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Abstract

A new LMI design technique is developed to address the problem of circle criterion-based H∞ observer design for nonlinear systems.
The developed technique applies to both locally Lipschitz as well as monotonic nonlinear systems, and allows for nonlinear functions
in both the process dynamics and output equations. The LMI design condition obtained is less conservative than all previous results
proposed in literature for these classes of nonlinear systems. By judicious use of a modified Young’s relation, additional degrees of
freedom are included in the observer design. These additional decision variables enable improvements in the feasibility of the obtained
LMI. Several recent results in literature are shown to be particular cases of the more general observer design methodology developed in
this paper. Illustrative examples are given to show the effectiveness of the proposed methodology. The application of the method to slip
angle estimation in automotive applications is discussed and experimental results are presented.

Key words: Observers design; Lipschitz systems; LMI approach; H∞ synthesis; slip angle estimation.

1 Introduction and Preliminaries

1.1 Introduction

Observer design for nonlinear systems has attracted much
research interest in recent years. This is due to the impor-
tant role of observers for the estimation of unmeasurable
variables, that are increasingly present in modern real-world
applications, such as intelligent vehicles (Rajamani, 2012),
electrical machines (Khalil, 2015), position estimation in
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National Science Foundation GRANT CMMI 1562006. The sec-
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industrial systems (Henriksson et al., 2009), and biomed-
ical applications (Chong et al., 2012). The emergence of
automation in many real world applications renders the
estimation problem very important. In addition to the es-
timation of unmeasurable variables, observers play critical
roles in the fields of fault diagnosis, feedback control and
automated event detection.

Although state observer design has been widely investigated
in the literature and numerous methods have been estab-
lished (Thau, 1973), (Krener and Respondek, 1985), (Gau-
thier et al., 1992), (Gauthier and Kupka, 1994), (Arcak and
Kokotovic, 2001), (Khalil, 2002), (Fan and Arcak, 2003),
(Califano et al., 2003), (Kravaris et al., 2004), (Simon, n.d.),
(Kravaris et al., 2007), this issue remains a challenge for
the control research community. Several new methods have
been developed in the recent literature (Ibrir, 2007), (Tsinias,
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2008), (Abbaszadeh and Marquez, 2010), (Phanomchoeng
et al., 2011), (Zemouche and Boutayeb, 2013), (Açikmese
and Corless, 2011), (Alessandri and Rossi, 2013), (Alessan-
dri and Rossi, 2015), (Andrieu et al., 2009), (Astolfi and
Marconi, 2015), (Astolfi et al., 2016), (Wang et al., 2017).
All these techniques have been motivated by the lack of a
general systematic method to deal with nonlinear systems.
Even if many improvements have been proposed in the re-
cent years (Oueder et al., 2012), (Zemouche and Boutayeb,
2013), (Açikmese and Corless, 2011), the estimation prob-
lem still remains open. Particularly, for the class of glob-
ally Lipschitz nonlinear systems, several LMI methods have
been proposed where each method provides a new LMI tech-
nique. For instance, some techniques are based on the use
of the S-Procedure lemma (Boyd et al., 1994); others use
Riccati equations (Raghavan and Hedrick, 1994), and finally
some are based on the standard use of Young’s inequal-
ity (Alessandri, 2004). A two degree-of-freedom observer
design method has been proposed in Arcak and Kokotovic
(2001), generalized by Zemouche and Boutayeb (2009). De-
spite all these new ways to overcome the effect of the non-
linearities, the proposed methods remain conservative for
some classes of systems. To improve the existing results,
an interesting method was proposed recently in Chong et
al. (2012) by introducing a diagonal multiplier matrix as an
additional degree of freedom. Such a technique has been
shortly discussed in Fan and Arcak (2003) for a class of sys-
tems with monotonic nonlinearities. Although the introduc-
tion of a diagonal multiplier matrix is interesting and signif-
icant, some improvements remain possible. The main ques-
tion that arises naturally is: why not a non diagonal multi-
plier matrix? The answer to this question is one of the main
subjects of this paper. A short and preliminary version of
this result has been presented in Zemouche et al. (2016) as
a conference paper. Indeed, a new relaxed LMI condition is
provided to solve the problem of H∞ observer synthesis by
exploiting the Young’s relation in a judicious manner. This
novel way to use the Young’s inequality allows to have ad-
ditional degrees of freedom in the LMI and to avoid the di-
agonal form of the multiplier matrix. Further, the developed
results are extended to nonlinear systems that are monotonic
and not necessarily globally Lipschitz, and further to systems
that contain nonlinearities in the output equation. To clarify
the presentation of this paper, let us note that compared to
the preliminary conference version paper (Zemouche et al.,
2016), this extended version contains:

• Nonlinearities in the output equation while the conference
paper had only a linear measurement equation;
• vehicle slip angle estimation which is a real-world appli-

cation and further includes experimental results;
• additional example to show the role of the non diagonal

multiplier matrices;
• extended discussions and some analytic comparisons.

The developed H∞ observer can be applied for many prac-
tical problems. The vehicle slip angle estimation is one
of the challenging problems which can be solved by the
method. The feedback of vehicle slip angle is useful for

Electronic Stability Control (ESC) systems. In situations on
low-friction road surfaces, it is useful for the ESC system to
control the vehicle slip angle and prevent the vehicle slip an-
gle from being too high (Phanomchoeng et al., 2011). How-
ever, vehicle slip angle cannot easily measured. The vehicle
slip angle is also not easy to estimate due to the nonlinear
tire model. Both the dynamic and measurement models of
the system are highly nonlinear models (Phanomchoeng et
al., 2011).
In this paper, the proposed H∞ observer was used to estimate
the vehicle slip angle based on a nonlinear vehicle model.
The observer is shown to be suitable for a large range of
operating conditions. The developed technique is validated
with experimental measurements on a test vehicle, under
different road conditions.

The rest of the paper is organized as follows: after some
useful preliminaries, the problem formulation and the pre-
liminary result of Zemouche et al. (2016) are introduced
in Section 2, in order to well position what we propose.
The main contribution related to the new LMI observer de-
sign method extended to systems with nonlinear outputs is
presented in Section 3. Section 4 presents discussions and
comparisons with previous results in literature. Two simple
but relevant examples are proposed in Section 5 to show the
efficiency of the proposed design methodology. Section 6
includes the design of an observer and experimental results
for the application of slip angle estimation in automobiles.
Finally, we end the paper by a conclusion in Section 7.

Notations: Throughout this paper, we use the following no-
tations:

• (?) is used for the blocks induced by symmetry;
• AT represents the transposed matrix of A;
• Ir represents the identity matrix of dimension r;
• for a square matrix S, S > 0 (S < 0) means that this matrix

is positive definite (negative definite);

• es(i) =
(

0, ...,0,

i th︷︸︸︷
1 ,0, ...,0︸ ︷︷ ︸

s components

)T ∈ Rs,s ≥ 1 is a vector of

the canonical basis of Rs.

1.2 Some preliminaries

We start by introducing some definitions and preliminaries
which will be used throughout this paper.

Definition 1 (Zemouche and Boutayeb (2013)) Consider
two vectors

X =


x1
...

xn

 ∈ Rn and Y =


y1
...

yn

 ∈ Rn.
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For all i = 0, ...,n, we define an auxiliary vector XYi ∈ Rn

corresponding to X and Y as follows:

XYi =



y1
...

yi

xi+1
...

xn


for i = 1, ...,n

XY0 = X

(1)

Lemma 2 (Zemouche and Boutayeb (2013)) Consider a
function Ψ : Rn −→ Rn. Then, the two following items
are equivalent:

• Ψ is globally Lipschitz with respect to its argument, i.e.:∥∥∥Ψ(X)−Ψ(Y )
∥∥∥≤ γΨ

∥∥∥X−Y
∥∥∥, ∀ X ,Y ∈ Rn (2)

• for all i, j = 1, ...,n, there exist functions

ψi j : Rn×Rn −→ R

and constants γ
ψi j

and γ̄ψi j such that ∀ X ,Y ∈ Rn

Ψ(X)−Ψ(Y ) =
i=n

∑
i=1

j=n

∑
j=1

ψi jHi j

(
X−Y

)
(3)

and the functions ψi j(.) are globally bounded from above
and below as follows:

γ
ψi j
≤ ψi j ≤ γ̄ψi j (4)

where

ψi j , ψi j

(
XY j−1 ,XY j

)
and Hi j = en(i)eT

n ( j)

PROOF. The proof is omitted. See Zemouche and
Boutayeb (2013).

The following lemma is very useful for the proposed new
LMI design.

Lemma 3 (Zemouche et al. (2016)) Let X and Y be two
given matrices of appropriate dimensions. Then, for any

symmetric positive definite matrix S of appropriate dimen-
sion, the following inequality holds:

XTY +Y T X ≤ 1
2

[
X +SY

]T
S−1
[
X +SY

]
. (5)

The significance of Lemma 3 does not lie in its proof that
is trivial, but its main strength to retain is that only the half
quantity of XTY +Y T X is upper bounded by the Young’s re-
lation. It is worth to notice that it is the first time the Young’s
inequality is used under this form. It plays an important role
because it leads to less conservative LMI synthesis condi-
tions.

2 Problem Formulation and Preliminary Result

2.1 Problem formulation

For simplicity of the presentation, we start by investigating
nonlinear systems depending only on the system state and
with linear outputs. The system is described by the following
equations: {

ẋ = Ax+Gγ(x)+Eω

y =Cx+Dω
(6)

where x ∈ Rn is the state vector, y ∈ Rp is the output mea-
surement, ω ∈ Rq is the disturbance L2 bounded vector.
The matrices A ∈ Rn×n, G ∈ Rn×m, E ∈ Rn×q, C ∈ Rp×n,
D∈Rp×q are constant. To begin with the nonlinear function
γ : Rn −→ Rm is assumed to be globally Lipschitz. Notice
that the fact we use the same disturbances vector ω in the
dynamics and the output measurements is not a restriction
because the matrices E, D and the dimension of ω are ar-
bitrary. Indeed, if we assume that in the dynamics we have
E1ω1, and in the measurement equation, we have E2ω2, then

we can always write E = [E1 0], D = [0 E2] and ω =

[
ω1

ω2

]
,

which lead to the form (6). Before introducing the observer,
let us consider γ(.) under the detailed form:

γ(x) =



γ1(H1x)
...

γi(

ϑi︷︸︸︷
Hix )
...

γm(Hmx)


(7)

where Hi ∈ Rni×n. Notice that the ni, which represents the
number of rows of Hi are not constrained. The matrices
Hi are not unique and then ni are free. This is, indeed, an
advantage of the proposed approach compared to those using
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diagonal multiplier matrices (Fan and Arcak, 2003), (Chong
et al., 2012).

We use the following generalized Arcak’s observer form:

˙̂x = Ax̂+G



γ1(ϑ̂1)
...

γi(ϑ̂i)
...

γm(ϑ̂m)


+L
(

y−Cx̂
)

(8a)

ϑ̂i = Hix̂+Ki

(
y−Cx̂

)
(8b)

where x̂ is the estimate of x. the matrices L ∈ Rn×p and
Ki ∈Rni×p are the observer parameters to be determined so
that the estimation error e = x− x̂ converges asymptotically
towards zero.

Since γ(.) is globally Lipschitz, then from Lemma 2 there
exist functions

φi j : Rni ×Rni −→ R

and constants ai j,bi j, such that

γ(x)− γ(x̂) =
i, j=m,ni

∑
i, j=1

φi jHi j

(
ϑi− ϑ̂i

)
(9)

and
ai j ≤ φi j

(
ϑ

ϑ̂i, j−1
i ,ϑ

ϑ̂i, j
i

)
≤ bi j, (10)

where
Hi j = em(i)eT

ni
( j)

and
φi j , φi j

(
ϑ

ϑ̂i, j−1
i ,ϑ

ϑ̂i, j
i

)
for shortness.

Without loss of generality, we assume that ai j = 0 for all
j = 1, . . . ,ni and i = 1, . . . ,m. Indeed, if there exists a subset

B,
{
(i, j) ∈ {1, . . . ,m}×{1, . . . ,max

i
(ni)} : ai j 6= 0

}
such that B 6= /0, then we can rewrite the dynamics equation
of the system (6) as

ẋ = Ãx+Gγ̃(x)+Eω

where

Ã = A+G ∑
(i, j)∈B

ai jHi jHi

and

γ̃(x) = γ(x)−

(
∑

(i, j)∈B
ai jHi jHi

)
x.

It is quite clear that the new function γ̃ satisfies (10) with
ãi j = 0 and b̃i j = bi j−ai j.

Since ϑi− ϑ̂i =
(

Hi−KiC
)

e−KiDω , then we have

γ(x)− γ(x̂) =

[
i, j=m,ni

∑
i, j=1

φi jHi j

(
Hi−KiC

)]
e

−
[ i, j=m,ni

∑
i, j=1

φi jHi jKiD
]
ω (11)

The dynamics equation of the estimation error is then given
by:

ė =

(
AL +

i, j=m,ni

∑
i, j=1

[
φi jGHi jHKi

])
e

+

(
EL +

i, j=m,ni

∑
i, j=1

[
φi jGHi jDKi

])
ω (12)

with
AL = A−LC, EL = E−LD (13)
HKi = Hi−KiC, DKi =−KiD (14)

The aim consists in finding the gains L and Ki, i= 1, . . . ,m so
that the estimation error dynamics (12) is H∞ asymptotically
stable. That is, the objective is to determine the observer
parameters such that the following H∞ criterion is satisfied:

‖e‖L n
2
≤
√

µ‖ω‖2
L q

2
+ν‖e0‖2 (15)

where µ > 0 is the disturbance attenuation level and ν > 0
is to be determined. To be more clear,

√
µ is the disturbance

gain from ω to e.

As usually for this class of systems concerned by the LMI
techniques, we use a quadratic Lyapunov function to analyze
the H∞ stability. That is, we use

V (e) = eTPe, P= PT > 0.

Consequently, H∞ criterion (15) is satisfied if the following
inequality holds (Zemouche and Boutayeb, 2009):

W , V̇ (e)+‖e‖2−µ‖ω‖2 ≤ 0. (16)

This problem has been handled in the literature and sev-
eral methods have been proposed where each method pro-
vides increasingly relaxed LMI condition (Arcak and Koko-
tovic, 2001), (Chong et al., 2012), (Açikmese and Corless,
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2011), (Zemouche and Boutayeb, 2009). It turned out that
all these techniques provide conservative LMI conditions.
Despite all the new ways to improve the existing techniques,
the problem of observer design for Lipschitz nonlinear sys-
tems remains a challenge to solve. This is the motivation
of the proposed results.. Detailed discussions on the limita-
tions of all these methods compared to the proposed design
methodology are presented in Section 4.

2.2 Preliminary result

Before presenting an extended version for systems with non-
linear outputs and giving some useful discussions and ap-
plication to vehicle dynamics, we first recall the main con-
tribution of Zemouche et al. (2016) as a preliminary result.

Theorem 4 (Zemouche et al. (2016)) If there exist sym-
metric positive definite matrices P ∈ Rn×n, Zi ∈ Rni×ni

and matrices R ∈ Rp×n, Ti ∈ Rp×ni of appropriate dimen-
sions so that the following convex optimization problem is
solvable:

min(µ) subject to (18) (17)


A
(
P,R

)
PE−RT D

(?) −µIq


Σ︷ ︸︸ ︷[

Σ1 . . . Σm

]

(?) −ΛZ


≤ 0 (18)

with

A
(
P,R

)
= ATP+PA−CT R−RTC+ In (19)

Σi =
[
N1

(
P,Ti,Zi

)
. . .Nni

(
P,Ti,Zi

)]
(20)

N j

(
P,Ti,Zi

)
=

[
PGHi j

0

]
+

[
HT

i Zi−CT Ti

−DT Ti

]
(21)

Λ = block-diag
(

Λ1, ...,Λm

)
(22)

Λi = block-diag
(

2
bi1

Ini , . . . ,
2

bini

Ini

)
(23)

Z= block-diag
(
Z1, . . . ,Zm

)
(24)

Zi = block-diag
( ni times︷ ︸︸ ︷

Zi, . . . ,Zi

)
(25)

then, the H∞ criterion (15) is satisfied with ν = λmax(P).
Hence, the observer gains L and Ki will be computed by

L = P−1RT , Ki = Z −1
i T T

i .

PROOF. See Zemouche et al. (2016).

3 Systems with Nonlinear Outputs

In the aim to increase application of the proposed design
method, we propose in this section an extension to systems
with nonlinear outputs. This case is often encountered in
many real applications, such as the problem of magnetic po-
sition estimation and automotive slip angle estimation prob-
lem. We consider the following class of systems:

{
ẋ = Ax+Gγ(x)+Eω

y =Cx+Bg(x)+Dω
(26)

where B∈Rp×s is a constant matrix and g(.) is the nonlinear
part of the output signal, which is assumed to be globally
Lipschitz. We can write g(x) under the detailed form:

g(x) =



g1(F1x)
...

gi(

θi︷︸︸︷
Fix )
...

gs(Fsx)



with Fi ∈ Rpi×n. The other matrices and parameters are de-
fined in Section 2.1.

The state observer structure we consider in this case is as
follows:

˙̂x = Ax̂+G



γ1(ϑ̂1)
...

γi(ϑ̂i)
...

γm(ϑ̂m)


+L
(

y− ŷ
)

(27a)

ŷ =Cx̂+B



g1(θ̂1)
...

gi(θ̂i)
...

gs(θ̂s)


(27b)
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ϑ̂i = Hix̂+Ki

(
y− ŷ

)
(27c)

θ̂i = Fix̂+Mi

(
y− z

)
(27d)

z =Cx̂+B



g1(F1x̂)
...

gi(Fix̂)
...

gs(Fsx̂)


. (27e)

The matrices L∈Rn×p, Ki ∈Rni×p and Mi ∈Rpi×p are to be
determined so that the estimation error e = x− x̂ converges
asymptotically towards zero.

Since g(.) is globally Lipschitz, then from Lemma 2 there
exist functions

ψi j : Rpi ×Rpi −→ R

and constants ci j,di j, such that

g(x)−g(x̂) =
i, j=q,pi

∑
i, j=1

ψi jFi j

(
θi− θ̂i

)
(28)

ci j ≤ ψi j

(
ϑ

ϑ̂i, j−1
i ,ϑ

ϑ̂i, j
i

)
≤ di j. (29)

and without loss of generality, we assume that ci j = 0.

Since θi− θ̂i =
(

Fi−MiC
)

e−MiDω , then we have

g(x)−g(x̂) =

[
i, j=q,pi

∑
i, j=1

ψi jFi j

(
Fi−MiC

)]
e

−
[ i, j=q,pi

∑
i, j=1

ψi jFi jMiD
]
ω (30)

Consequently, the dynamics equation of the estimation error
is given by:

ė =

(
AL +

i, j=m,ni

∑
i, j=1

[
φi jGHi jHKi

])
e

+

[
i, j=q,pi

∑
i, j=1

ψi jLBFi jFMi

]
e

+

(
EL +

i, j=m,ni

∑
i, j=1

[
φi jGHi jDKi

])
ω

+
[ i, j=q,pi

∑
i, j=1

ψi jLBFi jDMi

]
ω (31)

with

FMi =−(Fi−MiC), DMi = MiD (32)

Following the proof of Theorem 4 given in Zemouche et al.
(2016), we deduce that W defined in (16) is semi-negative
definite if the following inequality is fulfilled:

LINEAR︷ ︸︸ ︷
AT

LP+PAL + In PEL

ET
LP −µIq



+
i, j=m,ni

∑
i, j=1

φi j



XT
i j︷ ︸︸ ︷

PGHi j

0


Yi︷ ︸︸ ︷[

HKi DKi

]
+YT

i Xi j



+
i, j=q,pi

∑
i, j=1

ψi j



X̄T
i j︷ ︸︸ ︷

PLBFi j

0


Ȳi︷ ︸︸ ︷[

FMi DMi

]
+ȲT

i X̄i j


≤ 0.

(33)

From Lemma 3 we get the following inequalities for all
symmetric positive definite matrices Si j and Mi j:

XT
i jYi+YT

i Xi j ≤
1
2

(
Xi j +Si jYi

)T
S−1

i j

∆i j︷ ︸︸ ︷(
Xi j +Si jYi

)
(34)

X̄T
i jȲi + ȲT

i X̄i j ≤
1
2

(
X̄i j +Mi jȲi

)T
M−1

i j

∆̄i j︷ ︸︸ ︷(
X̄i j +Mi jȲi

)
.

(35)
Inspired from (Zemouche et al., 2016, Theorem 1), we ob-
tain the following more general theorem valid for systems
with nonlinear outputs.

Theorem 5 Assume that there exist symmetric positive def-
inite matrices P ∈ Rn×n, Zi ∈ Rni×ni , Si ∈ Rpi×pi and ma-
trices R ∈Rp×n, Ti ∈Rp×ni , T̄i ∈Rp×pi of appropriate di-
mensions so that the following convex optimization problem
is solvable:

min(µ) subject to (37) (36)
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


A
(
P,R

)
PE−RT D

(?) −µIq


Σ︷ ︸︸ ︷[

Σ1 . . . Σm

]
OUT13

(?) −ΛZ 0

(?) (?) OUT33


≤ 0

(37)
with

OUT13 =
[
Σ̄1 . . . Σ̄q

]
(38)

OUT33 =−ΠS (39)

Σ̄i =
[

¯N1

(
R,T̄i,Si

)
. . . ¯Npi

(
R,T̄i,Si

)]
(40)

¯N j

(
R,T̄i,Si

)
=

[
RT BFi j

0

]
+

−(FT
i Si−CT T̄i

)
DT T̄i


(41)

Π = block-diag
(

Π1, ...,Πq

)
(42)

Πi = block-diag
(

2
di1

Ipi , . . . ,
2

dipi

Ipi

)
(43)

S= block-diag
(
S1, . . . ,Sq

)
(44)

Si = block-diag
( pi times︷ ︸︸ ︷

Si, . . . ,Si

)
(45)

where the other variables are defined in Theorem 4.

Then, the H∞ criterion (15) is satisfied with ν = λmax(P).
Hence, the observer gains L, Ki and Mi are computed by

L = P−1RT , Ki = Z −1
i T T

i , Mi = S −1
i T̄ T

i .

PROOF. The proof is omitted. We can prove Theorem 5
by exploiting inequalities (34)-(35) and using Schur lemma
and some change of variables as in the proof of (Zemouche
et al., 2016, Theorem 1). The fact that the functions φi j and
ψi j are bounded and assumed to be positive, without loss
of generality, plays an important role in the application of
the Young’s inequality. Since they are positive, then they
are not included in the matrices when the Young’s relation
is applied in (34)-(35). They are simply replaced by their
upper bounds bi j and di j, respectively. For more details, we
refer the reader to Zemouche and Boutayeb (2009).

4 Constructive Discussions

This subsection is devoted to some comments and remarks
to explain the difference between what we proposed and
the available methods in the literature related to the same
methodology.

4.1 On the class of systems

The class of systems concerned by what we proposed in
this paper is more general than that in Chong et al. (2012).
The class of systems is not only defined by inequalities (10)
and (29), but it is also distinguished by the matrices G,B and
Hi,Fi. In case of systems with linear outputs, the matrices
Hi in Chong et al. (2012) are particular; they have only one
row. Certainly we can generalize the result, but the method
used in Chong et al. (2012) to introduce a diagonal multiplier
matrix as an additional degree of freedom, requires Hi to be
special. However, the method proposed in this paper does not
have any restriction on the dependence of the nonlinearities
on the state of the system. That is, the matrices G and Hi
are arbitrary. For a two dimensional system having only
one nonlinear component depending on the entire state, the
method in Chong et al. (2012) fails. For instance, the method
in Chong et al. (2012) is unable to give solutions for a system
with nonlinear component as:

γ(x) =

[
1

0

]
sin(x1)cos(x2).

Nevertheless, the method in this paper remains valid and
since H1 = I2, we have a full matrix Z1 ∈R2×2 as additional
degree of freedom in the LMI (18).

4.2 On the diagonal multiplier matrix in Chong et al.
(2012)

The proposed method is more general than that in Chong et
al. (2012). Indeed, for ni = 1, ∀i= 1,m, we retrieve the diag-
onal multiplier matrix introduced in Chong et al. (2012). It
should be noticed that the diagonal multiplier matrix, firstly
given in Fan and Arcak (2003) for a special class of struc-
tured nonlinearities, is not really an additional degree of free-
dom. Indeed, this matrix comes from structuring the matri-
ces Hi, which are not unique. To see clearly the non unicity
of Hi, consider a two dimensional system with a nonlinear
term

γ(x) =

[
1

0

]
sin(x1 + x2).

For the approach in Chong et al. (2012), the matrix H1
should be H1 = [1 1]. However, with the proposed method,
we have the choice between H1 = [1 1] and H1 = I2. Even
better, the latter choice, which is not possible for Chong et
al. (2012), allows to have more degrees of freedom, namely
Z1 ∈ R2×2. It is obvious that we can apply the approach
in Chong et al. (2012) by considering:

γ(x) =

[
1 0

0 0

][
sin(x1 + x2)

0

]

7



with H =

[
1 1

0 1

]
, for example, but this form is useless be-

cause the second component of the nonlinearity is null.

In a general way, for systems with scalar nonlinearity, the
diagonal multiplier matrix introduced in Chong et al. (2012)
is useless. Indeed, in this case, their multiplier matrix M is
reduced to a positive scalar m1. Hence, if their LMI (Chong
et al., 2012, LMI (7)) is feasible for any m1 > 0, then it is
also feasible for m1 = 1. However, with the enhanced design
method we proposed, we can always increase the dimension
of H1 to have additional degrees of freedom. For instance,
sin(x1) can always be written under the form

sin
( ϑ1︷ ︸︸ ︷
(x1− x2)+

ϑ2︷︸︸︷
x2

)
with

H1 =

[
1 −1

0 1

]
.

It is speculated in Chong et al. (2012) that the LMI con-
dition in Zemouche and Boutayeb (2009) is particular and
not feasible for the neural mass model presented in Chong
et al. (2012). It is true that for the same matrices Hi, the
LMI technique in Chong et al. (2012) is more general than
that in Zemouche and Boutayeb (2009). However, analyti-
cally speaking, this statement is not true because of the non
uniqueness 2 of the matrices Hi. Indeed, if the LMI (Chong
et al., 2012, LMI (7)) is feasible, then this implies feasibil-
ity of LMI (Zemouche and Boutayeb, 2009, LMI (13)) with
H̃i = miHi and b̃i =

1
mi

bi. To be more clear, see for instance
the function sin(x1) in a two dimensional system. We can
always write:

sin(x1) = sin
( ϑ︷ ︸︸ ︷
[1 0]x

)
= sin

( 1
mi

ϑ̃︷ ︸︸ ︷
[m1 0]x

)
.

4.3 On monotonic nonlinearities

The methodology followed in this paper is inspired from Ar-
cak and Kokotovic (2001), Fan and Arcak (2003). Basically,

2 By considering the same neural mass model in Chong et al.
(2012), the LMI (Zemouche and Boutayeb, 2009, LMI (13)) is
found feasible for

H = 105×


0 0 0 0 0 0 0.01 0

0 0 0 0 2 0 0 0

1 −1 0 0 0 0 0 0


with better disturbance attenuation levels.

this methodology was established to deal with systems hav-
ing non Lipschitz but monotonic nonlinearities. The system
is non Lipschitz if there exist (i, j) such that bi j = +∞. In
this case, the proposed approach, as well as those in Chong
et al. (2012), Arcak and Kokotovic (2001), and Fan and
Arcak (2003), do not work, unless the disturbances vanish
from the output measurements, i.e.: D = 0. In this case, for
the feasibility of (Chong et al., 2012, LMI (7)) and the en-
hanced LMI (18), it is necessary to have

PGHi j +HT
i Zi−CT Ti = 0. (46)

For systems with nonlinear outputs, if we have bi j = di j =
+∞, then the necessary conditions for the feasibility of (37)
are  PGHi j +HT

i Zi−CT Ti = 0,

RT BFi j−
(

FT
i Si−CT T̄i

)
= 0.

(47)

Nevertheless, the fact that Zi and Si are non diagonal may
enhance the feasibility of (46) and (47), respectively.

4.4 On the incremental quadratic constraints in Açikmese
and Corless (2011)

Before the result by Chong et al. (2012), a very nice tech-
nique has been introduced in Açikmese and Corless (2011)
to deal with the similar problem. Thanks to elegant argu-
ments and the introduction of a new so called incremental
quadratic constraint, more degrees of freedom have been
added to the design. Nevertheless, the unique drawback of
this methodology is that these degrees of freedom are to
be determined before solving the LMI problem. Indeed, the
nonlinearity is assumed to satisfy the incremental quadratic
constraint depending on these additional degrees of free-
dom. What we proposed in this paper is completely differ-
ent. Thanks to the new variant of Young’s inequality, the
additional degrees of freedom, namely the matrices Zi and
Si, are considered as decision variables to be provided by
the LMI (37).

Useful parameterizations have been proposed in (Açikmese
and Corless, 2011, Section 4.1, Section 5.1) by introducing
some matrices as decision variables. However, these ma-
trices are not totally free solutions of the LMI, but only
parts of these matrices are returned by the LMI condition.
In (Açikmese and Corless, 2011, Section 5.1), for instance,
particular parameterizations have been provided for globally
Lipschitz and monotonic nonlinearities. It is quite clear from
their propositions that our methodology provides more de-
grees of freedom in the LMI. This is, indeed, due to the use of
Lemma 3, which leads to more relaxed LMIs, with larger do-
main of feasibility. Although the same quadratic Lyapunov
function has been used in Fan and Arcak (2003), Açikmese
and Corless (2011), Arcak and Kokotovic (2001) and all
other references dealing with LMI-based observer design,
the use of the proposed new variant of Young’s inequality
allows additional structure of the decision variables. It is the
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strength of this Young’s inequality, which is new and origi-
nal. This is the first time this inequality has been exploited
in such a way. One of the advantage of the proposed method
compared to that in Açikmese and Corless (2011) is that by
our technique it suffices to compute the Lipschitz constants
of the partial derivatives of the nonlinearity (if differentiable,
else we use Lemma 2) to compute the observer gains from
the LMI, instead of searching for a good parameterization
of the incremental quadratic inequalities, which can turn out
to be complicated in some cases. One of our future work
consists in combining the results of Açikmese and Corless
(2011) with Lemma 3 in the goal to get more relaxed LMI
conditions.

4.5 On the additional number of decision variables

The role of the new variant of Young’s relation is interesting
in the sense that it allows having more degrees of freedom
than the classical use of the inequalities (10) as in Chong et
al. (2012) and Zemouche and Boutayeb (2009). Indeed, if
we proceed as in Chong et al. (2012), we get for each bi j
an additional variable mi j. Then, we obtain a total of

nadd1 =
i=m

∑
i=1

ni +
i=s

∑
i=1

pi

additional degrees of freedom. However, with the proposed
design technique using the Young’s inequality, since the ma-
trices Zi and Si are symmetric and non diagonal, we get a
total of

nadd2 =
i=m

∑
i=1

ni(ni +1)
2

+
i=s

∑
i=1

pi(pi +1)
2

additional degrees of freedom. Hence, with this new method-
ology, we have

n+ =
i=m

∑
i=1

ni(ni−1)
2

+
i=s

∑
i=1

pi(pi−1)
2

additional decision variables. In case of systems with linear
outputs, we have

nadd1 =
i=m

∑
i=1

ni, nadd2 =
i=m

∑
i=1

ni(ni +1)
2

,

n+ =
i=m

∑
i=1

ni(ni−1)
2

.

We have n+ = 0 if ni = 1, ∀i = 1, . . . ,m. In such a case,
we retrieve the diagonal multiplier matrix as in Chong et al.
(2012).

In the next section we will show the important role of the non
diagonal multiplier matrices through two simple numerical
examples.

5 Illustrative examples and comparisons

This section is dedicated to simple numerical examples to
show the validity and effectiveness of the proposed design
methodology. Since we compare the proposed method with
the LMI techniques in Chong et al. (2012) and Zemouche
and Boutayeb (2009), then we consider examples of systems
with linear outputs. The nonlinear output case is treated in
Section 6 devoted to an application to vehicle slip angle
estimation.

5.1 Example 1

The aim of this example is to compare the proposed method
with those in Chong et al. (2012) and Zemouche and
Boutayeb (2009). Consider the nonlinear system described
by the following parameters :

A =


0 1 0

0 1 1

0 1 1

 , G =


1

0

0

 , C =
[
1 0 1

]
,

H1 =

[
1 0 0

0 0 1

]
, E =


1

1

1

 , D = 1,

and γ1 : R2 −→ R is a differentiable function, without loss
of generality.

5.1.1 Test of feasibility:

Assume that γ satisfies the following condition as in (10):

0 <
∂γ

∂ϑ j
(ϑ)≤ θ , j = 1,2. (48)

We will test the feasibility of the LMI (18) for different val-
ues of θ in the three cases where Z1 = I2 as in Zemouche
and Boutayeb (2009), Z1 = diag(m1,m2) as in Chong et al.
(2012), and finally for Z1 non diagonal symmetric positive
definite matrix as in Theorem 4. In each case, we will give
the optimal value of

√
µ for each value of θ . The results

obtained by using LMI toolbox of Matlab are summarized
in Table 1. It is quite clear from Table 1 that the proposed
design method in Theorem 4 is less conservative and pro-
vides solutions when the old ones are unable to work. This
shows the effectiveness and significance of the non diagonal
matrices Zi in LMI (18).

5.1.2 Numerical simulations

For simulations, we take

γ(ϑ) = g(ϑ1)g(ϑ2), g(x) =
1

1+ e−8θx . (49)
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Methods LMI (18) with Z1 = I2 LMI (18) with diagonal Z1 LMI (18) with non diagonal Z1

(as in Zemouche and Boutayeb (2009)) (as in Chong et al. (2012)) (Theorem 4)

θ = 0.10 1.5657 1.4923 1.4920

θ = 0.25 2.8831 1.6549 1.6500

θ = 0.28 16.7166 1.6976 1.6898

θ = 0.50 infeasible 2.2708 2.1325

θ = 0.70 infeasible 26.1518 3.1247

θ = 0.75 infeasible infeasible 3.6340

θ = 0.95 infeasible infeasible 17.0356

Table 1
Optimal value of

√
µ for each method: Superiority of Theorem 4

It is easy to show that this function satisfies conditions (48).
The numerical simulation is done for two cases, θ = 0.70
and θ = 0.95, respectively. In the second case, a diagonal
Z1 is unable to provide solutions; the simulation is pre-
sented in Figure 1 using a normal gaussian noise variable
ω ; (0,0.32) on a finite interval in order to show both per-
formances and asymptotic convergence of the estimation er-
rors. In the case θ = 0.70, Figures 2 and 3 show the role of
the non diagonal matrix to attenuate the level of the distur-
bance. The results in Figures 2 and 3 are obtained by using
a Monte Carlo simulation. We generated 100 normal gaus-
sian noise variables ω ; (0,0.05) and then we calculated
at each time instant t the value of the Root Mean Square
Error (RMSE). Recal that the RMSE function is defined by

RMSEt(x) =

√√√√ 1
100

100

∑
j=1
‖x(t)‖2

j

where ‖x‖ j is the jth realization of the euclidean norm of
the vector x(t).

It is clear from Figure 3 that the RMSE is globally better
with the proposed LMI design technique using non diagonal
multiplier matrices.

In the aim to confirm statistically the theoretical value of
√

µ

in the case of θ = 0.70, we introduce Figure 4 showing that
‖e(t)‖−√µ‖ω(t)‖≤ 0, which leads necessarily to ‖e‖L2 ≤√

µ‖ω‖L2 ≤ 0 in the interval of simulation. For clarity of
the presentation, Figure 4 shows a zoom of the simulation
result.

5.2 Example 2: Role of non diagonal Zi on (46)

Here we introduce a simple case study to show the impor-
tant role that can play the non diagonal matrices Zi on the
equality constraint (46). Let us consider a two dimensional

Fig. 1. Estimation errors for θ = 0.95.

example of system (6) where the matrices involved in (46)
are given as follows:

G =

[
1

0

]
, C =

[
1 1
]
, H1 =

[
1 0

0 1

]
.

This means that the we have a single nonlinearity depending
on the two state variables x1 and x2. Now, assume that the
nonlinearity is not goobally Lipschitz with respect to its first
argument x1. That is, b11 =+∞. Since H11 =

[
1 0
]
, then it

follows that

PGH11 =

[
P11 0

P12 0

]
.

On the other hand, we have

HT
1 Z1−CT T1 =


Z 11

1 −T 1
1 Z 12

1 −T 2
1

Z 12
1 −T 1

1 Z 22
1 −T 2

1

 .
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(a) RMSEt(e1).

(b) RMSEt(e2).

(c) RMSEt(e3).

Fig. 2. RMSEt(ei), i = 1,2,3 with θ = 0.70.

Fig. 3. RMSEt(e) for θ = 0.70.

Hence, according to (46), the following equality constraints
are necessary: 

P11 = T 1
1 −Z 11

1

P12 = T 1
1 −Z 12

1

Z 12
1 = T 2

1

Z 22
1 = T 2

1

(50)

Fig. 4. Zoom on ‖e‖−√µ‖ω‖ for θ = 0.70.

Therefore, if a diagonal matrix Z1 is used (Z 12
1 = 0) as

in Fan and Arcak (2003), Chong et al. (2012) and Zemouche
and Boutayeb (2009), then we need to have T 2

1 = 0, which
implies Z 22

1 = 0. This contradicts the positive definiteness
of Z1. We conclude that all the approaches using a diago-
nal multiplier matrix Z1 cannot be applied to this example.
However, with a non-diagonal Z1, the LMI (18) can work
provided that (50) holds. Indeed, the equality constraints (50)
are not contradictory with the assumptions of Theorem 4.
This simple example shows that the non-diagonal matrices
Zi can enhance the fulfillment of (46) for systems with
monotone but not globally Lipschitz nonlinearities.

Remark 6 It is worth to point out that the numerical simula-
tions were not the main objective of the two previous simple
academic examples (Examples 1 and 2). Indeed, all the so-
lutions provided by the diagonal multiplier based techniques
are also solutions for LMI (18) or (37) in the nonlinear out-
put case. Therefore, analytically speaking, it is obvious that
the proposed method with non diagonal multiplier matrices
is more general because it provides a larger set of solutions,
which contains the solutions for diagonal multiplier matri-
ces as a subset. Hence the proposed method is always at
least better because the observer gain parameters provided
using a diagonal multiplier matrix are particular solutions
of the LMI (37) (or (18) in the case of linear outputs).

6 Application to Vehicle Slip Angle Estimation

Electronic stability control (ESC) is a system to prevent
vehicles from spinning, drifting out, and rolling over. Sev-
eral automotive manufacturers have developed and recently
commercialized these systems. Most electronic stability
control systems focus on yaw rate feedback for enhancing
stability performance. However, it would be useful to also
control the vehicle slip angle besides controlling yaw rate
in situations especially on low-friction road surfaces (Raja-
mani, 2012). Vehicle slip angle feedback is necessary since
too large a value of it can reduce the ability of the tires to
generate lateral forces and can endanger the vehicle. There-
fore, both yaw rate and vehicle slip angle are variables need
for vehicle stability control.
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Fig. 5. Single track model for vehicle lateral dynamics

Slip angle cannot be directly measured with reasonably
priced sensors on real-world vehicles. Model-based esti-
mation is a suitable method for estimating the vehicle slip
angle utilizing only available on-board sensors of the ve-
hicle stability control system. Thus, this section presents
a method of estimating the vehicle slip angle based on a
nonlinear vehicle model. The developed H∞ observer is
validated with experimental measurements on a test vehicle.

6.1 Vehicle Lateral Dynamics

The 2 DOF of the vehicle lateral dynamics as shown in
Figure 5 consists of the lateral translation of the vehicle
and the rotational yaw motion of the vehicle. The nonlinear
vehicle lateral dynamics can be formulated as

may = (ÿ+ rux) = Fy f +Fyr (51)
Izṙ = aFy f −bFyr (52)

where m is the mass of the vehicle, ay is the lateral ac-
celeration, y is the lateral translation, r is the yaw rate, ux
is the longitudinal velocity, Fy f and Fyr are the lateral tire
forces of the front and rear wheels respectively, Iz is vehicle
inertia, and a and b are the distances of the front and rear
tires respectively from the c.g. of the vehicle.

The lateral tire force for each of the front and rear tires is
calculated from a lateral tire model for parabolic normal
pressure distribution (Rajamani, 2012):

Fy = c1α− c2α
2sgn(α)+ c3α

3 (53)

where c1, c2, and c3 are the coefficient of the tire form
model, and α is the tire slip angle.

The tire slip angle at the front and rear tires can be related
to the body slip angle and the yaw rate using the following
linear approximations:

α f = δ − (β + ra/ux),αr = rb/ux−β (54)

where α f and αr are the tire slip angles of the front and
rear wheels respectively, δ is the steering angle, and β is
the vehicle slip angle.

The vehicle lateral dynamics (51)-(52) including the nonlin-
ear lateral tire model (53) can be rewritten in the standard
system dynamics as:

ẋ = Ax+ B̄u+Gγ(x)+Ew (55)
y =Cx+Bg(x)+Dw (56)

where B̄ ∈ R(n×d) is the matrix, and u ∈ Rd is the input
vector.

This can be done by choosing the front slip angle α f and
rear slip angle αr as the state vector. The system equations
can be written as[

α̇ f

α̇r

]
=

−
(

ux
a+b +

a2c1 f
Izux

) (
ux

a+b +
abc1r
Izux

)
−
(

ux
a+b −

abc1 f
Izux

) (
ux

a+b −
b2c1r
Izux

)
[α f

αr

]

+

[
ux

a+b 1 − 1
ux

ux
a+b 0 − 1

ux

]
δ

δ̇

ȧy

+
[

a2

Izux
− ab

Izux

− ab
Izux

b2

Izux

][
−η(α f )

−η(αr)

]

+

[
0

0

]
w (57)

where η(α f ) = −c2α2
f sgn(α f ) + c3α3

f , and η(αr) =

−c2α2
r sgn(αr)+ c3α3

r .

The measurement of the system is described by[
y1

y2

]
=

[
r−
( ux

a+b

)
δ

ay

]
=

[
−
( ux

a+b

) ( ux
a+b

)
c1 f
m

c1r
m

][
α f

αr

]

+

[
0 0

− 1
m −

1
m

][
−η(α f )

−η(αr)

]
+

[
0

0

]
w (58)

Then, the slip angle of the vehicle can be computed from
the slip angle of the front or rear tire as

β = δ −α f −
ra
ux

or β =
rb
ux
−αr. (59)

Using the LMI toolbox in Matlab, the observer gain based
on Theorem 5 for the model in equations (57)-(59) are found
to be
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Fig. 6. The Volvo XC90 test vehicle with GPS system (Phanom-
choeng et al., 2011)

L =

[
0.0559 0.2677

−0.0471 0.3961

]
(60a)

K1 =
[
−0.0650 0.0071

]
, K2 =

[
0.0650 0.0071

]
(60b)

M1 =
[
−0.0650 0.0071

]
, M2 =

[
0.0650 0.0071

]
. (60c)

6.2 Experimental Set Up and Results

The test vehicle used for the experimental evaluation is
a Volvo XC90 sport utility vehicle. Vehicle testing was
conducted at the Eaton Proving Ground in Marshall, Michi-
gan (Piyabongkarn et al., 2009). A MicroAutoBox from
dSPACE was used for real-time data acquisition. A real-
time 6 axis inertial navigation system combined with GPS,
RT3000, from Oxford Technical Solutions was used for
these tests to accurately measure the vehicle slip angle for
comparison with the performance of the slip angle esti-
mation algorithm. The specification of slip angle estimates
from this system according to the manufacturer of the
RT3000 is 0.15 degrees. The GPS outputs were connected
to the MicroAutoBox via CAN communication at the baud
rate of 0.5 Mbits/sec. To obtain objective test results, the
vehicle was instrumented to record the relevant values from
both CAN network and GPS. The sampling time is set at 2
milliseconds. A photograph of the test vehicle is shown in
Figure 6 (Piyabongkarn et al., 2009).

Figures 7 and 8 show the experiment results of a double
lane change maneuver with vehicle speed at 70 mph and in
a random driving maneuver, respectively. The results shows
that the estimated vehicle slip angle can track the vehicle
slip angle obtained from the RT3000 system well.

Figure 9 shows the experiment results of double lane change
test on a low friction road surface. In this experiment, the
friction coefficient of the road surface is changed. How-
ever, the same observer gains as (60a)-(60c) are still used
for the vehicle slip angle estimation. The estimation result
obtained is shown in Figure 9. The estimated slip angle is
seen to track well the actual vehicle slip angle in the range
of approximately −8 to +8 degrees. The estimation cannot
track the actual value well, if it is out of this range because
the friction road surface is reduced too much. Overall, this

Fig. 7. Vehicle slip angle estimation result in double lane change
test.

Fig. 8. Vehicle slip angle estimation result in random driving test.

Fig. 9. Vehicle slip angle estimation result in double lane change
test on low friction road surface.

observer works successfully even with significant error in
assumed friction coefficient value.

If the friction coefficient of the tire-road surface is known,
a new observer gain can be obtained. Then, the experiment
result of double lane change test on low friction road surface
with the new observer gain is shown in Figure 10. It shows
that the H∞ observer works very well.

In order to further show the performance of the designed
observer, additional disturbances could be applied to the
output measurements, y, and the equation (58) is modified
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Fig. 10. Vehicle slip angle estimation result in double lane change
test on low friction coefficient of the road surface.

as follows:[
y1

y2

]
=

[
r−
( ux

a+b

)
δ

ay

]
=

[
−
( ux

a+b

) ( ux
a+b

)
c1 f
m

c1r
m

][
α f

αr

]

+

[
0 0

− 1
m −

1
m

][
−η(α f )

−η(αr)

]
+

[
1

1

]
w (61)

Then, the new observer gains and the optimal disturbance
attenuation level

√
µ based on equations (57), (61), and (59)

are found to be

L =

−0.1660 0.1660

−0.2657 0.2657

 , √µ = 1.3359×10−2 (62a)

K1 =
[
−0.0059 0.0059

]
, K2 =

[
−0.0085 0.0085

]
(62b)

M1 =
[
−0.0076 0.0076

]
, M2 =

[
−0.0119 0.0119

]
. (62c)

For the double lane change maneuver with vehicle speed at
70 mph and a random driving maneuver, additional distur-
bances, ω , are added to the lateral acceleration and yaw rate
measurements. For the double lane change maneuver, the
disturbances for lateral acceleration and yaw rate are Gaus-
sian disturbances with variation of 0.8m/s2, 0.0016rad/s re-
spectively. The disturbances are applied during the time 0 to
4 seconds. Likewise, for the random driving maneuver, the
disturbances for lateral acceleration and yaw rate are Gaus-
sian disturbances with variation of 0.4m/s2, 0.0008rad/s
respectively. The disturbances are applied during the time 0
to 8 seconds. The measurements for each case are shown in
Figures 11(b)-11(c) and Figures 12(b)-12(c). Then, the ve-
hicle slip angle estimation results are shown in Figures 11(a)
and 12(a). The result shows that the estimated vehicle slip
angle can track the actual value well even though there are
disturbances.

For the double lane change maneuver on a low friction road
surface, the disturbances for lateral acceleration and yaw

(a) Vehicle slip angle.

(b) Yaw rate vs yaw rate with disturbance.

(c) Lateral acceleration and lateral acceleration with dis-
turbance.

Fig. 11. Results in double lane change test.

rate are Gaussian disturbances with variation of 0.8m/s2,
0.0016rad/s respectively. The disturbances are applied dur-
ing the time 0 to 6 seconds. The measurements are shown
in Figures 13(b)-13(c). The observer gains in equations (62)
are still used for the vehicle slip angle estimation. Then, the
result is shown in Figure 13(a). The estimated slip angle
can track well the actual vehicle slip angle only in the range
of approximately −8 to +8 degrees since the friction road
surface is reduced too much.

However, if the friction coefficient of the tire-road surface
is known, the new observer gain can be re-calculated by
Theorem 5. The re-calculated observer gains are shown in
equations (63) below.

L =

−0.2517 0.2517

−1.0096 1.0096

 , √µ = 1.3359×10−2 (63a)
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(a) Vehicle slip angle.

(b) Yaw rate vs Yaw rate with disturbance.

(c) Lateral acceleration and lateral acceleration with dis-
turbance.

Fig. 12. Results in random driving test.

K1 =
[
−0.0081 0.0081

]
, K2 =

[
−0.0091 0.0091

]
(63b)

M1 =
[
−0.0225 0.0225

]
, M2 =

[
−0.0336 0.0336

]
. (63c)

Then, the experiment result of double lane change test on
low friction road surface with the re-calculated observer gain
is shown on Figure14. The result shows that the H∞ observer
still works very well even with the disturbances.

7 Conclusions

This paper presented a new and less conservative LMI con-
dition to solve the problem of H∞ observer design for a
class of Lipschitz nonlinear systems. What we provided in
this paper can be seen as a generalization of the work pre-
sented in Chong et al. (2012) for a more general class of
systems. This generalization is done thanks to a new use of
the Young’s inequality. This novel use of Young’s relation
has allowed us to introduce a multiplier matrix, which is not

(a) Vehicle slip angle.

(b) Yaw rate vs Yaw rate with disturbance.

(c) Lateral acceleration and lateral acceleration with dis-
turbance.

Fig. 13. Results in double lane change test on low friction road
surface.

Fig. 14. Vehicle slip angle estimation result in double lane change
test on low friction coefficient of the road surface assuming the
friction coefficient is known.

necessarily diagonal and enables a less conservative LMI
observer design condition. The proposed method is applied
experimentally to estimate slip angle for electronic stability
control applications in automobiles.
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Henriksson, R., M. Norrlöf, S. Moberg, E. Wernholt and
T. B. Schön (2009). Experimental comparison of ob-
servers for tool position estimation of industrial robots.
In ‘Proceedings of the 48h IEEE Conference on Decision
and Control (CDC) held jointly with 2009 28th Chinese
Control Conference’. Shanghai, China.

Ibrir, S. (2007). ‘Circle-criterion approach to discrete-time
nonlinear observer design’. Automatica.

Khalil, H. (2002). Nonlinear Systems. Prentice Hall, Upper

Saddle River, NJ.
Khalil, H. K. (2015). Nonlinear Control. Pearson Education;

1 edition.
Kravaris, C., V. Sotiropoulos, C. Georgiou, N. Kazantzis,

M. Q. Xiao and A. J. Krener (2004). Nonlinear observer
design for state and disturbance estimation. In ‘2004
American Control Conference ACC’04’. Boston, Mas-
sachusetts, USA.

Kravaris, C., V. Sotiropoulos, C. Georgiou, N. Kazantzis,
M. Q. Xiao and A. J. Krener (2007). ‘Nonlinear observer
design for state and disturbance estimation’. Systems and
Control Letters 56, 730–735.

Krener, A. J. and W. Respondek (1985). ‘Nonlinear observer
with linearizable error dynamics’. SIAM J. Control and
Optimization 23(2), 197–216.

Oueder, M., M. Farza, R. Ben Abdennour and M. M’Saad
(2012). ‘A high gain observer with updated gain for a
class of MIMO non-triangular systems’. Systems & Con-
trol Letters 61(2), 298–308.

Phanomchoeng, G., R. Rajamani and D. Piyabongkarn
(2011). ‘Nonlinear observer for bounded jacobian sys-
tems, with applications to automotive slip angle es-
timation’. IEEE Transactions on Automatic Control
56(5), 1163–1170.

Piyabongkarn, D., R. Rajamani, J. Grogg and J. Lew (2009).
‘Development and experimental evaluation of a slip angle
estimator for vehicle stability control’. IEEE Transactions
on Control Systems Technology 17(1), 78–88.

Raghavan, S. and J. K. Hedrick (1994). ‘Observer design for
a class of nonlinear systems’. Int. J. of Control 59(2), 515–
528.

Rajamani, R. (2012). Vehicle Dynamics and Control. 2nd
edition, Springer Verlag.

Simon, D. (n.d.). Optimal State Estimation. John Wiley &
Sons, Hoboken, 1st Edition, 2006.

Thau, F. E. (1973). ‘Observing the state of nonlinear
dynamic systems’. International Journal of Control
17(3), 471–479.

Tsinias, J. (2008). ‘Time-varying observers for a class
of nonlinear systems’. Systems & Control Letters
57(12), 1037–1047.

Wang, L., D. Astolfi, L. Marconi and H. Su (2017). ‘High-
gain observers with limited gain power for systems with
observability canonical form’. Automatica 75(1), 16–23.

Zemouche, A. and M. Boutayeb (2009). ‘A unified H∞ adap-
tive observer synthesis method for a class of systems with
both Lipschitz and monotone nonlinearities’. Systems &
Control Letters 58(4), 282–288.

Zemouche, A. and M. Boutayeb (2013). ‘On LMI conditions
to design observers for Lipschitz nonlinear systems’. Au-
tomatica 49(2), 585–591.

Zemouche, A., R. Rajamani, B. Boulkroune, H. Rafaralahy
and M. Zasadzinski (2016). H∞ circle criterion observer
design for Lipschitz nonlinear systems with enhanced
LMI conditions. In ‘IEEE American Control Conference’.
Boston, MA, USA.

16


