
HAL Id: hal-01567358
https://hal.science/hal-01567358

Submitted on 12 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LMI-Based invariant like nonlinear state observer for
anaerobic digestion model

Khadidja Chaib Draa, Marouane Alma, Holger Voos, Ali Zemouche,
Mohamed Darouach

To cite this version:
Khadidja Chaib Draa, Marouane Alma, Holger Voos, Ali Zemouche, Mohamed Darouach. LMI-Based
invariant like nonlinear state observer for anaerobic digestion model. 25th Mediterranean Conference
on Control and Automation, MED 2017, Jul 2017, Valletta, Malta. �10.1109/med.2017.7984197�.
�hal-01567358�

https://hal.science/hal-01567358
https://hal.archives-ouvertes.fr


LMI-Based Invariant Like Nonlinear State Observer for Anaerobic
Digestion Model

K. CHAIB DRAA, M. ALMA, H. VOOS, A. ZEMOUCHE and M. DAROUACH

Abstract— This note deals with the design of an invariant
like nonlinear state observer for a two step (acidogenesis-
methanogenesis) mass balance nonlinear model. In order to
ensure the stability of the estimation error, a new LMI condition
is proposed. The feasibility of this LMI is enhanced due to
the use of a suitable reformulation of the Youngs inequality.
Actually, additional decision variables are included in the LMI
to render its feasibility less conservative compared to those
established in the literature for the same class of systems.
The numerical simulations using the investigated anaerobic
digestion model show the effectiveness of the proposed LMI
methodology.

Index Terms— Anaerobic digestion, LMI approach, Observer
Design, Nonlinear systems.

I. INTRODUCTION

Anaerobic digestion (AD) is one of the most optimal ways
to convert organic waste into useful energy [23], [15]. The
process occurs inside an anaerobic digester where the organic
matter is transformed into biogas through several biologic
reactions, including different species of micro-organisms.
Often, the produced biogas is converted into electrical energy
and injected to the power grid.

Usually, in biological processes things seem to work fairly
well and reasobably until some failures or faults occur [12].
This may be due to the specific behaviour of the system
itself or to the presence of disturbances which can highly
affect it. Thus, an obvious need for an efficient control and
monitoring of such systems arises.

However, a basic difficulty facing the process monitoring
is a shortage in biosensors which makes the process state
very difficult to characterize [2]. To overcome this issue,
a couple of software sensors have been proposed in the
literature. Among them, we can cite the asymptotic observer
reported in [3] which is quite simple and does not require the
knowledge of some specific non linear functions. However,
it has a drawback concerning the speed of convergence
which is equal to the control input. Therefore, a more
appropriate solution has been proposed in [10], [19] when the
time-varying bounds enclosing the uncertainties are known.
Indeed, the solution in this case is the use of interval observer
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which is composed, usually, of two asymptotic observers,
one to estimate the state upper bound x+(t) and a second
one to estimate the lower bound x−(t), and then the actual
state will be enclosed in the envelope drown by x−(t) and
x+(t) provided that at the initial time x−(t0)≤ x(t0)≤ x+(t0).
Unfortunately, it happens sometimes to obtain a large enve-
lope of the state and thus the estimation becomes useless.
Therefore, Bernard and his co-authers [4] have proposed to
launch a bundle of interval observers with different initial
conditions and then select the best (smallest) envelope. The
advantage of the bundle observers is the improvement of the
asymptotic bounds and the ability to partially tune the rate
of convergence. This is possible due to the use of additional
measurements which are non linear functions of the state
variables. However, the interval observers are applied only
when the dynamic of the estimation error is cooperative1.
Therefore, the interval observers can be applied only for a
specific class of systems. In addition to that, it is not easy
to exploit the estimated intervals for control.

For reliable models, the extended Kalman filter (based on
a linear approximation of the non linear process model) has
been extensively applied to the AD applications [3], [16], [6],
[9], [8] and the references in [13], with success and has even
covered the situations where measurements of the process
outputs arrive at different sampling rates [21]. However,
unfortunately it has been prooved in [17] that due to the
non linear structure of the AD models and the number of
input variables, it becomes impossible to apply the extended
Kalman filter when one wants to estimate the biomass
concentration (the system is not uniformly observable for
any input), which is a key state variable to estimate since it
reflects the system health and stability [18].

A new kind of observers has been proposed in [1], [22] and
applied to a class of chemical reactors, they are called invari-
ant observers, where the invariance refers to the invariance
under a group action, and are based on Lie group symmetries.
The advantage of these observers is their adjustable rate
of convergence as it has been shown in [5]. Moreover, the
invariant observer has been applied successfully in [7] to a
forth order AD model with the use of only cheap and com-
monly done measurement. Thus, inspired by the structure
of the invariant observer and motivated by the estimation
of bacteria concentrations in AD models, we design in the
current work a novel LMI based invariant like nonlinear
observer for a sixth order acidogenesis-methanogenesis mass
balance nonlinear model.

1All elements of the Jacobian matrix of the system are positive.



The rest of the paper is organised as follows. In Section II,
we present the studied model, then in Section III, we detail
the designed observer and give the proof of convergence
of the estimation error. In Section IV, we run numerical
simulation to illustrate the theoretical findings. Finally, in
Section V, we conclude the paper.

II. MODEL OF ANAEROBIC DIGESTION PROCESS

The AD process is represented by the nonlinear mathemat-
ical model proposed in [20], [11] and slightly modified in
[14], where the acidogenesis and methanogenesis reactions
are considered to be the limiting steps, and are modelled by
the following equations:

ẋ1 = −k1µ1(x1)x2 +u1S1in−uoutx1 (1a)
ẋ2 = µ1(x1)x2−uoutx2 (1b)
ẋ3 = k2µ1(x1)x2− k3µ2(x3)x4−uoutx3 + (1c)

u1(S2in +S2ad)

ẋ4 = µ2(x3)x4−uoutx4 (1d)
ẋ5 = k4µ1(x1)x2 + k5µ2(x3)x4 +u1Cin− (1e)

uoutx5−Qc(x)

ẋ6 = u1Zin +u2Zad−uoutx6 (1f)

where x1 (g/l) represents concentration of the organic matter
to be digested, and x2 (g/l) concentration of acidogenic
bacteria which degrades x1. The volatile fatty acids concen-
tration x3 (mmol/l) is supposed to be pure acetate, x4 (g/l)
is concentration of methanogenic bacteria, x5 (mmol/l) rep-
resents the inorganic carbon concentration and x6 (mmol/l)
the alkalinity concentration. The control inputs are u1 =

F1in
v

( 1
day ) and u2 = F2in

v ( 1
day ), where F1in is the input flow

rate of waste to the digester and F2in input flow rate of
the added alkalinity (Zad). Since the digester volume (v) is
constant the output dilution rate uout = u1+u2. Regarding the
gas flow rates, we have Qm(x) and Qc(x) which represent
the methane and co2 gas flow rates, respectively. We also
have the following equations, which express the relationships
between bicarbonates (bic), dissolved co2 and the pH:

bic = x6− x3
co2 = x5−bic
kb =

[H+]bic
co2

pH =− log10(kb
co2
bic )

(2)

where kb is the acidity constant of bicarbonates (bic).
The bacteria growth rate functions are of type Monod for

x2 and of type Haldane for x4:
µ1(x1) = µ1

x1
x1+ks1

µ2(x3) = µ2
x3

x3+ks3+
x2
3

ki3

(3)

Gaseous flow rates of methane (Qm(x)) and carbon dioxide

(Qc(x)) are expressed as the following
Qm(x) = k6µ2(x3)x4
co2 = x5 + x3− x6

Qc(x) =
RT γco2

PT+RT γ(KH PT−co2)
Qm(x)

(4)

The concentrations S1in,S2in,Cin and Zin correspond to the
fed waste characteristics and the concentration S2ad is an
additional input which represents the added acids to the fed
waste.

The system output is divided into linear (y1) and nonlinear
(y2) outputs {

y1 = [x1,x3,x6]
T

y2 = Qc(x)
(5)

All parameters used in the previous equations and not defined
up to now are determined in Table I.

III. OBSERVER DESIGN

In this section, we present the designed nonlinear invariant
like observer that we use to estimate the states which are
the most costly and difficult to measure in the AD process,
bacteria concentrations, and inorganic carbon concentration.
Fortunately the proposed observer can be designed for dif-
ferent class of systems. Consequently, we present the results
in a general way.

In order to refine the presentation of the findings, we first
provide some useful preliminaries.

A. Some useful preliminaries

The following preliminaries are very useful to ensure the
asymptotic convergence of the state observer that we will
propose later.

Theorem 1 (Mean value theorem [24]): Let ϕ : Rn →
Rq. Let x,y ∈ Rn. We assume that ϕ is differentiable
on Co(x,y). Then, there are constant vectors z1, ...,zq ∈
Co(x,y),zi 6= x,zi 6= y for i = 1, ...,q such that :

ϕ(x)−ϕ(y) =

(
q,n

∑
i, j=1

eq(i)eT
n ( j)

∂ϕi

∂x j
(zi)

)
(x− y). (6)

Lemma 3.1 (a variant of Lipschitz reformulation): Let
ϕ : Rn → Rq a differentiable function on Rn. Then, the
following items are equivalent:
• ϕ is a globally γϕ -Lipschitz function;
• there exist finite and positive scalar constants ai j,bi j so

that for all x,y∈Rn there exist zi ∈Co(x,y),zi 6= x,zi 6= y
and functions ψi j: Rn→ R satisfying the following:

ϕ(x)−ϕ(y) =
i, j=q,n

∑
i, j=1

ψi j(zi)Hi j

(
x− y

)
(7)

ai j ≤ ψi j

(
zi

)
≤ bi j, (8)

where

ψi j(zi) =
∂ϕi

∂x j
(zi), Hi j = eq(i)eT

n ( j).

Notice that this lemma is obvious from the mean value
theorem, but it is important to introduce it at this stage, under



TABLE I
MODEL PARAMETERS

Acronyms Definition Units Value
α Proportion of dilution rate for bacteria mmol/l 0.5
k1 Yield for substrate (x1) degradation g/(g of x2) 42,1
k2 Yield for VFA (x3) production mmol/(g of x2) 116,5
k3 Yield for VFA consumption mmol/(g of x4) 268
k4 Yield for co2 production mmol/g 100
k5 Yield for co2 production mmol/g 300
k6 Yield for ch4 production mmol/g 302
µ1 Maximum acidogenic bacteria (x2) growth rate 1/day 1,25
µ2 Maximum methanogenic bacteria (x4) growth rate 1/day 0,74
ks1 Half saturation constant associated with x1 g/l 0,41
ks3 Half saturation constant associated with x3 mmol/l 8,42
ki3 Inhibition constant associated with x3 mmol/l 247
kb Acidity constant of bicarbonate mol/l 6,5.10−7

KH Henry’s constant mmole/(l.atm) 27
R Gas constant L.atm/(K.mol) 82,1
PT Total preasure atm 1,013
T Temperature Kelvin 308
γ Dimensionless parameter introduced by Hess [11] − 0,025

this formulation, in the aim to simplify the presentation of the
proposed observer design method. Indeed, for our technique,
we will exploit (7)-(8) instead of a direct use of Lipschitz
property.

Lemma 3.2 ([25]): Let X and Y two given matrices of
appropriate dimensions. Then, for any symmetric positive
definite matrix S of appropriate dimension, the following
inequality holds:

XTY +Y T X ≤ 1
2

[
X +SY

]T
S−1
[
X +SY

]
. (9)

This lemma will be very useful for the main contributions of
this paper. It allows providing less restrictive LMI conditions
compared to the classical LMI techniques for the considered
class of systems.

B. System description and assumptions

Being motivated by the model of AD (1a-1f), we will
investigate the general class of systems described by the
following equations{

ẋ = A(ρ)x+Bγ(x)+g(u, t)
y =Cx (10)

where x ∈ Rn is the state vector, y ∈ Rp is the output
measurement, u ∈ Rq is an input vector and ρ ∈ Rs is an
L∞ bounded and known parameter. The affine matrix A(ρ)
is expressed under the form

A(ρ) = A0 +
s

∑
j=1

ρ jA j (11)

with ρ j,min ≤ ρ j ≤ ρ j,max, which means that the parameter
ρ belongs to a bounded convex set for which the set of 2s

vertices can be defined by

Vρ =
{

ρ ∈ Rs : ρ j ∈ {ρ j,min,ρ j,max}
}
. (12)

The matrices Ai ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are
constant. The non-linear function γ : Rn −→ Rm is assumed

to be globally Lipschitz. It is obvious that Bγ(.) can always
be written under the detailed form

Bγ(x) =
m

∑
i=1

Biγi(

ϑi︷︸︸︷
Hix) (13)

where Hi ∈ Rni×n.

C. Observer structure and error dynamics

Now, we give the structure of the proposed invariant like
nolinear state observer that will be used to estimate the
unmeasurable state variables of the system (10).

Consider the following general observer structure

˙̂x = A(ρ)x̂+
m

∑
i=1

Biγi(ϑ̂i)+g(y,u)+ (14)

L(ρ)
[
ln
( y1

eT
p (1)Cx̂

)
, . . . , ln

( yp

eT
p (p)Cx̂

)]T

with
ϑ̂i = Hix̂ (15)

and

L(ρ) = L0 +
s

∑
j=1

ρ jL j (16)

where x̂ is the estimate of x. The matrices Li ∈ Rn×p

and the vector ep(i) =
(

0, ...,0,

i th︷︸︸︷
1 ,0, ...,0︸ ︷︷ ︸

p components

)T ∈ Rp, p ≥ 1.

The observer parameters are to be determined so that the
estimation error e = x− x̂ converges asymptotically towards
zero. Its dynamic is obtained by using equations (10) and
(14)

ė = A(ρ)e+
m

∑
i=1

Bi(γi(ϑ̂i)− γi(ϑi))− (17)

L(ρ)
[
ln
( y1

eT
p (1)Cx̂

)
, . . . , ln

( yp

eT
p (p)Cx̂

)]T



At this stage, we will proceed step by step.
First, since γ(.) is globally Lipschitz, then from Lemma

3.1 there exist ri ∈ Co(ϑi, ϑ̂i), functions φi j : Rni −→ R
and constants ai j,bi j, such that

B(γ(x)− γ(x̂)) =
m,ni

∑
i, j=1

φi j(ri)Hi j

(
ϑi− ϑ̂i

)
(18)

and
ai j ≤ φi j

(
ri

)
≤ bi j, (19)

where

φi j(ri) =
∂γi

∂ϑ
j

i

(ri), Hi j = BieT
ni
( j). (20)

For shortness, we set φi j , φi j(ri). Without loss of generality,
we assume that ai j = 0 for all i = 1, . . . ,m and j = 1, . . . ,ni
and moreover, since ϑi− ϑ̂i = Hie, then we have

B(γ(x)− γ(x̂)) =
m,ni

∑
i, j=1

φi jHi jHie (21)

Second, we can always write

ln
( yi

eT
p (i)Cx̂

)
= ln(eT

p (i)Cx)− ln(eT
p (i)Cx̂)︸ ︷︷ ︸

ϒi(x)−ϒi(x̂)

thus, from Lemma 3.1 and in some specific invariant
space there exist zi ∈ Co(min(xi, x̂i),max(xi, x̂i)), functions
ψi j : R−→ R and constants min(ψi j),max(ψi j), such that

ϒ(x)−ϒ(x̂) =
p,n

∑
i, j=1

ψi j(zi)Mi je (22)

with ϒ(x) = [ϒi(x), . . . ,ϒp(x)]T and

min(ψi j)≤ ψi j

(
zi

)
≤max(ψi j), (23)

where

ψi j(zi) =
∂ϒi

∂x j
(zi), Mi j = ep(i)eT

n ( j). (24)

For shortness, we set ψi j , ψi j

(
zi

)
.

Now, using equations (17), (21) and (22), we obtain

ė =

(
A(ρ)+

m,ni

∑
i, j=1

φi jHi jHi−L(ρ)
p,n

∑
i, j=1

ψi jMi j

)
e (25)

Since, we know that min(ψi j) 6= 0 in equation (23), we
propose to write

0≤ ψi j−min(ψi j)≤max(ψi j)−min(ψi j)︸ ︷︷ ︸
bi j

(26)

and

ė =

(
A(ρ)+

m,ni

∑
i, j=1

φi jHi jHi− (27)

L(ρ)
p,n

∑
i, j=1

(ψi j +min(ψi j)−min(ψi j))Mi j

)
e

hence

ė =

A(ρ)−L(ρ)
p,n

∑
i, j=1

min(ψi j)Mi j︸ ︷︷ ︸
C

+ (28)

m,ni

∑
i, j=1

φi jHi jHi−L(ρ)
p,n

∑
i, j=1

(ψi j−min(ψi j))︸ ︷︷ ︸
ϕi j

Mi j

e

where
0≤ ϕi j ≤ bi j (29)

The aim consists in finding the observer parameters so that
the estimation error dynamics (28) be asymptotically stable.

Therefore, let us consider the classical quadratic Lyapunov
function V (e) = eTPe, P = PT > 0. By calculating its
derivative along the trajectories of (28), we obtain

V̇ = eT

(
A(ρ)−L(ρ)C+

m,ni

∑
i, j=1

φi jHi jHi−L(ρ)
p,n

∑
i, j=1

ϕi jMi j

)T

Pe

+ eTP

(
A(ρ)−L(ρ)C+

m,ni

∑
i, j=1

φi jHi jHi−L(ρ)
p,n

∑
i, j=1

ϕi jMi j

)
e

(30)

V̇ = eT

AT (ρ)P−CT LT (ρ)P+PA(ρ)−PL(ρ)C︸ ︷︷ ︸
Ψ

e

+ eT
m,ni

∑
i, j=1

φi j

PHi j︸ ︷︷ ︸
XT

i j

Hi︸︷︷︸
Yi

+H T
i H T

i j P

e

+ eT
p,n

∑
i, j=1

ϕi j

PL(ρ)︸ ︷︷ ︸
XT

i j

(−Mi j)︸ ︷︷ ︸
Yi j

+(−Mi j)
T LT (ρ)P

e

(31)

Now, by applying Lemma 3.2 we have

XT
i jYi +YT

i Xi j ≤
1
2

(
Xi j +Si jYi

)T
S−1

i j

Πi j︷ ︸︸ ︷(
Xi j +Si jYi

)
(32)

and

XT
i jYi j +YT

i jXi j ≤
1
2

(
Xi j +Si jYi j

)T
S−1

i j

Πi j︷ ︸︸ ︷(
Xi j +Si jYi j

)
(33)

for any symmetric positive definite matrices Si j and Si j.
Moreover, from (19) and (29) and the fact that ai j = 0,
inequality V̇ < 0 holds if

Ψ−
m,ni

∑
i, j=1

(
Π

T
i j

(
− 2

bi j
Si j

)−1
Πi j

)
− (34)

p,n

∑
i, j=1

(
Π

T
i j

(
− 2

bi j
Si j

)−1
Πi j

)
< 0.



consequently, by Schur lemma, inequality (34) is equivalent
to 

Ψ
[
ΠT

1 . . . ΠT
m
] [

Π
T
1 . . . Π

T
p

]
(?) −ΛS 0
(?) (?) −Λ S

< 0

(35)
where

Πi =
[
Π

T
11 . . .Π

T
1ni

]T
, Πi j = H T

i j P+Si jHi (36)

Πi =
[
Π

T
11 . . .Π

T
1n

]T
, Πi j = LT (ρ)P+Si j(−Mi j) (37)

and

S= block-diag(S1, . . . ,Sm), Si = block-diag(Si1, . . . ,Sini)
(38)

Λ = block-diag(Λ1, ...,Λm), Λi = block-diag(Λi1, . . . ,Λini)
(39)

with
Λi j =

2
bi j

Ini , (40)

and

S= block-diag(S1, . . . ,Sp), Si = block-diag(Si1, . . . ,Sin)
(41)

Λ = block-diag(Λ1, ...,Λp), Λi = block-diag
(
Λi1, . . . ,Λin

)
(42)

with
Λi j =

2
bi j

Ip (43)

Finally, we use the change of variables Ri = LT
i P to solve

the LMI (35).

IV. SIMULATION RESULTS

In order to apply the designed observer (14) to the AD
model presented in Section II for estimating its key state
variables, we first write the model in the form (10). This can
be easily done by using the following parameters:

ρ = uout , A0 = 0, A1 =−block-diag(1,α,1,α,1,1)
(44)

B =

[
−k1 1 k2 0 k4 0

0 0 −k3 1 k5 0

]T

(45)

γ(x) =
[

µ1(x1)x2
µ2(x3)x4

]
(46)

g(y,u) =


u1S1in

0
u1(S2in +S2ad)

0
u1Cin−Qc

u1Zin +u2Zad

 (47)

and for the selected outputs in (5):

C =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 (48)

Moreover, for the observer design we have, m = 2, s = 1,
ni = 2, γ1(x) = µ1(x1)x2 , γ2(x) = µ2(x3)x4,

H1 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]

H2 =

[
0 0 1 0 0 0
0 0 0 1 0 0

]
B1 =

[
−k1 1 k2 0 k4 0

]T
B2 =

[
0 0 −k3 1 k5 0

]T
(49)

The matrices Mi j ∈ Rp×n with all elements null except the
element Mi j(i, j), for example:

M23 =

 0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

 (50)

The simulation have been run for ρmin = 0.12 day−1, ρmax =
0.5 day−1, S1in = 12.19 g/l, S2in = 6.7 mmol/l, Cin = 58.08
mmol/l, Zin = 31 mmol/l, Zad = 80 mmol/l, S2ad = 11
mmol/l, and the parameter values given in Table I. After
solving the LMIs (35) by using LMI MATLAB Toolbox, the
following observer gains have been obtained

L0 =


10.9834 −3.2478 −0.0073
−0.2685 0.0822 0.0043
−29.9616 272.6428 −6.0918
−0.0014 −1.0061 0.0276
−26.5279 −287.3792 6.8599
−0.0001 0.0001 0.0019



L1 =


6.3587 0.5083 −0.1598
−0.1565 −0.0123 0.0038
−15.8649 −0.4543 −1.7419
−0.0070 −0.0036 0.0082
−17.6868 −2.3044 2.8363

0.0000 0.0001 −0.0039


Moreover, the control input u1 has been varied during
the simulation as represented in Figure 1. The system
and the observer were initialized, respectively, by x(0) =
[1.8,0.15,3,0.8,65,62]T and x̂(0) = [1.8,0.2,3,1,60,62]T .
Simulation results are depicted in Figures 2-4. It is quite clear
from the later figures that the estimated state variables by the
proposed observer converge to the simulated system states.
This shows the effectiveness of the proposed methodology.
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Fig. 1. Control input u1 (1/day).
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Fig. 2. Acidogenic bacteria x2 and its estimate x̂2(g/l).
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Fig. 3. Mathenogenic bacteria x4 and its estimate x̂4(g/l).
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Fig. 4. Inorganic carbon x5 and its estimate x̂5(mmol/l).

V. CONCLUSION

In this note, we have designed a novel invariant like
nonlinear state observer for a two step AD model. In order to
guarantee the asymptotic convergence of the estimation error
to zero, we have used an LMI approach. In the synthesized
LMI conditions, we have included additional decision vari-
ables to enhance its feasibility. This was possible due to the
use of a suitable reformulation of the Young’s inequality. To
illustrate the effectiveness of the methodology, we have run
numerical simulation which has shown satisfactory results.
This opens new prospects to evaluate performances of the
proposed observer in presence of disturbances in the system
and noise in measurements.
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