = 0.1, for all i.

We obtain then, α1 = α2 =
τ∗
1

1−τ∗
1

= 1 and λ1 =
υ∗
1

1−υ∗
1

= 2.3333, λ2 =
υ∗
2

1−υ∗
2

=

1.5. However, the Young inequality-based approach is found infeasible for the315

same values of εi given in Table 2, and for the same step of discretization. The

results are summarized in Table 3.

The simulation results corresponding to these observer-based controller gains
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LMI (31) LMI (36) LMI (18)

∆τi
i = ∆υi

i = 0.1,α1 = α2 = 1 ∆ti
i = ∆κi

i = 0.1

λ1 = 2.3333, λ2 = 1.5 ε1 = 2.3333, ε2 = 4

K1

−0.2532 −0.6666

−0.1582 0.1107

 −0.4175 −0.9023

0.3077 0.7274

 (!)

K2

−2.9813 −5.7095

0.5477 2.6315

 −3.6037 −6.2027

1.2277 3.0381

 (!)

L1

+0.4065 −0.2117

0.2954 −0.8230

 +0.3752 −0.2373

0.1966 −0.9884

 (!)

L2

+1.1317 −0.7526

0.1649 −1.3045

  0.6219 −0.8185

−0.5084 −1.3906

 (!)

Table 3: Observer-based controllers for the proposed LMI design applied to system (38)-(40)

returned by LMIs (31) are shown in Figure 2. These simulations shown in

Figure 2 are done over an horizon of length T = 40s with x0 =
[
5 6.5

]T
,320

x̂0 =
[
7 4.5

]T
. The switching rule is generated randomly as in (39).
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(a) Example 1: Time-behaviors of x1 and x̂1 in the presence of uncertainties

5.2. Example 2 (Evaluation of maximum admissible uncertainty)

Through this example, we will show that the proposed LMI conditions are

less conservative than those provided in [24]. We reconsider the same system
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(b) Example 1: Time-behaviors of x2 and x̂2 in the presence of uncertainties
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(c) Example 1: Time-behaviors of u1 and u2 in the presence of uncertainties
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(d) Example 1: Switching mode

Figure 2: Example 1: Simulation results in the presence of uncertainties.
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as in [24, Example 1]. Obviously, this example can be viewed as a switching

system under the form (1) with only one mode (there is no switching). The

system is described by the following matrices:

A =


1 0.1 0.4

1 1 0.5

−0.3 0 1

 , B =


0.1 0.3

−0.4 0.5

0.6 0.4

 , C =

1 1 1

1 1 1

 ,

MA =


0 0 0

0.1 0.3 0.1

0 0.2 0

 , NA =


0 0 0

0.2 0 0.4

0 0.1 0

 ,

MC =

0 0 0.3

0 0 0.8

 , NC =


0 0 0

0 0 0

0 0 0.2

 .
The proposed design methodology works successfully. Solving the LMI (31) of

Theorem 3 with α1 = 1 and λ1 = 0.5, we get the following gains:

K =

 1.2322 0.8710 −0.8064

−1.9374 −1.1776 −2.0770

 , L =


0.6909 −0.2591

0.9596 −0.3599

0.6405 −0.2402

 .
To show the superiority of the proposed design methodology as compared with

[24], we considered uncertain matrices, scaled by the parameters γ1 and γ2, as

follows:

MA = γ1


0 0 0

0.1 0.3 0.1

0 0.2 0

 , MC = γ2

0 0 0.3

0 0 0.8

 .
We look for the maximum values of γ1 and γ2 that satisfy LMI (16) and

LMI (31). The results summarized in Table 4, reflect the superiority of the

proposed methodology as compared to the Young inequality based approach325

[24] and the approach in [29].

5.3. Numerical evaluation by Monte Carlo in the uncertainty free case

Here we investigate the uncertainty-free case. The aim consists in evaluating

numerically the necessary conditions required by each method. For this, we
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LMI (16) [29] LMI (9) in [24] LMI (31)

ε1 = 2.33 α = 6

ε3 = 1.42 λ = 51.594

ε4 = 0.08

max γ1 (!) 4.64 5.4

max γ2 (!) 1013 1015

Table 4: Comparison between different LMI design methods

generate randomly 1000 stabilizable and detectable systems of dimension n =330

3; p = 2 and ranging from 1 to n (with switching rule σt ∈ {1, 2}). The results

are summarized in Table 5, which gives the percentage of systems for which the

different methods addressed in this note succeeded for each value of m.

Method LMI (16) LMI (31) LMI (18) LMI (60) in [36]

with εi = 10

m = 1 0 % 31.5 % 28.6 % 0.5%

m = 2 0 % 100 % 84.1% 1.5%

m = 3 0 % 90.8 % 78.7 % 2 %

Table 5: Superiority of the proposed LMI methodology

6. Conclusions and Future Work

This paper developed new LMI conditions for the problem of stabilization335

of discrete-time uncertain switched linear systems. First, we revisited and cor-

rected the approach proposed in [29] that combines Finsler’s lemma and the

switched Lyapunov function approach. A general theoretical method was pro-

posed, which leads to less conservative LMI conditions. This is due to the use of

Finsler’s inequality in a new and convenient way. Illustrative examples are pre-340

sented to demonstrate the effectiveness and superiority of the proposed design

methodology.
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There are several important issues which should be considered in the fu-

ture. First, an extension to the problem of H∞ analysis for Linear Parameter

Varying (LPV) systems with uncertain parameters seems natural. Indeed, the345

stability analysis of LPV systems with inexact parameters can be performed

following the almost the same arguments. Second, the stabilizability conditions

(31) should be relaxed more by relaxing the independence of the matrix G11

from the mode i in (26).

Finally, one of the most important problem is to consider switched systems350

with arbitrary switching without any real-time information on the switching

signal. To the best of authors knowledge, there are few results for this class of

systems, and the available methods still remain conservative.
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